# unsupervised_feature_selection_with_structured_graph_optimization__7487451c.pdf Unsupervised Feature Selection with Structured Graph Optimization Feiping Nie1 and Wei Zhu1 and Xuelong Li 2 1School of Computer Science and Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University, Xi an 710072, Shaanxi, P.R. China 2Center for OPTical IMagery Analysis and Learning (OPTIMAL), Xi an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi an, 710119, Shaanxi, P. R. China {feipingnie@gmail.com, zwvews@gmail.com, xuelong li@opt.ac.cn} Since amounts of unlabelled and high-dimensional data needed to be processed, unsupervised feature selection has become an important and challenging problem in machine learning. Conventional embedded unsupervised methods always need to construct the similarity matrix, which makes the selected features highly depend on the learned structure. However real world data always contain lots of noise samples and features that make the similarity matrix obtained by original data can t be fully relied. We propose an unsupervised feature selection approach which performs feature selection and local structure learning simultaneously, the similarity matrix thus can be determined adaptively. Moreover, we constrain the similarity matrix to make it contain more accurate information of data structure, thus the proposed approach can select more valuable features. An efficient and simple algorithm is derived to optimize the problem. Experiments on various benchmark data sets, including handwritten digit data, face image data and biomedical data, validate the effectiveness of the proposed approach. Introduction Due to large amounts of data produced by rapid development of technology, the processing of high-dimensional data has become a big problem in many fields, such as computer vision, data mining, and pattern recognition. Highdimensional data often contain quite a lot noise features, which are detrimental to data processing. As one of the typical method to alleviate this problem, feature selection attracts more and more attentions. Feature selection aims at obtaining a subset of features which are selected from original feature space. Feature selection mainly uses three approaches: supervised, semi-supervised and unsupervised. Obviously, unsupervised feature selection is more difficult than the others for absence of label information, however, the large amount of unlabelled data makes the unsupervised feature selection practical. Various methods of unsupervised feature selection have been proposed, and can be classified into three distinct types, i.e. filter method (He, Cai, and Niyogi 2005; Zhao and Liu This work is supported by the Fundamental Research Funds for the Central Universities (Grant no. 3102015BJ(II)JJZ01). Copyright c 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved. 2007), wrapper method (Tabakhi, Moradi, and Akhlaghian 2014), and embedded method (Cai, Zhang, and He 2010; Zhao, Wang, and Liu 2010; Hou et al. 2014; Li et al. 2012; Wang, Tang, and Liu 2015). Embedded methods are superior to others in many respects, and have received more and more attentions. Since local manifold structure is considered better than global structure, most of embedded methods try to discover local structure. The classical graph based methods contain two independent steps. First, construct similarity matrix by exploring the local structure. Then, select valuable features by sparsity regularization. However, there are at least two issues for conventional embedded methods. First, conventional spectral based feature selection methods construct similarity matrix and select features independently. Therefore, the similarity matrix is derived from original data and remains constant for the subsequent process, but real world data always contain lots of noise samples and features, which make the similarity matrix unreliable (Wang, Nie, and Huang 2015). The unreliable similarity matrix will damage the local manifold structure, and ultimately lead to suboptimal result. Second, similarity matrix obtained by conventional method is usually not an ideal neighbor assignment. The optimal similarity matrix should have exact c connected components, where c is the number of cluster. However, simply using k-nearest neighbors assignment hardly achieves the ideal state. To mitigate the impact of above problems, we propose an unsupervised feature selection approach, called Structured Optimal Graph Feature Selection (SOGFS). It is worthwhile to highlight the main contributions of this paper as follows: 1. A novel embedded unsupervised feature selection approach is proposed. The approach performs feature selection and local structure learning simultaneously. It adaptively learns local manifold structure, and thus can select more valuable features. 