# active_image_indexing__7a968547.pdf Published as a conference paper at ICLR 2023 ACTIVE IMAGE INDEXING Pierre Fernandez1,2, , Matthijs Douze1, Herv e J egou1, Teddy Furon2, 1Meta AI, FAIR 2Centre Inria de l Universit e de Rennes Correspondence: pfz@meta.com. Image copy detection and retrieval from large databases leverage two components. First, a neural network maps an image to a vector representation, that is relatively robust to various transformations of the image. Second, an efficient but approximate similarity search algorithm trades scalability (size and speed) against quality of the search, thereby introducing a source of error. This paper improves the robustness of image copy detection with active indexing, that optimizes the interplay of these two components. We reduce the quantization loss of a given image representation by making imperceptible changes to the image before its release. The loss is back-propagated through the deep neural network back to the image, under perceptual constraints. These modifications make the image more retrievable. Our experiments show that the retrieval and copy detection of activated images is significantly improved. For instance, activation improves by +40% the Recall1@1 on various image transformations, and for several popular indexing structures based on product quantization and locality sensitivity hashing. 1 INTRODUCTION The traceability of images on a media sharing platform is a challenge: they are widely used, easily edited and disseminated both inside and outside the platform. In this paper, we tackle the corresponding task of Image Copy Detection (ICD), i.e. finding whether an image already exists in the database; and if so, give back its identifier. ICD methods power reverse search engines, photography service providers checking copyrights, or media platforms moderating and tracking down malicious content (e.g. Microsoft s Photo DNA (2009) or Apple s Neural Hash (2021)). Image identification systems have to be robust to identify images that are edited (cropping, colorimetric change, JPEG compression ...) after their release (Douze et al., 2021; Wang et al., 2022). The common approach for content-based image retrieval reduces images to high-dimensional vectors, referred to as representations. Early representations used for retrieval were hand-crafted features such as color histograms (Swain & Ballard, 1991), GIST (Oliva & Torralba, 2001), or Fisher Image editing Original image Publication Search results Activated image Latent space Approximate Figure 1: Overview of the method and latent space representation. We start from an original image Io that can be edited t( ) in various ways: its feature extraction f(t(Io)) spawns the shaded region in the embedding space. The edited versions should be recoverable by nearest neighbor search on quantized representations. In the regular (non-active) case, f(Io) is quantized by the index as . When the image is edited, t(Io) switches cells and the closest neighbor returned by the index is the wrong one . In active indexing: Io is modified in an imperceptible way to generate I such that f(I ) is further away from the boundary. When edited copies f(t(I )) are queried, retrieval errors are significantly reduced. Published as a conference paper at ICLR 2023 Vectors (Perronnin et al., 2010). As of now, a large body of work on self-supervised learning focuses on producing discriminative representations with deep neural networks, which has inspired recent ICD systems. In fact, all submissions to the Neur IPS2021 Image Similarity challenge (Papakipos et al., 2022) exploit neural networks. They are trained to provide invariance to potential image transformations, akin to data augmentation in self-supervised learning. Scalability is another key requirement of image similarity search: searching must be fast on largescale databases, which exhaustive vector comparisons cannot do. In practice, ICD engines leverage approximate neighbor search algorithms, that trade search accuracy against scalability. Approximate similarity search algorithms speed up the search by not computing the exact distance between all representations in the dataset (Johnson et al., 2019; Guo et al., 2020). First they lower the number of scored items by partitioning the representation space, and evaluate the distances of only a few subsets. Second, they reduce the computational cost of similarity evaluation with quantization or binarization. These mechanisms make indexing methods subject to the curse of dimensionality. In particular, in high-dimensional spaces, vector representations lie close to boundaries of the partition (B ohm et al., 2001). Since edited versions of an original image have noisy vector representations, they sometimes fall into different subsets or are not quantized the same way by the index. All in all, it makes approximate similarity search very sensitive to perturbations of the edited image representations, which causes images to evade detection. In this paper, we introduce a method that improves similarity search on large databases, provided that the platform or photo provider can modify the images before their release (see Fig. 1). We put the popular saying attack is the best form of defense into practice by applying image perturbations and drawing inspiration from adversarial attacks. Indeed, representations produced with neural networks are subject to adversarial examples (Szegedy et al., 2013): small perturbations of the input image can lead to very different vector representations, making it possible to create adversarial queries that fool image retrieval systems (Liu et al., 2019; Tolias et al., 2019; Dolhansky & Ferrer, 2020). In contrast, we modify an image to make it more indexing friendly. With minimal changes in the image domain, the image representation is pushed towards the center of the indexing partition, rising the odds that edited versions will remain in the same subset. This property is obtained by minimizing an indexation loss by gradient descent back to the image pixels, like for adversarial examples. For indexing structures based on product quantization (Jegou et al., 2010), this strategy amounts to pushing the representation closer to its quantized codeword, in which case the indexation loss is simply measured by the reconstruction error. Since the image quality is an important constraint here, the perturbation is shaped by perceptual filters to remain invisible to the human eye. Our contributions are: a new approach to improve ICD and retrieval, when images can be changed before release; an adversarial image optimization scheme that adds minimal perceptual perturbations to images in order to reduce reconstruction errors, and improve vector representation for indexing; experimental evidence that the method significantly improves index performance. 2 PRELIMINARIES: REPRESENTATION LEARNING AND INDEXING For the sake of simplicity, the exposure focuses on image representations from SSCD networks (Pizzi et al., 2022) and the indexing technique IVF-PQ (Jegou et al., 2010), since both are typically used for ICD. Extensions to other methods can be found in Sec. 5.4. 2.1 DEEP DESCRIPTOR LEARNING Metric embedding learning aims to learn a mapping f : Rc h w Rd, such that measuring the similarity between images I and I amounts to computing the distance f(I) f(I ) . In recent works, f is typically a neural network trained with self-supervision on raw data to learn metrically meaningful representations. Methods include contrastive learning (Chen et al., 2020), selfdistillation (Grill et al., 2020; Caron et al., 2021), or masking random patches of images (He et al., 2022; Assran et al., 2022). In particular, SSCD (Pizzi et al., 2022) is a training method specialized for ICD. It employs the contrastive self-supervised method Sim CLR (Chen et al., 2020) and entropy regularization (Sablayrolles et al., 2019) to improve the distribution of the representations. Published as a conference paper at ICLR 2023 2.2 INDEXING Given a dataset X = {xi}n i=1 Rd of d-dimensional vector representations extracted from n images and a query vector xq, we consider the indexing task that addresses the problem: x := argmin x X x xq . (1) This exact nearest neighbor search is not tractable over large-scale databases. Approximate search algorithms lower the amount of scored items thanks to space partitioning and/or accelerate the computations of distances thanks to quantization and pre-computation. Space partitioning and cell-probe algorithms. As a first approximation, nearest neighbors are sought only within a fraction of X: at indexing time, X is partitioned into X = Sb i=1 Xi. At search time, an algorithm Q : Rd {1, .., b}k determines a subset of k buckets in which to search, such that k = |Q(xq)| b, yielding the approximation: argmin x X x xq argmin x S i Q(xq) Xi x xq . (2) A well known partition is the KD-tree (Bentley, 1975) that divides the space along predetermined directions. Subsequently, locality sensitive hashing (LSH) (Indyk & Motwani, 1998; Gionis et al., 1999) and derivative (Datar et al., 2004; Paulev e et al., 2010) employ various hash functions for bucket assignment, which implicitly partitions the space. We focus on the popular clustering and Inverted Files methods (Sivic & Zisserman, 2003), herein denoted by IVF. They employ a codebook C = {ci}k i=1 Rd of k centroids (also called visual words in a local descriptor context), for instance learned with k-means over a training set of representations. Then, Q associates x to its nearest centroid qc(x) such that the induced partition is the set of the k Vorono ı cells. When indexing x, the IVF stores x in the bucket associated with ci = qc(x). When querying xq, IVF searches only the k buckets associated to centroids ci nearest to xq. Efficient metric computation and product quantization. Another approximation comes from compressed-domain distance estimation. Vector Quantization (VQ) maps a representation x Rd to a codeword qf(x) C = {Ci}K i=1. The function qf is often referred to a quantizer and Ci as a reproduction value. The vector x is then stored as an integer in {1, .., K} corresponding to qf(x). The distance between x and query xq is approximated by qf(x) xq , which is an asymmetric distance computation (ADC) because the query is not compressed. This leads to: argmin x X x xq argmin x X qf(x) xq . (3) Binary quantizers (a.k.a. sketches, Charikar (2002) lead to efficient computations but inaccurate distance estimates (Weiss et al., 2008). Product Quantization (PQ) (Jegou et al., 2010) or derivatives Ge et al. (2013) offer better estimates. In PQ, a vector x Rd is split into m subvectors in Rd/m: x = (u1, . . . , um). The product quantizer then quantizes the subvectors: qf : x 7 (q1(u1), . . . , qm(um)). If each subquantizer qj has Ks reproduction values, the resulting quantizer qf has a high K = (Ks)m. The squared distance estimate is decomposed as: qf(x) xq 2 = j=1 qj(uj) uj q 2. (4) This is efficient since x is stored by the index as qf(x) which has m log2 Ks bits, and since summands can be precomputed without requiring decompression at search time. 3 ACTIVE INDEXING Active indexing takes as input an image Io, adds the image representation to the index and outputs an activated image I with better traceability properties for the index. It makes the feature representation produced by the neural network more compliant with the indexing structure. The activated image is the one that is disseminated on the platform, therefore the alteration must not degrade the perceived quality of the image. Published as a conference paper at ICLR 2023 Images are activated by an optimization on their pixels. The general optimization problem reads: I := argmin I C(Io) L (I; Io) , (5) where L is an indexation loss dependent on the indexing structure, C(Io) is the set of images perceptually close to Io. Algorithm 1 and Figure 1 provide an overview of active indexing. 3.1 IMAGE OPTIMIZATION DEDICATED TO IVF-PQ ( ACTIVATION ) Algorithm 1 Active indexing for IVF-PQ Input: Io: original image; f: feature extractor; Add xo = f(Io) to Index, get q(xo); Initialize δ0 = 0(c h w); for t = 0, ..., N 1 do It Io + α . HJND(Io) tanh(δt) xt f(It) L Lf(xt, q(xo)) + λLi(δt) δt+1 δt + η Adam(L) end for Output: I = IN activated image The indexing structure IVF-PQ involves a coarse quantizer qc built with k-means clustering for space partitioning, and a fine product quantizer qf on the residual vectors, such that a vector x Rd is approximated by q(x) = qc(x) + qf (x qc(x)). We solve the optimization problem (5) by iterative gradient descent, back-propagating through the neural network back to the image. The method is classically used in adversarial example generation (Szegedy et al., 2013; Carlini & Wagner, 2017) and watermarking (Vukoti c et al., 2020; Fernandez et al., 2022). Given an original image Io, the loss is an aggregation of the following objectives: Lf(x, q(xo)) = x q(xo) 2 with xo = f(Io), x = f(I) (6) Li(I, Io) = I Io 2. (7) Li is a regularization on the image distortion. Lf is the indexation loss that operates on the representation space. Lf is the Euclidean distance between x and the target q(xo) and its goal is to push the image feature towards q(xo). With IVF-PQ as index, the representation of the activated image gets closer to the quantized version of the original representation, but also closer to the coarse centroid. Finally, the losses are combined as L(I; Io) = Lf(x, q(xo)) + λLi(I, Io). 3.2 PERCEPTUAL ATTENUATION It is common to optimize a perturbation δ added to the image, rather than the image itself. The adversarial example literature often considers perceptual constraints in the form of an ℓp-norm bound applied on δ (Madry et al. (2018) use δ < ε = 8/255). Although a smaller ε makes the perturbation less visible, this constraint is not optimal for the human visual system (HVS), e.g. perturbations are more noticeable on flat than on textured areas of the image (see App. A.2). We employ a handcrafted perceptual attenuation model based on a Just Noticeable Difference (JND) map (Wu et al., 2017), that adjusts the perturbation intensity according to luminance and contrast masking. Given an image I, the JND map HJND(I) Rc h w models the minimum difference perceivable by the HVS at each pixel and additionally rescales the perturbation channel-wise since the human eye is more sensible to red and green than blue color shift (see App. A for details). The relation that links the image I sent to f, δ being optimized and the original Io, reads: I = Io + α . HJND(Io) tanh(δ), (8) with α a global scaling parameter that controls the strength of the perturbation and the pointwise multiplication. Coupled with the regularization Li (6), it enforces that the activated image is perceptually similar, i.e. I C(Io) as required in (5). 