2. A reasonable constraint is introduced to the approach. The similarity matrix obtained by local structure can be more accurate when we constrain similarity matrix to make it contain exact c connected components. 3. Comprehensive experiments on benchmark data sets show the effectiveness of the proposed approach, and demonstrate the advantage over other state-of-the-art methods. Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) Related Work In this section, we briefly review recent studies of embedded unsupervised feature selection. Spectral analysis is the most common technique used in embedded methods. Cai, Zhang, and He (2010) propose Multi-Cluster Feature Selection (MCFS), MCFS captures the local manifold structure via spectral analysis, and then selects the features which can best preserve the clustering structure. Flexible Manifold Embedding (FME) (Nie et al. 2010b) is proposed as a general framework for dimensionality reduction, and has also been adopted by many feature selection methods. Based on FME and ℓ-2,1 norm, Hou et al. (2014) propose a general framework for feature selection termed as Joint Embedding Learning and Sparse Regression (JELSR). Li et al. (2012) jointly use FME, non-negative constraint, and ℓ-2,1 norm to perform Nonnegative Discriminative Feature Selection (NDFS). Qian and Zhai (2013) propose Robust Unsupervised Feature Selection (RUFS). RUFS uses FME, Nonnegative Matrix Factorization (NMF) and ℓ-2,1 norm to perform robust clustering and robust feature selection simultaneously. Robust Spectral Feature Selection (RSFS), which is proposed by Shi, Du, and Shen (2014), also can be considered as jointly using FME and ℓ-1 norm to perform robust feature selection. However, as previously mentioned, almost all of these methods have at least two problems, i.e. unreliable similarity matrix and improper neighbor assignment. These problems make the similarity matrix can t be fully relied, and eventually lead to suboptimal result. Methodology In this section, we introduce the proposed approach SOGFS by first formulating the optimization problem, and then presenting an efficient algorithm to tackle it. We first introduce some notations that are used throughout the paper. For matrix M Rr t, the (i, j)-th entry of M is denoted by mij, the transpose of the i-th row of M is denoted by mi Rt 1. The trace of M is denoted by Tr(M). The transpose of matrix M is denoted by M T . The F-norm of M is denoted by M F . The ℓ2,1-norm of M is denoted by M 2,1 = r i=1 t j=1 m2 ij. Local Structure Learning Inspired by the development of spectral analysis and manifold learning, many unsupervised feature selection methods try to preserve local manifold structure, which is believed better than global structure. Therefore, similarity matrix is crucial for the ultimate performance of spectral methods. Nevertheless, most methods construct similarity matrix simply from original features which contain many redundant and noise samples or features. This will inevitably damage the learned structure, and the similarity matrix is surely unreliable and inaccurate. Thus, in this paper, we apply an adaptive process to determine the similarity matrix with probabilistic neighbors (Nie, Wang, and Huang 2014) through the algorithm. In other words, we perform feature selection and local structure learning simultaneously. Given a data matrix X Rn d, where xi Rd 1 denotes the i-th sample. We adopt the data preprocessing proposed by Liu et al. (2013) and define that xi can be connected by all the others with probability sij, where sij is an element of similarity matrix S Rn n . The probability of two data to be neighbor can be regarded as the similarity between them. According to the common sense, closer samples are likely to have larger probability to connect, thus sij is inversely proportional to the distance between xi and xj (we adopt the square of Euclidean distance for simplicity, i.e. xi xj 2 2). Therefore, determining the value of the probability sij can be seen as solving min s T i 1=1,0 sij 1 i,j ( xi xj 2 2sij + αs2 ij), (1) where α is the regularization parameter. Regularization term is used to avoid the trivial solution. Without the regularization term, the optimal solution is that the two samples which are nearest to each other should be neighbor with probability 1. We show how to determine α later. Structured Optimal Graph The ideal state of neighbor assignment is that similarity matrix contains exact c connected components, such assignment is obviously beneficial for subsequent processing. However, the similarity matrix S obtained by the solution of problem (1) is virtually impossible to be in such state, in most cases, there is only one connected component (Nie, Wang, and Huang 2014). Next, we show an efficient yet simple method to tackle this problem. There is a basic but important equation in spectral analysis i,j fi fj 2 2sij = 2Tr(F T LSF), (2) where F Rn c, and LS = D ST +S 2 is called Laplacian Matrix, the degree matrix D is a diagonal matrix and the i-th entry is defined as j (sij+sji) 2 . It can be proved that if rank(LS) = n c, the similarity matrix S will contain exact c connected components (Mohar et al. 1991). Thus we add the constraint to problem (1), then we have i,j ( xi xj 2 2sij + αs2 ij). s.t. i, s T i 1 = 1, 0 sij 1, rank(LS) = n c (3) Because the constraint rank(LS) = n c also depends on similarity matrix S, the problem (3) is difficult to solve. To tackle it, let σi(LS) denote the i-th smallest eigenvalue of LS. As LS is positive semi-definite, we get σi(LS) 0. It can be verified that rank(LS) = n c indicates c i=1 σi(LS) = 0. Due to the deviation of c i=1 σi(LS) is difficult to handle, considering of Ky Fan s Theorem (Fan 1949), we have i=1 σi(LS) = min F Rn c,F T F =I Tr(F T LSF). (4) Thus, we can rewrite problem (3) as (Nie, Wang, and Huang 2014; Wang et al. 2015) i,j ( xi xj 2 2sij + αs2 ij) + 2λTr(F T LSF). s.t. i, s T i 1 = 1, 0 sij 1, F Rn c, Obviously, as long as λ is large enough, the Tr(F T LSF) will come infinitely close to zero. In fact, in each iteration, we can increase or decrease λ when the connected components are smaller or greater than c, respectively. Through transforming the constraint of matrix rank into trace, problem (5) is much easier to tackle than original one. By solving problem (5), S contains exact c connected components, thus captures more accurate information of local structure. Structured Optimal Graph Feature Selection According to the theory of manifold learning, there always exists a low-dimensional manifold that can express the structure of high-dimensional data. First, we aim at finding a linear combination of original features to best approximate the low-dimension manifold. Denote XW as this linear combination, where W Rd m is the projection matrix, d and m are the original dimension and projection dimension respectively. We apply it to Eq. (5), and finally we get i,j ( W T xi W T xj 2 2sij + αs2 ij) +γ W 2,1 + 2λTr(F T LSF), s.t. i, s T i 1 = 1, 0 sij 1, F Rn c,, F T F = I, W T W = I where γ is the regularization parameter. The sparsity regularization on W makes it suitable for selecting valuable features. We adopt ℓ2,1-norm regularization (Nie et al. 2010a) on W to make it row sparse. The importance of the i-th feature can be measured by wi 2. The most important h features are selected by the sorted wi 2, where h is the number of features that need to be selected. In feature selection tasks, the feature number of data is usually very high and we can t use PCA as data preprocessing, thus the covariance matrix of X, which is denoted by St, is often singular in practice. Therefore, even though the constraint W T St W = I is often adopted in feature extraction (Nie, Wang, and Huang 2014), it is by no means a good choice for feature selection. In this paper, we adopt the constraint W T W = I instead of W T St W = I to make the feature space distinctive after reduction (Wang, Nie, and Huang 2014). W is used for selecting features and S is used to capture local structure, thus the proposed approach performs feature selection and local structure learning simultaneously. Optimization Algorithm Since problem (6) contains ℓ-2,1 norm regularization and three different variables, it is hard to tackle it directly. Thus, we propose an alternative iterative algorithm to solve this