3.3 IMPACT ON THE INDEXING PERFORMANCE Figure 1 illustrates that the representation of the activated image gets closer to the reproduction value q(f(Io)), and farther away from the Vorono ı boundary. This is expected to make image similarity search more robust because (1) it decreases the probability that x = f(t(Io)) falls outside the bucket; and (2) it lowers the distance between x and q(x), improving the PQ distance estimate. Published as a conference paper at ICLR 2023 Besides, by design, the representation stored by the index is invariant to the activation. Formally stated, consider two images I, J, and one activated version J together with their representations x, y, y . When querying x = f(I), the distance estimate is q(y ) x = q(y) x , so the index is oblivious to the change J J . This means that the structure can index passive and activated images at the same time. Retrieval of activated images is more accurate but the performance on passive images does not change. This compatibility property makes it possible to select only a subset of images to activate, but also to activate already-indexed images at any time. We provide insights on the method for IVF-PQ, considering the effects of quantization and space partitioning. For an image I whose representation is x = f(I) Rd, ˆx denotes the representation of a transformed version: ˆx = f(t(I)) Rd, and x the representation of the activated image I . For details on the images and the implementation used in the experimental validations, see Sec. 5.1. 4.1 PRODUCT QUANTIZATION: IMPACT ON DISTANCE ESTIMATE We start by analyzing the distance estimate considered by the index: ˆx q(x) 2 = x q(x) 2 + ˆx x 2 + 2(x q(x)) (ˆx x). (9) The activation aims to reduce the first term, i.e. the quantization error x q(x) 2, which in turn reduces ˆx q(x) 2. Figure 3 shows in blue the empirical distributions of x q(x) 2 (passive) and x q(x) 2 (activated). As expected the latter has a lower mean, but also a stronger variance. The variation of the following factors may explain this: i) the strength of the perturbation (due to the HVS modeled by HJND in (8)), ii) the sensitivity of the feature extractor xf(x) (some features are easier to push than others), iii) the shapes and sizes of the Vorono ı cells of PQ. The second term of (9) models the impact of the image transformation in the feature space. Comparing the orange and blue distributions in Fig. 3, we see that it has a positive mean, but the shift is bigger for activated images. We can assume that the third term has null expectation for two reasons: i) the noise ˆx x is independent of q(x) and centered around 0, ii) in the high definition regime, quantification noise x q(x) is independent of x and centered on 0. Thus, this term only increases the variance. Since x q(x) has smaller norm, this increase is smaller for activated images. All in all, ˆx q(x) 2 has a lower mean but a stronger variance than its passive counterpart ˆx q(x) 2. Nevertheless, the decrease of the mean is so large that it compensates the larger variance. The orange distribution in active indexing is further away from the green distribution for negative pairs, i.e. the distance between an indexed vector q(x) and an independent query y. 0.0 0.1 0.2 0.3 0.4 0.5 Recall Passive ( AP=0.130 ) Active ( AP=0.308 ) Figure 2: Precision-Recall curve for ICD with 50k queries and 1M reference images (more details for the experimental setup in Sec. 5.1). pivf f is the probability of failure of the IVF (Sec. 4.2). Figure 3: Distance estimates histograms (sec. 4.1). With active indexing, x q(x) 2 is reduced ( ), inducing a shift ( ) in the distribution of ˆx q(x) 2, where t(I) a hue-shifted version of I. y is a random query. Published as a conference paper at ICLR 2023 4.2 SPACE PARTITIONING: IMPACT ON THE IVF PROBABILITY OF FAILURE We denote by pf := P(qc(x) = qc(ˆx)) the probability that ˆx is assigned to a wrong bucket by IVF assignment qc. In the single-probe search (k = 1), the recall (probability that a pair is detected when it is a true match, for a given threshold τ on the distance) is upper-bounded by 1 pf: Rτ = P ({qc(ˆx) = qc(x)} { ˆx q(x) < τ}) P ({qc(ˆx) = qc(x)}) = 1 pf. (10) In other terms, even with a high threshold τ (and low precision), the detection misses representations that ought to be matched, with probability pf. It explains the sharp drop at recall R = 0.13 in Fig. 2. This is why it is crucial to decrease pf. The effect of active indexing is to reduce ˆx qc(x) therefore reducing pf and increasing the upper-bound for R: the drop shifts towards R = 0.32. This explanation suggests that pushing x towards qc(x) decreases even more efficiently pf. This makes the IVF more robust to transformation but this may jeopardize the PQ search because features of activated images are packed altogether. In a way, our strategy, which pushes x towards q(x), dispatches the improvement over the IVF and the PQ search. 5 EXPERIMENTAL RESULTS 5.1 EXPERIMENTAL SETUP Dataset. We use DISC21 (Douze et al., 2021) a dataset dedicated to ICD. It includes 1M reference images and 50k query images, 10k of which are true copies from reference images. A disjoint 1Mimage set with same distribution as the reference images is given for training. Images resolutions range from 200 200 to 1024 1024 pixels (most of the images are around 1024 768 pixels). The queries used in our experiments are not the queries in DISC21, since we need to control the image transformations in our experiments, and most transformations of DISC21 were done manually so they are not reproducible. Our queries are transformations of images after active indexing. These transformations range from simple attacks like rotation to more realistic social network transformations which created the original DISC21 queries (see App. B.1). Metrics. For retrieval, our main metric is Recall 1@1 (R@1 for simplicity), which corresponds to the proportion of positive queries where the top-1 retrieved result is the reference image. For copy detection, we use the same metric as the Neur IPS Image Similarity Challenge (Douze et al., 2021). We retrieve the k = 10 most similar database features for every query; and we declare a pair is a match if the distance is lower than a threshold τ. To evaluate detection efficiency, we use the 10k matching queries above-mentioned together with 40k negative queries (i.e. not included in the database). We use precision and recall, as well as the area under the precision-recall curve, which is equivalent to the micro average precision (µAP). While R@1 only measures ranking quality of the index, µAP takes into account the confidence of a match. As for image quality metric, we use the Peak Signal-to-Noise Ratio (PSNR) which is defined as 10 log10 2552/MSE(I, I )2 , as well as SSIM (Wang et al., 2004) and the norm I I . Implementation details. The evaluation procedure is: (1) we train an index on the 1M training images, (2) index the 1M reference images, (3) activate (or not) 10k images from this reference set. (4) At search time, we use the index to get closest neighbors (and their distances) of transformed versions from a query set made of the 10k images. Unless stated otherwise, we use a IVF4096,PQ8x8 index (IVF quantizer with 4096 centroids, and PQ with 8 subquantizers of 28 centroids), and use only one probe on IVF search for shortlist selection (k = 1). Compared to a realistic setting, we voluntarily use an indexing method that severely degrades learned representations to showcase and analyze the effect of the active indexing. For feature extraction, we use an SSCD model with a Res Net50 trunk (He et al., 2016). It takes image resized to 288 288 and generates normalized representations in R512. Optimization (5) is done with the Adam optimizer (Kingma & Ba, 2015), the learning rate is set to 1, the number of iterations to N = 10 and the regularization to λ = 1. In (8), the distortion scaling is set to α = 3 (leading to an average PNSR around 43 d B). In this setup, activating 128 images takes around 6s ( 40ms/image) with a 32GB GPU. It can be sped-up at the cost of some accuracy (see App. C.2). Published as a conference paper at ICLR 2023 Table 1: Comparison of the index performance between activated and passive images. The search is done on a 1M image set and R@1 is averaged over 10k query images submitted to different transformations before search. Random: randomly apply 1 to 4 transformations. Avg.: average on the transformations presented in the table (details in App. B.2). No index: exhaustive brute-force nearest neighbor search. IVF-PQ: IVF4096,PQ8X8 index with k =1 (16 for IVF-PQ16). IVF-PQ : IVF512,PQ32X8 with k = 32. Search (ms) Bytes/vector Bright. 