problem. Fix S update W With fixed S, the problem (6) is transformed into min W T W =I i,j W T xi W T xj 2 2sij + γ W 2,1. (7) According to Eq. (2), and replace W 2,1 with i wi 2, we rewrite problem (7) as min W T W =I Tr(W T XT LSXW) + γ i wi 2. (8) Obviously, wi 2 can be zero in theory, however, it will make Eq. (8) non-differentiable. To avoid this condition, we transform wi 2 into (wi)T wi, and regularize (wi)T wi as (wi)T wi + ε, where ε is a small enough constant. Therefore, we have min W T W =I Tr(W T XT LSXW) + γ (wi)T wi + ε, (9) which is apparently equal to problem (7) when ε is infinitely close to zero. The Lagrangian function of the problem (9) is L(W, Λ) =Tr(W T XT LSXW) + γ (wi)T wi + ε +Tr(Λ(W T W I)), (10) where Λ is the Lagrangian multiplier. Taking the derivative of L(W, Λ) w.r.t W, and setting the derivative to zero, we have W = XT LSXW + γQW + WΛ = 0, (11) where Q Rd d is a diagonal matrix, and the i-th element is defined as Qii = 1 w T i wi + ε . (12) Note that Q is also unknown and depend on W, thus we develop an iterative algorithm to solve problem (9). With fixed W, then Q is obtained by Eq. (12). And with fixed Q, it is easily to prove that solving Eq. (11) is equivalent to solving min W T W =I Tr(W T XT LSXW) + γTr(W T QW), (13) and problem (13) can be solved directly to get W. The detail of the algorithm is described in Algorithm 1. Later, we will prove that Algorithm 1 can make problem (9) converge. Obviously, the converged solution satisfies KKT condition. Fix S update F With fixed S, the problem (6) is transformed into min F Rn c,F T F =I Tr(F T LSF). (14) The optimal solution F is formed by the c eigenvectors of LS corresponding to the c smallest eigenvalues. Algorithm 1 Algorithm to solve problem (9) Input: Data matrix X Rn d, Laplacian Matrix LS Rn n, regularization parameter γ, projection dimension m Initialize Q Rd d as Q = I; repeat 1. With current Q, the optimal solution W by solving problem (13) is formed by the m eigenvectors of (XT LSX + γQ) corresponding to the m smallest eigenvalues. 2. With current W, Q is obtained by Eq. (12). until converge Output: Projection matrix W Rd m. Fix W and F update S With fixed W and F, the problem (6) is transformed into i,j ( W T xi W T xj 2 2sij + αs2 ij) +2λTr(F T LSF). s.t. i, s T i 1 = 1, 0 sij 1 According to Eq. (2), we get i,j ( W T xi W T xj 2 2sij + αs2 ij) i,j fi fj 2 2sij. s.t. i, s T i 1 = 1, 0 sij 1. Note that the similarity vector of each sample is independent, thus we can tackle the following problem for the i-th sample j ( W T xi W T xj 2 2sij + αs2 ij) j fi fj 2 2sij. s.t. s T i 1 = 1, 0 sij 1 For ease of representation, we denote matrix M Rn n with mij = W T xi W T xj 2 2 and matrix N Rn nwith nij = fi fj 2 2. Denote vector di Rn 1 with dij = mij + λnij. Then, we can rewrite problem (17) as follows min s T i 1=1,0 sij 1 si + 1 2αdi 2 2. (18) The solution of this problem will be shown later. We summarize the detail algorithm in Algorithm 2. Noted that, in real life application, we can run only one iteration in Algorithm 1 in order to speed up Algorithm 2. Convergence Analysis of Algorithm 1 The method proposed by Algorithm 1 can be used to find a locally optimal solution of problem (9). To prove the convergence, we need the lemma proposed by Nie et al. (2010a), which describes as follows. Algorithm 2 Algorithm to solve problem (6) Input: Data matrix X Rn d, number of select features h, cluster number c, projection dimension m, regularization parameter γ, parameter α, a large enough λ Initialize S by solving problem (1). repeat 1. Update W via Algorithm (1). 2. Calculate LS = D ST +S 2 , where the degree matrix D is a diagonal matrix and the i-th element is defined as j (sij+sji) 2 . 3. Update F via solving problem (14), F is formed by the c eigenvectors of LS corresponding to the c smallest eigenvalues. 4. Update S, each si is calculate by solving problem (18) individually. until converge Output: Calculate all wi 2(i = 1 : . . . : n) and sort in descending order, select top h ranked features as ultimate result. Lemma 1. The following inequality holds for any positive real number u and v. u u 2 v v v 2 v . (19) For detail and proof, see lemma 1 in (Nie et al. 2010a). The convergence of Algorithm 1 can be proven by following theorem. Theorem 1. In Algorithm 1, updated W will decrease the objective value of problem (9) until converge. Proof. Suppose the updated W is W, it s easy to know that Tr( W T XT LSX W) + γTr( W T Q W) Tr(W T XT LSXW) + γTr(W T QW). (20) w T i wi+ε to both sides of the inequality (20), and substitute the definition of Q in Eq. (12), then inequality (20) can be rewritten as Tr( W T XT LSX W) + γ wi T wi + ε w T i wi + ε Tr(W T XT LSXW) + γ w T i wi + ε w T i wi + ε , Based on Lemma 1, we know wi T wi + ε γ wi T wi + ε w T i wi + ε wi T wi + ε γ wi T wi + ε w T i wi + ε Sum over the inequality (21) and inequality (22), we arrive at Tr( W T XT LSX W) + γ wi T wi + ε Tr(W T XT LSXW) + γ wi T wi + ε (23) which completes the proof. Determination of α Let us first consider two extreme conditions of α for problem (1). One is α = 0, it will make only one element of vector si not zero. Another is α = , it will make every element of vector si equal to 1 n. Therefore, α can determine the number of sample s neighbors, and the optimal value of α should make most of si contain exact k non-zeros elements, where k is the number of neighbors connected to xi. In order to achieve above goals, we consider the Lagrangian Function of problem (18) as L(si, θ, ϕi) = 1 2αi 2 2 θ(s T i 1 1) ϕT i si, (24) where θ and ϕi are Lagrangian multipliers. Based on the KKT condition, the optimal solution of si is sij = ( dij 2αi + θ)+, (25) where θ = 1 k + 1 2kαi k j=1 dij (Nie, Wang, and Huang 2014). Note that, problem (1) also can be solved in the same way. To make si contain exact k non-zero elements, si must satisfies si,k+1 0 < sik, thus αi should be set as j=1 dij < αi k j=1 dij, (26) where di1, di2, . . . , din are sorted in ascending order. Therefore, to get a good enough α which can make most of si has k non-zeros elements, we can set α to be j=1 dij). (27) Experiments In this section, we demonstrate the effectiveness of the proposed unsupervised feature selection method SOGFS on 8 benchmark data sets, and then show several analysis of experimental results. Data Sets The experiments are conducted on 8 different public available data sets, including handwritten digit (i.e. Binary Alphabet (BA) (Belhumeur, Hespanha, and Kriegman 1997), UMIST (Hou et al. 2014), USPS (Hull 1994)), human face (i.e. JAFFE (Lyons, Budynek, and Akamatsu 1999), ORL (Cai, Zhang, and He 2010)), object image (i.e. COIL20 (Nene, Nayar, and Murase 1996)), biology (i.e. SRBCT (Khan et al. 2001), Lung (Singh et al. 2002)). The detail of these data sets are summarized in Table 1. Comparison Scheme To validate the effectiveness of SOGFS, we compare it with several state-of-the-art unsupervised feature selection approaches, including Laplacian Score (LS) (He, Cai, and Niyogi 2005), Multi Cluster Feature Selection (MCFS) (Cai, Zhang, and He 2010), Unsupervised Discriminate Feature Selection (UDFS) (Yang et al. 2011), Robust Unsupervised Feature Selection (RUFS) (Qian and Zhai 2013) and Robust Spectral Feature Selection (RSFS) (Shi, Du, and Shen 2014). We also use all features to perform Kmeans as Baseline. We set parameters of all approaches in same strategy to make the experiments fair enough, i.e. {10 3, 10 2, 10 1, 1, 10, 102, 103}. For the selected features, we use 5 times K-means clustering from different starting points, and only report optimal result to alleviate the stochastic effect caused by clustering method. To evaluate the result of selected features, we use clustering ACCurate (ACC) as evaluation metrics in this paper. Clustering Result with Selected Features The performance of feature selection approaches which are evaluated by ACC is shown in figure 1. Through the analysis of experimental results, we get some conclusions. Generally speaking, as the size of feature subset increased, the performance of feature selection approaches shows the trend with first increase then decrease. Real life data sets always contain many redundant features, therefore the necessary information is just contained in a small size of feature set. If we increase the size excessively, lots of noise features will be brought into the final results which will surely decrease the performance. The trend indirectly validates the effective of feature selection methods. Through feature selection, we obtain refined data which contains more valuable information. Compared to baseline which uses all features to perform K-means, the results which use selected features become better in most cases. Especially