0.5 Bright. 2.0 No index 252 2048 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 0.99 1.00 0.73 0.39 0.73 0.28 0.62 0.48 0.72 0.07 0.14 0.14 0.72 0.14 0.13 0.45 IVF-PQ 0.38 8 1.00 1.00 0.96 1.00 0.92 1.00 0.96 0.99 0.10 0.50 0.29 1.00 0.43 0.32 0.75 1.00 1.00 0.90 1.00 0.78 0.99 0.95 0.99 0.35 0.57 0.57 1.00 0.56 0.39 0.79 IVF-PQ16 0.42 8 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.43 0.88 0.75 1.00 0.84 0.50 0.88 1.00 1.00 0.99 1.00 0.95 1.00 0.99 1.00 0.72 0.87 0.88 1.00 0.87 0.61 0.92 IVF-PQ 1.9 32 1.00 1.00 0.99 1.00 0.98 1.00 1.00 1.00 0.75 0.92 0.91 1.00 0.92 0.63 0.94 5.2 ACTIVE VS. PASSIVE This section compares retrieval performance of active and passive indexing. We evaluate R@1 when different transformations are applied to the 10k reference images before search. The Passive lines of Tab. 1 show how the IVF-PQ degrades the recall. This is expected, but the IVF-PQ also accelerates search 500 and the index is 256 more compact, which is necessary for large-scale applications. Edited images are retrieved more often when they were activated for the index: increase of up to +60 R@1 for strong brightness and contrast changes, close to results of the brute-force search. We also notice that the performance of the active IVF-PQk =1 is approximately the same as the one of the passive IVF-PQk =16, meaning that the search can be made more efficient at equal performance. For the IVF-PQ that does less approximation in the search (but is slower and takes more memory), retrieval on activated images is also improved, though to a lesser extent. As for copy detection, Figure 2 gives the precision-recall curves obtained for a sliding value of τ, and corresponding µAP. Again, we observe a significant increase ( 2) in µAP with active indexing. Note that the detection performance is much weaker than the brute-force search even in the active case because of the strong approximation made by space partitioning (more details in Sec. 4.2). Example of activated images are given in Fig. 5 (more in App. E), while the qualitative image metrics are as follows: PSNR= 43.8 2.2 d B, SSIM= 0.98 0.01, and I I = 14.5 1.2. These results are computed on 10k images, the indicates the standard deviation. 5.3 IMAGE QUALITY TRADE-OFF For a fixed index and neural extractor, the performance of active indexing mainly depends on the scaling α that controls the activated image quality. In Fig. 4, we repeat the previous experiment for different values of α and plot the µAP against the average PSNR. As expected, lower PSNR implies better µAP. For instance, at PSNR 30 d B, the µAP is augmented threefold compared to the passive case. Indeed, for strong perturbations the objective function of (6) can be further lowered, reducing even more the gap between representations and their quantized counterparts. 5.4 GENERALIZATION Generalization to other neural feature extractors. We first reproduce the experiment of Sec. 5.1 with different extractors, that cover distinct training methods and architectures. Among them, we evaluate a Res Next101 (Xie et al., 2017) trained with SSCD (Pizzi et al., 2022), a larger network than the Res Net50 used in our main experiments ; the winner of the descriptor track of the Neur IPS ISC, LYAKAAP-dt1 (Yokoo, 2021), that uses an Efficient Netv2 architecture (Tan & Le, 2021) ; networks from DINO (Caron et al., 2021), either based on Res Net50 or Vi T (Dosovitskiy et al., 2021), like the Vi T-S model (Touvron et al., 2021). Published as a conference paper at ICLR 2023 Table 2: R@1 for different transformations before search. We use our method to activate images for indexing with IVF-PQ, with different neural networks used as feature extractors. Architecture Bright. 0.5 Bright. 2.0 1.00 0.73 0.39 0.73 0.28 0.62 0.48 0.72 0.07 0.14 0.14 0.72 0.14 0.13 0.45 Res Net50 1.00 1.00 0.96 1.00 0.92 1.00 0.96 0.99 0.10 0.50 0.29 1.00 0.43 0.32 0.75 1.00 0.88 0.68 0.88 0.57 0.84 0.46 0.79 0.46 0.63 0.53 0.80 0.48 0.28 0.66 SSCD Res Next101 1.00 1.00 0.96 1.00 0.90 0.99 0.77 0.97 0.53 0.85 0.64 1.00 0.74 0.37 0.84 1.00 0.66 0.65 0.65 0.52 0.71 0.52 0.82 0.07 0.20 0.51 0.84 0.62 0.18 0.57 Res Net50 1.00 0.99 0.88 0.99 0.75 0.93 0.72 0.94 0.08 0.25 0.57 0.99 0.82 0.23 0.72 1.00 0.89 0.71 0.86 0.64 0.75 0.74 0.90 0.14 0.18 0.57 0.88 0.61 0.25 0.65 DINO Vi T-s 1.00 0.99 0.94 0.99 0.92 0.98 0.89 0.99 0.15 0.28 0.63 0.99 0.77 0.32 0.77 1.00 0.25 0.08 0.16 0.01 0.51 0.54 0.84 0.18 0.16 0.23 0.79 0.16 0.18 0.36 ISC-dt1 Eff Netv2 1.00 0.57 0.16 0.33 0.01 0.88 0.79 0.97 0.20 0.24 0.29 0.97 0.26 0.26 0.49 Table 2 presents the R@1 obtained on 10k activated images when applying different transformations before search. The R@1 is better for activated images for all transformations and all neural networks. The average improvement on all transformations ranges from +12% for DINO Vi T-s to +30% for SSCD Res Net50. Generalization to other indexes. The method easily generalizes to other types of indexing structures, the only difference being in the indexation loss Lf (6). We present some of them below: PQ and OPQ. In PQ (Jegou et al., 2010), a vector x Rd is approximated by qf(x). Lf reads x qf(xo) . In OPQ (Ge et al., 2013), vectors are rotated by matrix R before codeword assignment, such that RR = I. Lf becomes x R qf(Rxo) . IVF. Here, we only do space partitioning. Employing Lf = x qc(xo) ( pushing towards the cluster centroid ) decreases the odds of x falling in the wrong cell (see Sec. 4.2). In this case, an issue can be that similar representations are all pushed together to a same centroid, which makes them less discriminate. Empirically, we found that this does not happen because perceptual constraint in the image domain prevents features from getting too close. LSH. Locality Sensitive Hashing maps x Rd to a binary hash b(x) RL. It is commonly done with projections against a set of vectors, which give for j [1, .., L], bj(x) = sign(w j x). The objective Lf = 1/L P j sign(b(xo)) w j x, allows to push x along the LSH directions and to improve the robustness of the hash. Table 3 presents the R@1 and µAP obtained on the 50k query set. Again, results are always better in the active scenario. We remark that active indexing has more impact on space partitioning tech- 30 40 50 60 ||x q(x)||2 Active - ||x q(x)||2 Passive Active - AP Figure 4: PSNR trade-off. As the PSNR decreases, the µAP (orange) gets better, because the distance (blue) between activated representations x and q(x) decreases. Figure 5: Activated images. Left: reference from DISC (R000643.jpg and R000761.jpg), middle: activated image, right: pixel-wise difference. Published as a conference paper at ICLR 2023 Table 3: R@1 averaged on transformations presented in Tab. 1 and µAP for different indexing structures Index Search time R@1 avg. µAP Passive Activated Passive Activated IVF 1024 0.32 ms 0.66 0.89 0.16 0.43 PCA64, LSH 0.99 ms 0.78 0.86 0.25 0.39 OPQ 8x8 5.71 ms 0.92 0.94 0.48 0.55 niques: the improvement for IVF is higher than with PQ and the LSH binary sketches. As to be expected, the impact is smaller when the indexing method is more accurate. 6 RELATED WORK Image watermarking hides a message in a host image, such that it can be reliably decoded even if the host image is edited. Early methods directly embed the watermark signal in the spatial or transform domain like DCT or DWT (Cox et al., 2007). Recently, deep-learning based methods jointly train an encoder and a decoder to learn how to watermark images (Zhu et al., 2018; Ahmadi et al., 2020; Zhang et al., 2020). Watermarking is an alternative technology for ICD. Our method bridges indexing and watermarking, where the image is modified before publication. Regarding retrieval performance, active indexing is more robust than watermarking. Indeed, the embedded signal reinforces the structure naturally present in the original image, whereas watermarking has to hide a large secret keyed signal independent of the original feature. App. D provides a more thorough discussion and experimental results comparing indexing and watermarking. Active fingerprint is more related to our work. As far as we know, this concept was invented by Voloshynovskiy et al. (2012). They consider that the image I RN is mapped to x RN by an invertible transform W such that WW . The binary fingerprint is obtained by taking the sign of the projections of x against a set of vectors b1, ., b L RN ( a la LSH). Then, they change x to strengthen the amplitude of these projections so that their signs become more robust to noise. They recover I with W . This scheme is applied to image patches in (Kostadinov et al., 2016) where the performance is measured as a bit error rate after JPEG compression. Our paper adapts this idea from fingerprinting to indexing, with modern deep learning representations and state-of-the-art indexing techniques. The range of transformations is also much broader and includes geometric transforms. 7 CONCLUSION & DISCUSSION We introduce a way to improve ICD in large-scale settings, when images can be changed before release. It leverages an optimization scheme, similar to adversarial examples, that modifies images so that (1) their representations are better suited for indexing, (2) the perturbation is invisible to the human eye. We provide grounded analyses on the method and show that it significantly improves retrieval performance of activated images, on a number of neural extractors and indexing structures. Activating images takes time (in the order of 10 ms/image) but one advantage is that the database may contain both active and passive images: active indexing does not spoil the performance of passive indexing and vice-versa. This is good for legacy compliance and also opens the door to flexible digital asset management strategies (actively indexing images of particular importance). The main limitation of the method is that images need to be activated before release. In the case of existing databases where images have already been released, images could still be activated for future releases (meaning that there would be 2 versions of the image online, a passive one that can be retrieved as long as it is not transformed too strongly, and an activated one with better copy detection properties). Another one is that it is not agnostic to the indexing structure and extractor that are used by the similarity search. Finally, an adversary could still break the indexing system in several ways. In a black-box setting, adversarial purification (Shi et al., 2021) could get rid of the perturbation that activated the image. In a semi-white-box setting (knowledge of the feature extractor), targeted mismatch attacks against passive indexing like Tolias et al. (2019) may also degrade the retrieval. Published as a conference paper at ICLR 2023 ACKNOWLEDGMENTS Teddy Furon thanks ANR-AID for funding Chaire SAIDA ANR-20-CHIA-0011-01. ETHICS STATEMENT Societal impact statement. Content tracing is a double-edged sword. On the one hand, it allows media platforms to more accurately track malicious content (pornographic, terrorist, violent images, e.g. Apple s Neural Hash and Microsoft s Photo DNA) and to protect copyright (e.g. Youtube s Content ID). On the other hand it can be used as a means of societal and political censorship, to restrict free speech of specific communities. However, we still believe that research needs to be advanced to improve global moderation in the internet. We also believe that advantages that a better copy detection could bring are more numerous than its drawbacks. Environmental impact statement. We roughly estimated that the total GPU-days used for running all our experiments to 200, or 5000 GPU-hours. Experiments were conducted using a private infrastructure and we estimate total emissions to be in the order of a ton CO2eq. Estimations were conducted using the Machine Learning Impact calculator presented in Lacoste et al. (2019). We do not consider in this approximation: memory storage, CPU-hours, production cost of GPUs/ CPUs, etc. as well as the environmental cost of training the neural networks used as feature extractors. Although the cost of the experiments and the method is high, it could possibly allow a reduction of the computations needed in large data-centers thanks to improved performance of indexing structures. REPRODUCIBILITY STATEMENT The implementation is available at github.com/facebookresearch/active indexing. Models used for feature extraction (SSCD, DINO, ISC-dt1) can be downloaded in their respective repositories. It builds upon the open-source Pytorch (Paszke et al., 2019) and FAISS (Johnson et al., 2019) libraries. The main dataset used in the experiments (DISC21) can be freely downloaded on its webpage https://ai.facebook.com/datasets/disc21-dataset/. Dataset processing is described in App. B.1. Mahdi Ahmadi, Alireza Norouzi, Nader Karimi, Shadrokh Samavi, and Ali Emami. Redmark: Framework for residual diffusion watermarking based on deep networks. Expert Systems with Applications, 2020. Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, and Nicolas Ballas. Masked siamese networks for label-efficient learning. ar Xiv preprint ar Xiv:2204.07141, 2022. Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial examples. In ICML. PMLR, 2018. Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Communications of the ACM, 18(9):509 517, 1975. Christian B ohm, Stefan Berchtold, and Daniel A Keim. Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. ACM Computing Surveys (CSUR), 33(3):322 373, 2001. Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017. Mathilde Caron, Hugo Touvron, Ishan Misra, Herv e J egou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV. IEEE, 2021. Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pp. 380 388, 2002. Published as a conference paper at ICLR 2023 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In ICML. PMLR, 2020. Chun-Hsien Chou and Yun-Chin Li. A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile. IEEE Transactions on circuits and systems for video technology, 5(6):467 476, 1995. Ingemar Cox, Matthew Miller, Jeffrey Bloom, Jessica Fridrich, and Ton Kalker. Digital watermarking and steganography. Morgan kaufmann, 2007. Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on Computational geometry, pp. 253 262, 2004. Brian Dolhansky and Cristian Canton Ferrer. Adversarial collision attacks on image hashing functions. ar Xiv preprint ar Xiv:2011.09473, 2020. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021. Matthijs Douze, Giorgos Tolias, Ed Pizzi, Zo e Papakipos, Lowik Chanussot, Filip Radenovic, Tomas Jenicek, Maxim Maximov, Laura Leal-Taix e, Ismail Elezi, et al. The 2021 image similarity dataset and challenge. ar Xiv preprint ar Xiv:2106.09672, 2021. Pierre Fernandez, Alexandre Sablayrolles, Teddy Furon, Herv e J egou, and Matthijs Douze. Watermarking images in self-supervised latent spaces. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022. Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for approximate nearest neighbor search. In CVPR. IEEE, 2013. Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high dimensions via hashing. In Vldb, volume 99, pp. 518 529, 1999. Jean-Bastien Grill, Florian Strub, Florent Altch e, Corentin Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised learning. Neur IPS, 2020. Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar. Accelerating large-scale inference with anisotropic vector quantization. In ICML. PMLR, 2020. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR. IEEE, 2016. Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Doll ar, and Ross Girshick. Masked autoencoders are scalable vision learners. In CVPR, 2022. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp. 604 613, 1998. Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search. Transactions on Pattern Analysis and Machine Intelligence, 33(1):117 128, 2010. Qiuping Jiang, Zhentao Liu, Shiqi Wang, Feng Shao, and Weisi Lin. Towards top-down just noticeable difference estimation of natural images. IEEE Transactions on Image Processing, 2022. Jeff Johnson, Matthijs Douze, and Herv e J egou. Billion-scale similarity search with gpus. IEEE Transactions on Big Data, 2019. Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015. Dimche Kostadinov, Slava Voloshynovskiy, Maurits Diephuis, and Taras Holotyak. Local active content fingerprinting: Optimal solution under linear modulation. In ICIP, 2016. Published as a conference paper at ICLR 2023 Lester E Krueger. Reconciling fechner and stevens: Toward a unified psychophysical law. Behavioral and Brain Sciences, 12(2):251 267, 1989. Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas Dandres. Quantifying the carbon emissions of machine learning. ar Xiv preprint ar Xiv:1910.09700, 2019. Cassidy Laidlaw, Sahil Singla, and Soheil Feizi. Perceptual adversarial robustness: Defense against unseen threat models. In ICLR, 2021. Zhuoran Liu, Zhengyu Zhao, and Martha Larson. Who s afraid of adversarial queries? the impact of image modifications on content-based image retrieval. In Proceedings of the 2019 on International Conference on Multimedia Retrieval, pp. 306 314, 2019. Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In ICLR, 2018. S ebastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. In International Conference on Multimedia. ACM, 2010. Neural Hash. Apple. https://www.apple.com/child-safety/pdf, 2021. Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. International journal of computer vision, 42(3):145 175, 2001. Zoe Papakipos and Joanna Bitton. Augly: Data augmentations for robustness. ar Xiv preprint ar Xiv:2201.06494, 2022. Zo e Papakipos, Giorgos Tolias, Tomas Jenicek, Ed Pizzi, Shuhei Yokoo, Wenhao Wang, Yifan Sun, Weipu Zhang, Yi Yang, Sanjay Addicam, et al. Results and findings of the 2021 image similarity challenge. In Neur IPS 2021 Competitions and Demonstrations Track, pp. 1 12. PMLR, 2022. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alch e-Buc, E. Fox, and R. Garnett (eds.), Neur IPS. Curran Associates, Inc., 2019. Lo ıc Paulev e, Herv e J egou, and Laurent Amsaleg. Locality sensitive hashing: A comparison of hash function types and querying mechanisms. Pattern recognition letters, 31(11), 2010. Florent Perronnin, Yan Liu, Jorge S anchez, and Herv e Poirier. Large-scale image retrieval with compressed fisher vectors. In CVPR, pp. 3384 3391. IEEE, 2010. Photo DNA. Microsoft. https://www.microsoft.com/en-us/photodna, 2009. Ed Pizzi, Sreya Dutta Roy, Sugosh Nagavara Ravindra, Priya Goyal, and Matthijs Douze. A selfsupervised descriptor for image copy detection. In CVPR. IEEE, 2022. Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Herv e J egou. Spreading vectors for similarity search. ICML, 2019. Changhao Shi, Chester Holtz, and Gal Mishne. Online adversarial purification based on selfsupervised learning. In ICLR, 2021. Richard Shin and Dawn Song. Jpeg-resistant adversarial images. In Neur IPS Workshop on Machine Learning and Computer Security, 2017. Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object matching in videos. In Computer Vision, IEEE International Conference on, volume 3, pp. 1470 1470. IEEE Computer Society, 2003. Michael J Swain and Dana H Ballard. Color indexing. International journal of computer vision, 7 (1):11 32, 1991. Published as a conference paper at ICLR 2023 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In ICLR, 2013. Mingxing Tan and Quoc Le. Efficientnetv2: Smaller models and faster training. In ICML. PMLR, 2021. Giorgos Tolias, Filip Radenovic, and Ondrej Chum. Targeted mismatch adversarial attack: Query with a flower to retrieve the tower. In ICCV. IEEE, 2019. Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herv e J egou. Training data-efficient image transformers & distillation through attention. In International Conference on Machine Learning, 2021. Sviatoslav Voloshynovskiy, Farzad Farhadzadeh, Oleksiy Koval, and Taras Holotyak. Active content fingerprinting: a marriage of digital watermarking and content fingerprinting. In International Workshop on Information Forensics and Security (WIFS), pp. 175 180. IEEE, 2012. Vedran Vukoti c, Vivien Chappelier, and Teddy Furon. Are classification deep neural networks good for blind image watermarking? Entropy, 2020. Wenhao Wang, Yifan Sun, and Yi Yang. A benchmark and asymmetrical-similarity learning for practical image copy detection. ar Xiv preprint ar Xiv:2205.12358, 2022. Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on image processing, 2004. Andrew B Watson. Dct quantization matrices visually optimized for individual images. In Human vision, visual processing, and digital display IV, volume 1913, pp. 202 216. SPIE, 1993. Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. Neur IPS, 21, 2008. Jinjian Wu, Leida Li, Weisheng Dong, Guangming Shi, Weisi Lin, and C-C Jay Kuo. Enhanced just noticeable difference model for images with pattern complexity. IEEE Transactions on Image Processing, 2017. Saining Xie, Ross Girshick, Piotr Doll ar, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural networks. In CVPR. IEEE, 2017. XK Yang, WS Ling, ZK Lu, Ee Ping Ong, and SS Yao. Just noticeable distortion model and its applications in video coding. Signal processing: Image communication, 20(7):662 680, 2005. Shuhei Yokoo. Contrastive learning with large memory bank and negative embedding subtraction for accurate copy detection. ar Xiv preprint ar Xiv:2112.04323, 2021. Chaoning Zhang, Philipp Benz, Adil Karjauv, Geng Sun, and In So Kweon. Udh: Universal deep hiding for steganography, watermarking, and light field messaging. Neur IPS, 2020. Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In CVPR. IEEE, 2018. Xiaohui Zhang, Weisi Lin, and Ping Xue. Just-noticeable difference estimation with pixels in images. Journal of Visual Communication and Image Representation, 19(1):30 41, 2008. Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden: Hiding data with deep networks. In ECCV, 2018. Published as a conference paper at ICLR 2023 Supplementary material - Active Image Indexing A DETAILS ON THE PERCEPTUAL ATTENUATION MODEL A.1 JUST NOTICEABLE DIFFERENCE MAP The maximum change that the human visual system (HVS) cannot perceive is sometimes referred to as the just noticeable difference (JND) Krueger (1989). It is used in many applications, such as image/video watemarking, compression, quality assessment (JND is also used in audio). JND models in pixel domain directly calculate the JND at each pixel location (i.e. how much pixel difference is perceivable by the HVS). The JND map that we use is based on the work of Chou & Li (1995). We use this model for its simplicity, its efficiency and its good qualitative results. More complex HVS models could also be used if even higher imperceptibility is needed (Watson (1993); Yang et al. (2005); Zhang et al. (2008); Jiang et al. (2022) to cite a few). The JND map takes into account two characteristics of the HVS, namely the luminance adaptation (LA) and the contrast masking (CM) phenomena. We follow the same notations as Wu et al. (2017). The CM map MC is a function of the image gradient magnitude Cl (the Sobel filter of the image): MC(x) = 0.115 α Cl(x)2.4 Cl(x)2 + β2 , with Cl = q x I(x)2 + y I(x)2, (11) where x is the pixel location, I(x) the image intensity, α = 16, and β = 26. It is an increasing function of Cl, meaning that the stronger the gradient is at x, the more the image is masking a local perturbation, and the higher the noticeable pixel difference is. LA takes into account the fact that the HVS presents different sensitivity to background luminance (e.g. it is less sensible in dark backgrounds). It is modeled as: if B(x) < 127 3 (B(x) 127) 128 + 3 if B(x) 127, where B(x) is the background luminance, which is calculated as the mean luminance value of a local patch centered on x. Finally, both effects are combined with a nonlinear additivity model: HJND = LA + MC C min{LA, MC}, (13) where C is set to 0.3 and determines the overlapping effect. For color images, the final RGB heatmap is HJND = [αRH, αGH, αBH], where (αR, αG, αB) are inversely proportional to the mixing coefficients for the luminance: (αR, αG, αB) = 0.072/(0.299, 0.587, 0.114). Figure 6: A reference image I from DISC21 (R002815.jpg), and the associated perceptual heatmap HJND(I). Published as a conference paper at ICLR 2023 A.2 COMPARISON WITH ℓ CONSTRAINT EMBEDDING Figure 7 shows the same image activated using either the ℓ constraint (commonly used in the adversarial attack literature) or our perceptual constraint based on the JND model explained above. Even with very small ε (4 over 255 in the example bellow), the perturbation is visible especially in the flat regions of the images, such as the sea or sky. Laidlaw et al. (2021) also show that the ℓ is not a good perceptual constraint. They use the LPIPS loss (Zhang et al., 2018) as a surrogate for the HVS to develop more imperceptible adversarial attacks. Although a similar approach could be used here, we found that at this small level of image distortion the LPIPS did not capture CM and LA as well as the handcrafted perceptual models present in the compression and watermarking literature. (a) ℓ = 4, PSNR = 36.4 d B, SSIM = 0.91 (b) ℓ = 23, PSNR = 34.4 d B, SSIM = 0.94 Figure 7: Activated images, either with (a) the ℓ 4 constraint or with (b) our perceptual model (best viewed on screen). We give the corresponding measures between the original and the protected image, as well as the pixel-wise difference. The perturbation on the right is much less perceptible thanks to the perceptual model, even though its ℓ distance with the original image is much higher. B EXPERIMENTS DETAILS This section describes the details omitted in experimental sections. B.1 DATASET The dataset DISC 2021 was designed for the Image Similarity Challenge (Douze et al., 2021) and can be downloaded in the dataset webpage: https://ai.facebook.com/datasets/disc21-dataset/. We want to test performance on edited versions of activated images but in DISC query set transformations are already applied to images. Therefore the query set cannot be used as it is. We create a first test set Ref10k by selecting the 10k images from the reference set that were originally used to generate the queries (the dev queries from the downloadable version). We also re-create a query set Query50k . To be as close as possible, we use the same images that were used for generating queries in DISC. Edited images are generated using the Aug Ly library (Papakipos & Bitton, 2022), following the guidelines given in the Automatic Transformations section of the DISC paper. Therefore, the main difference between the query set used in our experiments and the original one is that ours do not have manual augmentations. B.2 TRANSFORMATIONS SEEN AT TEST TIME They cover both spatial transformations (crops, rotation, etc.), pixel-value transformations (contrast, hue, jpeg, etc.) and everyday life transformations with the Aug Ly augmentations. All transformations are illustrated in Fig. 4. The parameters for all transformations are the ones of the torchvision library (Marcel & Rodriguez, 2010), except for the crop and resize that represent area ratios. For the Gaussian blur transformation we use alternatively σ, the scaling factor in the exponential, or the kernel size kb (in torchvision kb = (σ 0.35)/0.15). The Random transformation is the one used to Published as a conference paper at ICLR 2023 Table 4: Illustration of all transformations evaluated in Tab. 1. Identity Contrast 0.5 Contrast 2.0 Brightness 0.5 Brightness 2.0 Hue 0.2 Blur 2.0 JPEG 50 Rotation 25 Rotation 90 Crop 0.5 Resize 0.5 Meme Random develop the 50k query set. A series of simple 1-4 Aug Ly transformations are picked at random, with skewed probability for a higher number. Among the possible transformations, there are pixel-level, geometric ones, as well as embedding the image as a screenshot of a social network GUI. C MORE EXPERIMENTAL RESULTS C.1 DETAILED METRICS ON DIFFERENT IMAGE TRANSFORMATIONS On Fig. 8, we evaluate the average R@1 over the 10k images from the reference dataset. The experimental setup is the same as for Tab. 1 but a higher number of transformation parameters 50 0 50 0.0 0.50 0.25 0.00 0.25 0.50 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.5 1.0 1.5 0.0 20 40 60 80 100 0.0 0.2 0.4 0.6 0.8 1.0 0.0 Center crop 10 20 30 0.0 0.5 1.0 1.5 0.0 Passive Active Figure 8: Average R@1 comparison between active and passive indexing with IVF-PQ. Published as a conference paper at ICLR 2023 are evaluated. As expected, the higher the strength of the transformation, the lower the retrieval performance is. The decrease in performance is significantly reduced with activated images. C.2 ADDITIONAL ABLATIONS Speeding-up the optimization. In our experiments, the optimization is done using 10 iterations of gradient descent, which takes approximately 40ms/image. If the indexation time is important (often, this is not the case and only the search time is), it can be reduced at the cost of some accuracy. We activated 10k reference images, with the same IVF-PQ indexed presented in Sec. 5.2 with only one step of gradient descent with a higher learning rate. Activation times are computed on average. The R@1 results in Tab. 5 indicate that the speed-up in the image optimization has a small cost in retrieval accuracy. Specifically, it reduces the R@1 for unedited images. The reason is that the learning rate is too high: it can cause the representation to be pushed too far and to leave the indexing cell. This is why a higher number number of steps and a lower learning rate are used in practice. If activation time is a bottleneck, it can however be useful to use less optimization steps. Table 5: R@1 for different transformations applied before search, with either 1 step at learning rate 10, or 10 steps at learning rate 1. Results are averaged on 10k images. Bright. 0.5 Bright. 2.0 Passive - 1.00 0.73 0.39 0.73 0.28 0.62 0.48 0.72 0.07 0.14 0.14 0.72 0.14 0.13 0.45 Adam,lr=1 - 10 steps 39.8 ms/img 1.00 1.00 0.96 1.00 0.92 1.00 0.96 0.99 0.10 0.50 0.29 1.00 0.43 0.32 0.75 Adam,lr=10 - 1 step 4.3 ms/img 0.99 0.99 0.92 0.99 0.84 0.99 0.95 0.99 0.10 0.39 0.25 0.99 0.36 0.27 0.72 Data augmentation at indexing time and Eo T. Expectation over Transformations (Athalye et al., 2018) was originally designed to create adversarial attacks robust to a set of image transformations. We follow a similar approach to improve robustness of the marked image against a set of augmentations T . At each optimization step, we randomly sample A augmentations {ti}A i=1 in T and consider the average loss: Lf = PA i=1 L(I, ti; Io)/A. In our experiments, T encompasses rotations, Gaussian blurs, color jitters and a differentiable approximation of the JPEG compression Shin & Song (2017). A is set to 8 and we always take the un-augmented image in the chosen set of augmentations. We activated 10k reference images, with the same IVF-PQ as Sec. 5.2 with or without using Eo T. Table 6 shows the average R@1 performance over the images submitted to different transformations before search. Eo T brings a small improvement, specifically on transformations where base performance is low (e.g. rotation or crops here). However, it comes at a higher computational cost since each gradient descent iteration needs A passes through the network, and since fewer images can be jointly activated due to GPU memory limitations (we need to store and back-propagate through A transformations for every image). If the time needed to index or activate an image is not a bottleneck, using Eo T can therefore be useful. Otherwise, it is not worth the computational cost. Table 6: R@1 for different transformations applied before search, with or without Eo T when activating the images. Results are averaged on 10k images. Bright. 0.5 Bright. 2.0 Without EOT 40 ms 1.00 1.00 0.96 1.00 0.92 1.00 0.96 0.99 0.10 0.50 0.29 1.00 0.43 0.32 0.75 With EOT 870 ms 1.00 1.00 0.95 1.00 0.92 1.00 0.95 0.99 0.14 0.64 0.33 1.00 0.45 0.33 0.76 Published as a conference paper at ICLR 2023 D ACTIVE INDEXING VS. WATERMARKING Discussion. Watermarking and active indexing both modify images for tracing and authentication, however there are significant differences between them. Watermarking embeds arbitrary information into the image. The information can be a message, a copyright, a user ID, etc. In contrast, active indexing modifies it to improve the efficiency of the search engine. Watermarking also focuses on the control over the False Positive Rate of copyright detection, i.e. a bound on the probability that a random image has the same message as the watermarked one (up to a certain distance). Although watermarking considers different settings than indexing methods, it could also be leveraged to facilitate the re-identification of near-duplicate images. In this supplemental section, we consider it to address a use-case similar to the one we address in this paper with our active indexing approach. In this scenario, the watermark encoder embeds binary identifiers into database images. The decoded identifier is then directly mapped to the image (as the index of a list of images). Experimental setup. In the rest of the section, we compare active indexing against recent watermarking techniques based on deep learning. For indexing, we use the same setting as in Sec. 5.1 (IVF-PQ index with 1M reference images). When searching for an image, we look up the closest neighbor with the help of the index. For watermarking, we encode 20-bit messages into images, which allows to represent 210 106 images (the number of reference images). When searching for an image, we use the watermark decoder to get back an identifier and the corresponding image in the database. Like before, we use R@1 as evaluation metric. For indexing, it corresponds to the accuracy of the top-1 search result. For watermarking, the R@1 also corresponds to the word accuracy of the decoding, that is the proportion of images where the message is perfectly decoded. Indeed, with 20-bit encoding almost all messages have an associated image in the reference set, so an error on a single bit causes a mis-identification (there is no error correction1). We use two state-of-the-art watermarking methods based on deep learning: SSL Watermarking (Fernandez et al., 2022), which also uses an adversarial-like optimization to embed messages, and Hi DDe N (Zhu et al., 2018), which encodes and decodes messages thanks to Conv-BN-Re LU networks. The only difference with the original methods is that their perturbation δ is modulated by the handcrafted perceptual attenuation model presented in App. A. This approximately gives the same image quality, thereby allowing for a direct comparison between active indexing and watermarking. Results. Tab. 7 compares the R@1 when different transformations are applied before search or decoding. Our active indexing method is overall the best by a large margin. For some transformations, watermarking methods are not as effective as passive indexing, yet for some others, like crops for Hi DDe N, the watermarks are more robust. Table 7: R@1 for different transformations applied before search, when using either watermarking or active indexing. Results are averaged on 1k images. Best result is in bold and second best in italic. Bright. 0.5 Bright. 2.0 Passive indexing 1.00 0.73 0.39 0.73 0.28 0.62 0.48 0.72 0.07 0.14 0.14 0.72 0.14 0.13 0.45 Active indexing (ours) 1.00 1.00 0.96 1.00 0.92 1.00 0.96 0.99 0.10 0.50 0.29 1.00 0.43 0.32 0.75 SSL Watermarking (Fernandez et al., 2022) 1.00 0.98 0.53 0.98 0.63 0.85 0.13 0.00 0.00 0.15 0.11 0.00 0.46 0.07 0.42 Hi DDe N2 (Zhu et al., 2018) 0.94 0.87 0.36 0.85 0.55 0.00 0.81 0.00 0.00 0.00 0.92 0.44 0.77 0.16 0.48 1In order to provide error correction capabilities, one needs longer messages. This makes it more difficult to insert bits: in our experiments, with 64 bits we observe a drastic increase of the watermarking bit error rate. 2Our implementation. As reported in other papers from the literature, results of the original paper are hard to reproduce. Therefore to make it work better, our model is trained on higher resolution images (224 224), with a payload of 20-bits, instead of 30 bits embedded into 128 128. Afterwards, the same network is used on images of arbitrary resolutions, to predict the image distortion which is later rescaled as in Eq. (8). In this setting the watermark can not always be inserted (6% failure). Published as a conference paper at ICLR 2023 E MORE QUALITATIVE RESULTS Figure 10 gives more examples of activated images from the DISC dataset, using the same parameters as in Sec. 5.2. The perturbation is very hard to notice (if not invisible), even in flat areas of the images because the perceptual model focuses on textures. We also see that the perturbation forms a regular pattern. This is due to the image (bilinear) resize that happens before feature extraction. Figure 9 gives example of an image activated at several values of perturbation strength α of Eq. (8) (for instance, for α = 20 the image has PSNR 27d B and for α = 1 the image has PSNR 49d B). The higher the α, the more visible the perturbation induced by the activation is. Nevertheless, even with low PSNR values (< 35d B), it is hard to notice if an image is activated or not. α=20.0, PSNR=27d B α=15.0, PSNR=29d B α=11.3, PSNR=31d B α=8.43, PSNR=34d B α=6.32, PSNR=36d B α=4.74, PSNR=39d B α=3.55, PSNR=41d B α=2.66, PSNR=43d B α=2.00, PSNR=46d B α=1.50, PSNR=49d B Figure 9: Example of one activated image at different levels of α. Figure 10: Example of activated images for α = 3.0. (Left) original images, (Middle) activated images, (Right) pixel-wise difference. Published as a conference paper at ICLR 2023 Figure 10: Example of activated images for α = 3.0. (Left) original images, (Middle) activated images, (Right) pixel-wise difference. Images are R000005.jpg, R000045.jpg, R000076.jpg, R000172.jpg and R000396.jpg.