our proposed method SOGFS, has more than 10% improvement in average. It directly validates that feature selection improves the data s quality. Overall, the performance of our proposed method SOGFS exceeds other methods in ACC. To be specific, SOGFS has more than 7% improvement for human face data sets (i.e. JAFFE, ORL), compared to the second best approach RUFS. And more than 6.4% improvement for handwritten digit data sets (i.e. BA, USPS, UMIST), compared to RSFS, which is the second best approach in handwritten digit data sets. SOGFS also achieves pretty good performance for the rest data sets in average. It seems that embedded approaches, such as MCFS, UDFS, RSFS, RUFS, have better performance than LS. With Table 1: Data Set Description Data sets Sample Feature Class Select features BA 1404 320 36 [10,20,. . .,100] USPS 1000 256 10 [10,20,. . .,100] UMIST 575 644 20 [50,100,. . .,300] JAFFE 213 676 10 [50,100,. . .,300] ORL 400 1024 40 [50,100,. . .,300] COIL20 1440 1024 20 [50,100,. . .,300] SRBCT 83 2308 4 [50,100,. . .,300] LUNG 203 3312 5 [50,100,. . .,300] 10 20 30 40 50 60 70 80 90 100 Number of selected features SOGFS LS MCFS RSFS RUFS UDFS Baseline 50 100 150 200 250 300 0.4 Number of selected features SOGFS LS MCFS RSFS RUFS UDFS Baseline 50 100 150 200 250 300 0.7 Number of selected features SOGFS LS MCFS RSFS RUFS UDFS Baseline 50 100 150 200 250 300 0.45 Number of selected features SOGFS LS MCFS RSFS RUFS UDFS Baseline 10 20 30 40 50 60 70 80 90 100 0.2 Number of selected features SOGFS LS MCFS RSFS RUFS UDFS Baseline 50 100 150 200 250 300 0.4 Number of selected features SOGFS LS MCFS RSFS RUFS UDFS Baseline 50 100 150 200 250 300 0.55 Number of selected features SOGFS LS MCFS RSFS RUFS UDFS Baseline 50 100 150 200 250 300 0.5 Number of selected features SOGFS LS MCFS RSFS RUFS UDFS Baseline Figure 1: Clustering accuracy on 8 data sets with different number of selected features. parameter γ # features parameter γ # features Figure 2: Clustering accuracy with different γ. discriminate analysis and considering of noise data, RSFS and RUFS outperform MCFS. The proposed SOGFS uses structured optimal graph, and performs feature selection and local structure learning simultaneously, therefore, we obtain better results at last. Parameter Sensitivity and Convergence Study First, we investigate the impact of parameters in SOGFS. The parameter m influences performance slightly and is usually set empirically around d 3 in our experiments. Therefore, we only focus on the influence of parameter γ with fixing m. Parameter γ is used to control the row sparsity of W, and its value seriously influences the performance of SOGFS . As we vary the value of γ, the variance of performance is demonstrated in Figure 2. For brevity, we only show results on two data sets (i.e. ORL, COIL20). Results show that SOGFS is to some extent robust to γ. Nonetheless, we suggest to perform hierarchy grid search to get better result in real life application. We propose Algorithm 1 to iteratively solve problem (9). We have already proven the convergence in the previous section, and now we experimentally study the speed of its convergence. For simplicity, we only show results on two data 0 2 4 6 8 10 4000 Number of iterations Objective function value 0 2 4 6 8 10 9.8 10.05x 10 5 Number of iterations Objective function value Figure 3: Convergence curve of Algorithm 1 sets (i.e. UMIST, COIL20). The convergence curves of the objective value are shown in Figure 3. We can see that, Algorithm 1 converges very fast and almost within 10 iterations. The fast convergence of Algorithm 1 ensures the speed of the whole proposed approach. Conclusions In this paper, we propose a novel unsupervised feature selection approach named SOGFS, which performs feature selection and local structure learning simultaneously, to obtain optimal local structure, we propose a constraint to the approach. The selected features are obtained by analysis of projection matrix W. An efficient optimization algorithm is proposed to solve the problem. Comprehensive experiments on 8 benchmark data sets demonstrate the effectiveness of our approach. One of our future work is to replacing the regularization term γ W 2,1 with constraint W 20 = h, which will greatly improve the usability of the proposed approach. The other is to use some technologies to speed up the approach. References Belhumeur, P. N.; Hespanha, J. P.; and Kriegman, D. J. 1997. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7):711 720. Cai, D.; Zhang, C.; and He, X. 2010. Unsupervised feature selection for multi-cluster data. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 333 342. Fan, K. 1949. On a theorem of weyl concerning eigenvalues of linear transformations i. Proceedings of the National Academy of Sciences of the United States of America 35(11):652. He, X.; Cai, D.; and Niyogi, P. 2005. Laplacian score for feature selection. In Advances in Neural Information Processing Systems, 507 514. Hou, C.; Nie, F.; Li, X.; Yi, D.; and Wu, Y. 2014. Joint embedding learning and sparse regression: A framework for unsupervised feature selection. IEEE Trans. Cybernetics 44(6):793 804. Hull, J. J. 1994. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5):550 554. Khan, J.; Wei, J. S.; Ringner, M.; Saal, L. H.; Ladanyi, M.; Westermann, F.; Berthold, F.; Schwab, M.; Antonescu, C. R.; Peterson, C.; and Meltzer, P. S. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673 679. Li, Z.; Yang, Y.; Liu, J.; Zhou, X.; and Lu, H. 2012. Unsupervised feature selection using nonnegative spectral analysis. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence. Liu, Y.; Nie, F.; Wu, J.; and Chen, L. 2013. Efficient semisupervised feature selection with noise insensitive trace ratio criterion. Neurocomputing 105:12 18. Lyons, M. J.; Budynek, J.; and Akamatsu, S. 1999. Automatic classification of single facial images. IEEE Trans. Pattern Anal. Mach. Intell. 21(12):1357 1362. Mohar, B.; Alavi, Y.; Chartrand, G.; and Oellermann, O. 1991. The laplacian spectrum of graphs. Graph theory, combinatorics, and applications 2:871 898. Nene, S. A.; Nayar, S. K.; and Murase, H. 1996. Columbia Object Image Library (COIL-20). Technical report. Nie, F.; Huang, H.; Cai, X.; and Ding, C. H. Q. 2010a. Efficient and robust feature selection via joint ℓ2, 1-norms minimization. In Advances in Neural Information Processing Systems, 1813 1821. Nie, F.; Xu, D.; Tsang, I. W.; and Zhang, C. 2010b. Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction. IEEE Transactions on Image Processing 19(7):1921 1932. Nie, F.; Wang, X.; and Huang, H. 2014. Clustering and projected clustering with adaptive neighbors. In The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD, 977 986. Qian, M., and Zhai, C. 2013. Robust unsupervised feature selection. In IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence. Shi, L.; Du, L.; and Shen, Y. 2014. Robust spectral learning for unsupervised feature selection. In 2014 IEEE International Conference on Data Mining, ICDM 2014, 977 982. Singh, D.; Febbo, P. G.; Ross, K.; Jackson, D. G.; Manola, J.; Ladd, C.; Tamayo, P.; Renshaw, A. A.; D Amico, A. V.; Richie, J. P.; Lander, E. S.; Loda, M.; Kantoff, P. W.; Golub, T. R.; and Sellers, W. R. 2002. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2):203 209. Tabakhi, S.; Moradi, P.; and Akhlaghian, F. 2014. An unsupervised feature selection algorithm based on ant colony optimization. Eng. Appl. of AI 32:112 123. Wang, X.; Liu, Y.; Nie, F.; and Huang, H. 2015. Discriminative unsupervised dimensionality reduction. In Proceedings of the 24th International Conference on Artificial Intelligence, 3925 3931. AAAI Press. Wang, D.; Nie, F.; and Huang, H. 2014. Unsupervised feature selection via unified trace ratio formulation and kmeans clustering (TRACK). In Machine Learning and Knowledge Discovery in Databases - European Conference, 306 321. Wang, D.; Nie, F.; and Huang, H. 2015. Feature selection via global redundancy minimization. Knowledge and Data Engineering, IEEE Transactions on 27(10):2743 2755. Wang, S.; Tang, J.; and Liu, H. 2015. Embedded unsupervised feature selection. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 470 476. Yang, Y.; Shen, H. T.; Ma, Z.; Huang, Z.; and Zhou, X. 2011. l2, 1-norm regularized discriminative feature selection for unsupervised learning. In IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, 1589 1594. Zhao, Z., and Liu, H. 2007. Spectral feature selection for supervised and unsupervised learning. In Machine Learning, Proceedings of the Twenty-Fourth International Conference, 1151 1157. Zhao, Z.; Wang, L.; and Liu, H. 2010. Efficient spectral feature selection with minimum redundancy. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence.