# generalized_data_distribution_iteration__d406bd65.pdf Generalized Data Distribution Iteration Jiajun Fan 1 Changnan Xiao 2 To obtain higher sample efficiency and superior final performance simultaneously has been one of the major challenges for deep reinforcement learning (DRL). Previous work could handle one of these challenges but typically failed to address them concurrently. In this paper, we try to tackle these two challenges simultaneously. To achieve this, we firstly decouple these challenges into two classic RL problems: data richness and exploration-exploitation trade-off. Then, we cast these two problems into the training data distribution optimization problem, namely to obtain desired training data within limited interactions, and address them concurrently via i) explicit modeling and control of the capacity and diversity of behavior policy and ii) more fine-grained and adaptive control of selective/sampling distribution of the behavior policy using a monotonic data distribution optimization. Finally, we integrate this process into Generalized Policy Iteration (GPI) and obtain a more general framework called Generalized Data Distribution Iteration (GDI). We use the GDI framework to introduce operator-based versions of well-known RL methods from DQN to Agent57. Theoretical guarantee of the superiority of GDI compared with GPI is concluded. We also demonstrate our state-ofthe-art (SOTA) performance on Arcade Learning Environment (ALE), wherein our algorithm has achieved 9620.33% mean human normalized score (HNS), 1146.39% median HNS and surpassed 22 human world records using only 200M training frames. Our performance is comparable to Agent57 s while we consume 500 times less data. We argue that there is still a long way to go before obtaining real superhuman agents in ALE. 1Tsinghua Shenzhen International Graduate School, Tsinghua University, Beijing, China 2Byte Dance, Beijing, China. Correspondence to: Changnan Xiao , Jiajun Fan . Proceedings of the 39 th International Conference on Machine Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copyright 2022 by the author(s). GDI-I3 (Ours) GDI-H3 (Ours) Mean Human Normalized Score The Prior SOTA Learning Efficiency Mean HNS Learning Efficiency Figure 1. Performance of algorithms of Atari 57 games on mean HNS(%) and corresponding learning/sample efficiency calculated by Mean HNS Training Scale (frames). For more benchmark results, can see App. J. 1. Introduction Reinforcement learning (RL) algorithms, when combined with high-capacity deep neural networks, have shown promise in domains ranging from video games (Mnih et al., 2015) to robotic manipulation (Schulman et al., 2015; 2017b). However, it still suffers from high sample complexity and unsatisfactory final performance, especially compared to human learning (Tsividis et al., 2017). Prior work could handle one of these problems but commonly failed to tackle both of them simultaneously. Model-free RL methods typically obtain remarkable final performance via finding a way to encourage exploration and improve the data richness (e.g., Seen Conditions All Conditions ) that guarantees traversal of all possible conditions. These methods (Ecoffet et al., 2019; Badia et al., 2020a) could perform remarkably well when interactions are (nearly) limitless but normally fail when interactions are limited. We argue that when interactions are limited, finding a way to guarantee traversal of all unseen conditions is unreasonable, and perhaps we should find a way to traverse the nontrivial conditions (e.g., unseen (Ecoffet et al., 2019) and high-value (Kumar et al., 2020)) first and avoid traversing the trivial/low-value conditions repeatedly. In other words, we should explicitly control the training data distribution in RL and maximize the probabil- Generalized Data Distribution Iteration 饾潗 greedy (饾潊饾溄饾潃饾煆) Random (饾潊饾溄饾潃饾煇) Boltzmann Policy (饾潊饾溄饾潃饾拸) Greedy (饾潊饾溄饾潃饾拵) Behavior Policy Space Capacity and Diversity Random/Uniform Selective Distribution Behavior Selection Meta Controller Selective Distribution Optimization Environment Data Distribution Optimization 饾摂 Parameters 饾溄 Sample Trajectory Sample Trajectory RL optimization 饾摚 Policy Evaluation Policy Improvement Generalized Policy Iteration Data Distribution Iteration High-value Unseen Seen Unseen Seen Sample Trajectory Interaction (a) Isomorphism GDI 饾潗 greedy (饾潊饾溄饾潃饾煆) Random (饾潊饾溄饾潃饾煇) Boltzmann Policy (饾潊饾溄饾潃饾拸) Greedy (饾潊饾溄饾潃饾拵) Behavior Policy Space Capacity and Diversity Random/Uniform Selective Distribution Behavior Selection Meta Controller Selective Distribution Optimization Environment Data Distribution Optimization 饾摂 Parameters 饾溄 Sample Trajectory Sample Trajectory RL optimization 饾摚 Policy Evaluation Policy Improvement Generalized Policy Iteration Data Distribution Iteration High-value Unseen Seen Unseen Seen Sample Trajectory Interaction (b) Heterogeneous GDI Figure 2. Algorithm Architecture Diagram. (a) The Isomorphism architecture of GDI, wherein the behavior policy space (e.g., the soft entropy policy space, 蟺胃位 = 系 Softmax A胃1 + (1 系) Softmax A胃2 ) is constructed by the base policy with shared parameters (i.e., 胃1 = 胃2 = 胃) and indexed by 位 = (蟿1, 蟿2, 系). (b) The Heterogeneous architecture of GDI, wherein the behavior policy space is constructed by the base policy with different parameters (i.e., 胃1 = 胃2) and indexed by 位. For more details, can see Sec. 4 and 5. ity of nontrivial conditions being traversed, namely the data distribution optimization (see Fig. 2). In RL, training data distribution is normally controlled by the behavior policy (Sutton & Barto, 2018; Mnih et al., 2015), so that the data richness can be controlled by the capacity and diversity of the behavior policy. Wherein the capacity describes how many different behavior policies there are in the policy space, and the diversity describes how many different behavior policies are selected/sampled from the policy space to generate training data (discussed in Sec. 4.2). When interactions are limitless, increasing the capacity and maximizing the diversity via randomly sampling behavior policies (most prior works have achieved SOTA in this way) can significantly improve the data richness and guarantee traversal of almost all unseen conditions, which induces better final performance (Badia et al., 2020a) and generalization (Ghosh et al., 2021). However, perhaps surprisingly, this is not the case when interactions are limited, where each interaction is rare and the selection of the behavior policy becomes important. In conclusion, we should increase the probability of the traversal of unseen conditions (i.e., exploration) via increasing the capacity and diversity of the behavior policy and maximize the probability of high-value conditions (i.e., exploitation) being traversed via optimizing the selective distribution of the behavior policy. It s also known as the exploration-exploitation trade-off problem. From this perspective, we can understand why the prior SOTA algorithms, such as Agent57 and Go-Explore, failed to obtain high sample efficiency. They have collected massive data to guarantee the traversal of unseen conditions but ignore the different values of data. Therefore, they wasted many trials to collect useless/low-value data, which accounts for their low sample efficiency. In other words, they failed to tackle the data distribution optimization problem. In this paper, we argue that the sample efficiency of modelfree methods can be significantly improved (even outperform the SOTA model-based schemes (Hafner et al., 2020)) without degrading the final performance via data distribution optimization. To achieve this, we propose a data distribution optimization operator E to iteratively optimize the selective distribution of the behavior policy and thereby optimize the training data distribution. Specifically, we construct a parameterized policy space indexed by 位 called the soft entropy space, which enjoys a larger capacity than Agent57. The behavior policies are sampled from this policy space via a sampling distribution. Then, we adopt a meta-learning method to optimize the sampling distribution of behavior policies iteratively and thereby achieve a more fine-grained exploration and exploitation trade-off. Moreover, training data collected by the optimized behavior policies will be used for RL optimization via the operator T . This process will be illustrated in Fig. 2, generalized in Sec. 4, proved superior in Sec. 4.6 and implemented in Sec. 5.1. The main contributions of our work are: 1. A General RL Framework. Efficient learning within Generalized Data Distribution Iteration limited interactions induces the data distribution optimization problem. To tackle this problem, we firstly explicitly control the diversity and capacity of the behavior policy (see Sec. 4.2) and then optimize the sampling distribution of behavior policies iteratively via a data distribution optimization operator (see Sec. 4.4). After integrating them into GPI, we obtain a general RL framework, GDI (see Fig. 2). 2. An Operator View of RL Algorithms. We use the GDI framework to introduce operator-based versions of well-known RL methods from DQN to Agent57 in Sec. 4.5, which leads to a better understanding of their original counterparts. 3. Theoretical Proof of Superiority. We offer theoretical proof of the superiority of GDI in the case of both firstorder and second-order optimization in Sec. 4.6. 4. The State-Of-The-Art Performance. From Fig. 1, our algorithm GDI-H3 has achieved 9620.33% mean HNS, outperforming the SOTA model-free algorithms Agent57. Surprisingly, our learning efficiency has outperformed the SOTA model-based methods Muzero and Dreamer-V2. Furthermore, our method has surpassed 22 Human World Records in 38 playtime days. 2. Related Work Data richness. As claimed by (Ghosh et al., 2021), generalization to unseen test conditions from a limited number of training conditions induces implicit partial observability, effectively turning even fully observed MDPs into POMDPs, which makes generalization in RL much more difficult. Therefore, data richness (e.g., Seen Conditions All Conditions ) is vital for the generalization and performance of RL agents. When interactions are limited, more diverse behavior policies increase the data richness and thereby reduce the proportion of unseen conditions and improve generalization and performance. Therefore, we can recast this problem into the problem to control the capacity and diversity of the behavior policy. There are two promising ways to handle this issue. Firstly, some RL methods adopt intrinsic reward to encourage exploration, where unsupervised objectives, auxiliary tasks and other techniques induce the intrinsic reward (Pathak et al., 2017). Other methods (Badia et al., 2020a) introduced a diversity-based regularizer into the RL objective and trained a family of policies with different degrees of exploratory behaviors. Despite both obtaining SOTA performance, adopting intrinsic rewards and entropy regularization has increased the uncertainty of environmental transition. We argue that the inability to effectively tackle the data distribution optimization accounts for their low learning efficiency. Exploration and exploitation trade-off. Exploration and exploitation trade-off remains one of the significant challenges in DRL (Badia et al., 2020b; Sutton & Barto, 2018). In general, methods that guarantee to find an optimal policy require the number of visits to each state action pair to approach infinity. The entropy of policy would collapse to zero swiftly after a finite number of steps may never learn to act optimally; they may instead converge prematurely to suboptimal policies and never gather the data they need to learn to act optimally. Therefore, to ensure that all state-action pairs are encountered infinitely, off-policy learning methods are widely used (Mnih et al., 2016; Espeholt et al., 2018), and agents must learn to adjust the entropy (exploitation degree) of the behavior policy. Adopting stochastic policies into the behavior policy has been widely used in RL algorithms (Mnih et al., 2015; Hessel et al., 2017), such as the 系-greedy (Watkins, 1989). These methods can perform remarkably well in dense reward scenarios (Mnih et al., 2015), but fail to learn in sparse reward environments. Recent approaches (Badia et al., 2020a) have proposed to train a family of policies and provide intrinsic rewards and entropy regularization to agents to drive exploration. Among these methods, the intrinsic rewards are proportional to some notion of saliency, quantifying how different the current state is from those already visited. They have achieved SOTA performance at the cost of a relatively lower sample efficiency. We argue that these algorithms overemphasize the role of exploration to traverse unseen conditions but ignore the value of data and thereby waste many trails to collect low-value data, accounting for their low sample efficiency. 3. Preliminaries The RL problem can be formulated as a Markov Decision Process (Howard, 1960, MDP) defined by (S, A, p, r, 纬, 蟻0). Considering a discounted episodic MDP, the initial state s0 is sampled from the initial distribution 蟻0(s) : S (S), where we use to represent the probability simplex. At each time t, the agent chooses an action at A according to the policy 蟺(at|st) : S (A) at state st S. The environment receives at, produces the reward rt r(s, a) : S A R and transfers to the next state st+1 according to the transition distribution p (s | s, a) : S A (S). The process continues until the agent reaches a terminal state or a maximum time step. Define the discounted state visitation distribution as d蟺 蟻0(s) = (1 纬)Es0 蟻0 [P t=0 纬t P(st = s|s0)]. The goal of reinforcement learning is to find the optimal policy 蟺 that maximizes the expected sum of discounted rewards, denoted by J (Sutton & Barto, 2018): 蟺 = argmax 蟺 Est d蟺 蟻0E蟺 k=0 纬krt+k|st where 纬 (0, 1) is the discount factor. Generalized Data Distribution Iteration 4. Methodology 4.1. Notation Definition Let s introduce our notations first, which are also summarized in App. A. Define 螞 to be an index set, 螞 Rk. 位 螞 is an index in 螞. (螞, B|螞, P螞) is a probability space, where B|螞 is a Borel 蟽-algebra restricted to 螞. Under the setting of meta-RL, 螞 can be regarded as the set of all possible meta information. Under the setting of population-based training (PBT) (Jaderberg et al., 2017), 螞 can be regarded as the set of the whole population. Define 螛 to be a set of all possible values of parameters (e.g., parameters of value function network and policy network). 胃 螛 is some specific value of parameters. For each index 位, there exists a specific mapping between each parameter of 胃 and 位, denoted as 胃位, to indicate the parameters in 胃 corresponding to 位 (e.g., 系 in 系-greedy behavior policies). Under the setting of linear regression y = w x, 螛 = {w Rn} and 胃 = w. If 位 represents using only the first half features to perform regression, assume w = (w1, w2), then 胃位 = w1. Under the setting of RL, 胃位 defines a parameterized policy indexed by 位, denoted as 蟺胃位. Define D def = {d蟺 蟻0| 蟺 (A)S, 蟻0 (S)} to be the set of all states visitation distributions. For the parameterized policies, denote D螞,螛,蟻0 def = {d 蟺胃位 蟻0 | 胃 螛, 位 螞}. Note that (螞, B|螞, P螞) is a probability space on 螞, which induces a probability space on D螛,螞,蟻0, with the probability measure given by PD(D螞0,螛,蟻0) = P螞(螞0), 螞0 B|螞. We use x to represent one sample, which contains all necessary information for learning. As for DQN, x = (st, at, rt, st+1). As for R2D2, x = (st, at, rt, . . . , st+N, at+N, rt+N, st+N+1). As for IMPALA, x also contains the distribution of the behavior policy. The content of x depends on the algorithm, but it s assumed to be sufficient for learning. We use X to represent the set of samples. At training stage t, given the parameter 胃 = 胃(t), the distribution of the index set P螞 = P(t) 螞 (e.g., sampling distribution of behavior policy) and the distribution of the initial state 蟻0, we denote the set of samples as X (t) 蟻0 def = [ d蟺 蟻0 P(t) D {x|x d蟺 蟻0} {x|x d蟺胃 蟻0 , 胃 = 胃(t) 位 } X (t) 蟻0,位. 4.2. Capacity and Diversity Control of Behavior Policy We consider the problem that behavior policies 碌 are sampled from a policy space {蟺胃位|位 螞} which is parameterized by the policy network and indexed by the index set 螞. The capacity of 碌 describes how many different behavior policies are there in the policy space, controlled by the base policy s capacity (e.g., shared parameters or not) and the size of the index set |螞|. Noting that there are two sets of parameters, namely 位 and 胃. The diversity describes how many different behavior policies are actually selected from the policy space to generate training data, controlled by the sampling/selective distribution P螞 (see Fig. 2). After the capacity of the base policy is determined, we can explicitly control the data richness via the size of the index set and the sampling distribution P螞. On the condition that interactions are limitless, increasing the size of the index set can significantly improve the data richness and thus is more important for a superior final performance since the diversity can be maximized via adopting a uniform distribution (most prior works have achieved SOTA in this way). However, it s data inefficient and the condition may never hold. Considering interactions are limited, the optimization of the sampling distribution, namely to select suitable behavior policies to generate training data, is crucial for sample efficiency because each interaction is rare. It s also known as the exploration-exploitation trade-off problem. 4.3. Data Distribution Optimization Problem In conclusion, the final performance can be significantly improved via increasing the data richness controlled by the capacity and diversity of behavior policy. The sample efficiency is significantly influenced by the explorationexploitation trade-off, namely the sampling/selective distribution of the behavior policy. In general, on the condition that the capacity of behavior policy is determined and training data is totally generated by behavior policies, these problems can be cast into the data distribution optimization problem: Definition 4.1 (Data Distribution Optimization Problem). Finding a selective distribution P螞 that samples behavior policies 蟺胃位 from a parameterized policy space that indexed by 螞 and maximizing some target function LE, where the LE can be any target function (e.g., RL target) that describes what kind of data do agents desire (i.e., a measure of the importance/value of the sample trajectory). 4.4. Generalized Data Distribution Iteration Now we introduce our main algorithm to handle the data distribution optimization problem in RL. T defined as 胃(t+1) = T (胃(t), {X (t) 蟻0,位}位 P(t) 螞 ) is a typical optimization operator of RL algorithms, which utilizes the Generalized Data Distribution Iteration Algorithm 1 Generalized Data Distribution Iteration Initialize 螞, 螛, P(0) 螞 , 胃(0). for t = 0, 1, 2, . . . do Sample {X (t) 蟻0,位}位 P(t) 螞 . {Data Sampling} 胃(t+1) = T (胃(t), {X (t) 蟻0,位}位 P(t) 螞 ). {Generalized Policy Iteration} P(t+1) 螞 = E(P(t) 螞 , {X (t) 蟻0,位}位 P(t) 螞 ). {Data Distribution Iteration} end for collected samples to update the parameters for maximizing some function LT . For instance, LT may contain the policy gradient and the state value evaluation for the policy-based methods, may contain generalized policy iteration for the value-based methods, and may also contain some auxiliary tasks or intrinsic rewards for specially designed methods. E defined as P(t+1) 螞 = E(P(t) 螞 , {X (t) 蟻0,位}位 P(t) 螞 ) is a data distribution optimization operator. It uses the samples {X (t) 蟻0,位}位 P(t) 螞 to update P螞 and maximize some function LE, namely, P(t+1) 螞 = arg max P螞 LE({X (t) 蟻0,位}位 P螞). Since P螞 is parameterized, we abuse the notation and use P螞 to represent the parameter of P螞. If E is a first-order optimization operator, then we can write E explicitly as P(t+1) 螞 = P(t) 螞 + 畏 P(t) 螞 LE({X (t) 蟻0,位}位 P(t) 螞 ). If E is a second-order optimization operator, like natural gradient, we can write E formally as P(t+1) 螞 = P(t) 螞 + 畏F(P(t) 螞 ) P(t) 螞 LE({X (t) 蟻0,位}位 P(t) 螞 ), F(P(t) 螞 ) = h P(t) 螞 log P(t) 螞 i h P(t) 螞 log P(t) 螞 i , where denotes the Moore-Penrose pseudoinverse of the matrix. 4.5. An Operator View of RL Methods We can further divide all algorithms into two categories, GDI-In and GDI-Hn. n represents the degree of freedom of 螞, which is the dimension of selective distribution. I represents Isomorphism. We say one algorithm belongs to GDI-In, if 胃 = 胃位, 位 螞. H represents Heterogeneous. We say one algorithm belongs to GDI-Hn, if 胃位1 = 胃位2, 位1, 位2 螞. By definition, GDI-Hn is a much larger set than GDI-In, but many algorithms belong to GDIIn rather than GDI-Hn. We say one algorithm is "w/o E" if it doesn t contain the operator E, which means its E is an identical mapping and the data distribution is not additionally optimized. Now, we could understand some well-known RL methods from the view of GDI. For DQN, RAINBOW, PPO and IMPALA, they are in GDII0 w/o E. Let |螞| = 1, WLOG, assume 螞 = {位0}. Then, the probability measure P螞 collapses to P螞(位0) = 1. 螛 = {胃位0}. E is an identical mapping of P(t) 螞 . T is the first-order operator that optimizes the loss functions. For Ape-X and R2D2, they are in GDI-I1 w/o E. Let 螞 = {系l| l = 1, . . . , 256}. P螞 is uniform, P螞(系l) = |螞| 1. Since all actors and the learner share parameters, we have 胃系1 = 胃系2 for 系1, 系2 螞, hence 螛 = S 系 螞{胃系} = {胃系l}, l = 1, . . . , 256. E is an identical mapping, because P(t) 螞 is always a uniform distribution. T is the first-order operator that optimizes the loss functions. For LASER, it s in GDI-H1 w/o E. Let 螞 = {i| i = 1, . . . , K} to be the number of learners. P螞 is uniform, P螞(i) = |螞| 1. Since different learners don t share parameters, 胃i1 胃i2 = for i1, i2 螞, hence 螛 = S i 螞{胃i}. E is an identical mapping. T can be formulated as a union of 胃(t+1) i = Ti(胃(t) i , {X (t) 蟻0,位}位 P(t) 螞 ), which represents optimizing 胃i of the ith learner with shared samples from other learners. For PBT, it s in GDI-Hn+1, where n is the number of searched hyperparameters. Let 螞 = {h} {i|i = 1, . . . , K}, where h represents the hyperparameters being searched and K is the population size. 螛 = S i=1,...,K{胃i,h}, where 胃i,h1 = 胃i,h2 for (h1, i), (h2, i) 螞. E is the meta-controller that adjusts h for each i, which can be formally written as P(t+1) 螞 ( , i) = Ei(P(t) 螞 ( , i), {X (t) 蟻0,(h,i)}h P(t) 螞 ( ,i)), which optimizes P螞 according to the performance of all agents in the population. T can also be formulated as a union of Ti, but is 胃(t+1) i = Ti(胃(t) i , {X (t) 蟻0,(h,i)}h P(t) 螞 ( ,i)), which represents optimizing the ith agent with samples from the ith agent. For NGU and Agent57, it s in GDI-I2. Let 螞 = {尾i|i = 1, . . . , m} {纬j|j = 1, . . . , n}, where 尾 is the weight of the intrinsic value function and 纬 is the discount factor. Since all actors and the learner share variables, 螛 = S (尾,纬) 螞{胃(尾,纬)} = {胃(尾,纬)} for (尾, 纬) 螞. E is an optimization operator of a multi-arm bandit controller with UCB, which aims to maximize the expected cumulative rewards by adjusting P螞. Different from above, T is identical to our general definition 胃(t+1) = T (胃(t), {X (t) 蟻0,位}位 P(t) 螞 ), which utilizes samples from all 位s to update the shared 胃. For Go-Explore, it s in GDI-H1. Let 螞 = {蟿}, where 蟿 Generalized Data Distribution Iteration represents the stopping time of switching between robustification and exploration. 螛 = {胃r} {胃e}, where 胃r is the robustification model and 胃e is the exploration model. E is a search-based controller, which defines the next P螞 for better exploration. T can be decomposed into (Tr, Te). 4.6. Monotonic Data Distribution Optimization We see that many algorithms can be formulated as a special case of GDI. For algorithms without a meta-controller, whose data distribution optimization operator E is an identical mapping, the guarantee that the learned policy could converge to the optimal policy has been widely studied, for instance, GPI in (Sutton & Barto, 2018) and policy gradient in (Agarwal et al., 2019). However, for algorithms with a meta-controller, whose data distribution optimization operator E is non-identical, though most algorithms in this class show superior performance, it still lacks a general study on why the data distribution optimization operator E helps. In this section, with a few assumptions, we show that given the same optimization operator T , a GDI with a non-identical data distribution optimization operator E is always superior to that without E. For brevity, we denote the expectation of LE, LT for each 位 螞 as LE(位, 胃位) and LT (位, 胃位), calculated as LE(位, 胃位) = Ex 蟺胃位 [LE({X蟻0,位})] LT (位, 胃位) = Ex 蟺胃位 [LT ({X蟻0,位})] and denote the expectation of LE(位, 胃位), LT (位, 胃位) for any P螞 as LE(P螞, 胃) = E位 P螞[LE(位, 胃位)], LT (P螞, 胃) = E位 P螞[LT (位, 胃位)]. Assumption 1 (Uniform Continuous Assumption). For 系 > 0, s S, 未 > 0, s.t.|V 蟺1(s) V 蟺2(s)| < 系, d蟺(蟺1, 蟺2) < 未, where d蟺 is a metric on (A)S. If 蟺 is parameterized by 胃, then for 系 > 0, s S, 未 > 0, s.t.|V 蟺胃1(s) V 蟺胃2(s)| < 系, ||胃1 胃2|| < 未. Remark. (Dadashi et al., 2019) shows V 蟺 is infinitely differentiable everywhere on (A)S if |S| < , |A| < . (Agarwal et al., 2019) shows V 蟺 is 尾-smooth, namely bounded second-order derivative, for direct parameterization. If (A)S is compact, continuity implies uniform continuity. Assumption 2 (Formulation of E Assumption). Assume P(t+1) 螞 = E(P(t) 螞 , {X (t) 蟻0,位}位 P(t) 螞 ) can be writ- ten as P(t+1) 螞 (位) = P(t) 螞 (位) exp(畏LE(位,胃(t) 位 )) Z(t+1) , Z(t+1) = E位 P(t) 螞 [exp(畏LE(位, 胃(t) 位 ))]. Remark. The assumption is actually general. Regarding 螞 as an action space and r位 = LE(位, 胃(t) 位 ), when solving arg max P螞 E位 P螞[LE(位, 胃(t) 位 )] = arg max P螞 E位 P螞[r位], the data distribution optimization operator E is equivalent to solving a multi-arm bandit (MAB) problem. For the first-order optimization, (Schulman et al., 2017a) shows that the solution of a KL-regularized version, arg max P螞 E位 P螞[r位] 畏KL(P螞||P(t) 螞 ), is exactly the assumption. For the second-order optimization, let P螞 = softmax({r位}), (Agarwal et al., 2019) shows that the natural policy gradient of a softmax parameterization also induces exactly the assumption. Assumption 3 (First-Order Optimization Co-Monotonic Assumption). For 位1, 位2 螞, we have [LE(位1, 胃位1) LE(位2, 胃位2)] [LT (位1, 胃位1) LT (位2, 胃位2)] 0. Assumption 4 (Second-Order Optimization Co-Monotonic Assumption). For 位1, 位2 螞, 畏0 > 0, s.t. 0 < 畏 < 畏0, we have [LE(位1, 胃位1) LE(位2, 胃位2)] [G畏LT (位1, 胃位1) G畏LT (位2, 胃位2)] 0, where 胃畏 位 = 胃位 + 畏 胃位LT (位, 胃位) and G畏LT (位, 胃位) = 1 畏 [LT (位, 胃畏 位) LT (位, 胃位)]. Under assumptions (1) (2) (3), if T is a first-order operator, namely a gradient accent operator, to maximize LT , GDI can be guaranteed to be superior to that w/o E. Under assumptions (1) (2) (4), if T is a second-order operator, namely a natural gradient operator, to maximize LT , GDI can also be guaranteed to be superior to that w/o E. Theorem 1 (First-Order Optimization with Superior Target). Under assumptions (1) (2) (3), we have LT (P(t+1) 螞 , 胃(t+1)) = E位 P(t+1) 螞 [LT (位, 胃(t+1) 位 )] E位 P(t) 螞 [LT (位, 胃(t+1) 位 )] = LT (P(t) 螞 , 胃(t+1)). Proof. By Theorem 4 (see App. C), the upper triangular transport inequality, let f(位) = LT (位, 胃位) and g(位) = LE(位, 胃位), the proof is done. Remark (Superiority of Target). In Algorithm 1, if E updates P(t) 螞 at time t, then the operator T at time t+1 can be written as 胃(t+2) = 胃(t+1) + 畏 胃(t+1)LT (P(t+1) 螞 , 胃(t+1)). If P(t) 螞 hasn t been updated at time t, then the operator T at time t + 1 can be written as 胃(t+2) = 胃(t+1) + 畏 胃(t+1)LT (P(t) 螞 , 胃(t+1)). Theorem 1 shows that the target of T at time t + 1 becomes higher if P(t) 螞 is updated by E at time t. Example 1 (Practical Implementation). Let LE(位, 胃位) = J蟺胃位 and LT (位, 胃位) = J蟺胃位. E can update P螞 by the Monte-Carlo estimation of J蟺胃位. T is to maximize J蟺胃位, which can be any RL algorithms. Theorem 2 (Second-Order Optimization with Superior Improvement). Under assumptions (1) (2) (4), we have E位 P(t+1) 螞 [G畏LT (位, 胃(t+1) 位 )] E位 P(t) 螞 [G畏LT (位, 胃(t+1) 位 )], more specifically, E位 P(t+1) 螞 [LT (位, 胃(t+1),畏 位 ) LT (位, 胃(t+1) 位 )] E位 P(t) 螞 [LT (位, 胃(t+1),畏 位 ) LT (位, 胃(t+1) 位 )] Generalized Data Distribution Iteration Table 1. Experiment results of Atari. Playtime is the equivalent human playtime, HWRB is the human world record breakthrough, HNS is the human normalized score, HWRNS is the human world records normalized score, SABER = max{min{HWRNS, 2}, 0}. GDI-H3 GDI-I3 Muesli RAINBOW LASER R2D2 NGU Agent57 Training Scale (Num. Frames) 2E+8 2E+8 2E+8 2E+8 2E+8 1E+10 3.5E+10 1E+11 Playtime (Day) 38.5 38.5 38.5 38.5 38.5 1929 6751.5 19290 HWRB 22 17 5 4 7 15 8 18 Mean HNS(%) 9620.33 7810.1 2538.12 873.54 1740.94 3373.48 3169.07 4762.17 Median HNS(%) 1146.39 832.5 1077.47 230.99 454.91 1342.27 1174.92 1933.49 Mean HWRNS(%) 154.27 117.98 75.52 28.39 45.39 98.78 76.00 125.92 Median HWRNS(%) 50.63 35.78 24.86 4.92 8.08 33.62 21.19 43.62 Mean SABER(%) 71.26 61.66 48.74 28.39 36.78 60.43 50.47 76.26 Median SABER(%) 50.63 35.78 24.86 4.92 8.08 33.62 21.19 43.62 Proof. By Theorem 4 (see App. C), the upper triangular transport inequality, let f(位) = G畏LT (位, 胃位) and g(位) = LE(位, 胃位), the proof is done. Remark (Superiority of Improvement). Theorem 2 shows that, if P螞 is updated by E, the expected improvement of T is higher. Example 2 (Practical Implementation). Let LE(位, 胃位) = Es d蟺 蟻0Ea 蟺( |s) exp(系A蟺(s, ))/Z[A蟺(s, a)], where 蟺 = 蟺胃位. Let LT (位, 胃位) = J蟺胃位. If we optimize LT (位, 胃位) by natural gradient, (Agarwal et al., 2019) shows that, for direct parameterization, the natural policy gradient gives 蟺(t+1) 蟺(t) exp(系A蟺(t)), by Lemma 4 (see App. C), the performance difference lemma, V 蟺(s0) V 蟺 (s0) = 1 1 纬 Es d蟺 s0Ea 蟺( |s)[A蟺 (s, a)], hence if we ignore the gap between the states visitation distributions of 蟺(t) and 蟺(t+1), LE(位, 胃(t) 位 ) 1 1 纬 Es d蟺 蟻0[V 蟺(t+1)(s) V 蟺(t)(s)], where 蟺(t) = 蟺胃(t) 位 . Hence, E is actually putting more measure on 位 that can achieve more improvement. 5. Experiment In this section, we designed our experiment to answer the following questions: How to implement RL algorithms based on GDI step by step (see Sec. 5.1)? Whether the proposed methods can outperform all prior SOTA RL algorithms in both sample efficiency and final performance (see Tab. 1)? How to construct a behavior policy space (see Sec. 5.1)? What s the impact of the size of the index set 螞, namely, whether the data richness can be improved via increasing the capacity and diversity (see Fig. 3)? How to design a data distribution optimization operator (e.g., a meta-controller) to tackle the exploration and exploitation trade-off (see Sec. 5.1)? How much performance would be degraded without data distribution optimization, namely no meta-controller (see Fig. 3)? 5.1. Practical Implementation Based on GDI Policy Space Construction To illustrate the effectiveness of GDI, we give two representative practical implementations of GDI, namely GDI-I3 and GDI-H3, the capacity of whose behavior policy space is larger than Agent57. Let 螞 = {位|位 = (蟿1, 蟿2, 系)}. The behavior policy belongs to a soft entropy policy space including policies ranging from very exploratory to purely exploitative and thereby the optimization of the sampling distribution of behavior policy P螞 can be reframed into the trade-off between exploration and exploitation. We define the behavior policy 蟺胃位 as 蟺胃位 = 系 Softmax A胃1 +(1 系) Softmax A胃2 wherein 蟺胃位 constructs a parameterized policy space, and the index set 螞 is constructed by 位 = (蟿1, 蟿2, 系). For GDII3, A胃1 and A胃2 are identical advantage functions (Wang et al., 2016). Namely, they are estimated by an isomorphic family of trainable variables 胃. The learning policy is also 蟺胃位. For GDI-H3, A胃1 and A胃2 are different, and they are estimated by two different families of trainable variables (i.e., 胃1 = 胃2). Since GDI needn t assume A胃1 and A胃2 are learned from the same MDP, we adopt two kinds of reward shaping to learn A胃1 and A胃2 respectively, which can see App. G. More implementation details see App. D. Data Distribution Optimization Operator The operator E, which optimizes P螞, is achieved by Multi-Arm Bandits (Sutton & Barto, 2018, MAB), where assumption (2) holds naturally. For more details, can see App. E. Reinforcement Learning Optimization Operator The operator T is achieved by policy gradient, V-Trace and Re Trace (Espeholt et al., 2018; Munos et al., 2016) (see App. B), which meets Theorem 1 by first-order optimization. 5.2. Summary of Results Experimental Details Recommended by (Badia et al., 2020a; Toromanoff et al., 2019), we construct an evaluation Generalized Data Distribution Iteration GDI-I3 GDI-H3 w/o GDI-I1 0.0 Relative Mean HNS Relative Median HNS Relative Mean HNS Relative Median HNS (a) Performance of Control Groups (b) t-SNE of GDI-I3 (c) t-SNE of GDI-I1 Figure 3. Figures of ablation study. (a) shows how the ablation groups (see App. L) perform compared with the baseline (i.e., GDI-I3). Noting that the performance has been normalized by GDI-I3 (e.g., Mean HNS of GDI-I1 Mean HNS of GDI-I3 ), and w/o E means without the meta-controller. (b) and (c) illustrate the data richness (e.g., Seen Conditions All Conditions ) of GDI-I1 and GDI-I3 via t-SNE of visited states (see App. L.2). system to highlight the superiority of GDI from multiple levels (see App. H). Furthermore, to avoid any issues that aggregated metrics may have, App. K provides full learning curves for all games and detailed comparison tables of raw and normalized scores. More details see App. F. Effectiveness of GDI The aggregated results across games are reported in Tab. 1. Our agents obtain the highest mean HNS with the minimal training frames, leading to the best learning efficiency. Furthermore, our agents have surpassed 22 human world records within 38 playtime days, which is 500 times more efficient than Agent57. Extensive experiments have demonstrated the fact that either GDII3 or GDI-H3 could obtain superhuman performance with remarkable learning efficiency. Discussion of the Results Agent57 could obtain the highest median HNS but relatively lower learning efficiency via i) a relatively larger behavior policy space and a metacontroller ii) intrinsic rewards and nearly unlimited data. However, Agent57 fails to distinguish the value of data and thereby collects many useless/low-value samples. Other algorithms are struggling to match our performance. 5.3. Ablation Study Ablation Study Design In the ablation study, we further investigate the effects of several properties of GDI. In the first experiment, we demonstrate the effectiveness of the capacity and diversity control via exploring how different sizes of the index set of the policy space influence the performance and data richness. In the second experiment, we highlight the effectiveness of data distribution optimization operator E via ablating E. More details can see App. L. Effectiveness of Capacity and Diversity Control In this experiment, we firstly implement a GDI-I1 algorithm with Boltzmann policy space (i.e., 蟺胃位 = Softmax( A 蟿 )) to explore the impact of the capacity and diversity control. Then, we explore whether the data richness is indeed improved via a case study of t-SNE of GDI-I3 and GDI-I1. Results are illustrated in Fig. 3, from which we could find the visited states of GDI-I3 are indeed richer than GDI-I1, which concludes its better performance. In the same way, the behavior policy space of GDI-I3 is a sub-space (i.e., 胃1 = 胃2) of that of GDI-H3, leading to further performance improvement. Effectiveness of Data Distribution Optimization From Fig. 3, we could also find that not using a meta-controller (e.g., the index 位 of behavior policy takes a fixed value) will dramatically degrade performance, which confirms the effectiveness of the data distribution optimization and echoes the previous theoretical proof. 6. Conclusion Simultaneously obtaining superior sample efficiency and better final performance is an important and challenging problem in RL. In this paper, we present the first attempt to address this problem from training data distribution control, namely to obtain any desired (e.g., nontrivial) data within limited interactions. To tackle this problem, we firstly cast it into a data distribution optimization problem. Then, we handle this problem via i) explicitly modeling and controlling the diversity of the behavior policies and ii) adaptively tackling the exploration-exploitation trade-off using metalearning. After integrating this process into GPI, we surprisingly find a more general framework GDI and then we give an operation-version of recent SOTA algorithms. Under the guidance of GDI, we propose feasible implementations and Generalized Data Distribution Iteration achieve the superhuman final performance with remarkable learning efficiency within only 38 playtime days. Acknowledgements We are grateful for the careful reading and insightful reviews of meta-reviewers and reviewers. Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan, G. On the theory of policy gradient methods: Optimality, approximation, and distribution shift. ar Xiv preprint ar Xiv:1908.00261, 2019. Badia, A. P., Piot, B., Kapturowski, S., Sprechmann, P., Vitvitskyi, A., Guo, D., and Blundell, C. Agent57: Outperforming the atari human benchmark. ar Xiv preprint ar Xiv:2003.13350, 2020a. Badia, A. P., Sprechmann, P., Vitvitskyi, A., Guo, D., Piot, B., Kapturowski, S., Tieleman, O., Arjovsky, M., Pritzel, A., Bolt, A., et al. Never give up: Learning directed exploration strategies. ar Xiv preprint ar Xiv:2002.06038, 2020b. Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253 279, jun 2013. Dadashi, R., Taiga, A. A., Le Roux, N., Schuurmans, D., and Bellemare, M. G. The value function polytope in reinforcement learning. In International Conference on Machine Learning, pp. 1486 1495. PMLR, 2019. Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. Go-explore: a new approach for hardexploration problems. ar Xiv preprint ar Xiv:1901.10995, 2019. Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. ar Xiv preprint ar Xiv:1802.01561, 2018. Fan, J. A review for deep reinforcement learning in atari: Benchmarks, challenges, and solutions. Co RR, abs/2112.04145, 2021. URL https://arxiv.org/ abs/2112.04145. Ghosh, D., Rahme, J., Kumar, A., Zhang, A., Adams, R. P., and Levine, S. Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in Neural Information Processing Systems, 34, 2021. Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. ar Xiv preprint ar Xiv:1801.01290, 2018. Hafner, D., Lillicrap, T., Norouzi, M., and Ba, J. Mastering atari with discrete world models. ar Xiv preprint ar Xiv:2010.02193, 2020. Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., Horgan, D., Piot, B., Azar, M., and Silver, D. Rainbow: Combining improvements in deep reinforcement learning. ar Xiv preprint ar Xiv:1710.02298, 2017. Hessel, M., Danihelka, I., Viola, F., Guez, A., Schmitt, S., Sifre, L., Weber, T., Silver, D., and van Hasselt, H. Muesli: Combining improvements in policy optimization. ar Xiv preprint ar Xiv:2104.06159, 2021. Howard, R. A. Dynamic programming and markov processes. John Wiley, 1960. Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M., Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning, I., Simonyan, K., et al. Population based training of neural networks. ar Xiv preprint ar Xiv:1711.09846, 2017. Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K., Erhan, D., Finn, C., Kozakowski, P., Levine, S., et al. Model-based reinforcement learning for atari. ar Xiv preprint ar Xiv:1903.00374, 2019. Kakade, S. and Langford, J. Approximately optimal approximate reinforcement learning. In In Proc. 19th International Conference on Machine Learning. Citeseer, 2002. Kapturowski, S., Ostrovski, G., Quan, J., Munos, R., and Dabney, W. Recurrent experience replay in distributed reinforcement learning. In International conference on learning representations, 2018. Kumar, A., Gupta, A., and Levine, S. Discor: Corrective feedback in reinforcement learning via distribution correction. ar Xiv preprint ar Xiv:2003.07305, 2020. Machado, M. C., Bellemare, M. G., Talvitie, E., Veness, J., Hausknecht, M. J., and Bowling, M. Revisiting the arcade learning environment: Evaluation protocols and open problems for general agents. Journal of Artificial Intelligence Research, 61:523 562, 2018. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. Human-level control through deep reinforcement learning. nature, 518(7540): 529 533, 2015. Generalized Data Distribution Iteration Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and Kavukcuoglu, K. Asynchronous methods for deep reinforcement learning. In International conference on machine learning, pp. 1928 1937. PMLR, 2016. Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. Safe and efficient off-policy reinforcement learning. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R. (eds.), Advances in Neural Information Processing Systems 29, pp. 1054 1062. Curran Associates, Inc., 2016. Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. Curiosity-driven exploration by self-supervised prediction. Co RR, abs/1705.05363, 2017. URL http:// arxiv.org/abs/1705.05363. Pedersen, C. L. Re: Human-level performance in 3d multiplayer games with population-based reinforcement learning. Science, 2019. Schaul, T., Quan, J., Antonoglou, I., and Silver, D. Prioritized experience replay. ar Xiv preprint ar Xiv:1511.05952, 2015. Schmidhuber, S. H. J. Long short-term memory. Neural Computation., 1997. Schmitt, S., Hessel, M., and Simonyan, K. Off-policy actorcritic with shared experience replay. In International Conference on Machine Learning, pp. 8545 8554. PMLR, 2020. Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T., et al. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588(7839): 604 609, 2020. Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. Trust region policy optimization. In International conference on machine learning, pp. 1889 1897, 2015. Schulman, J., Chen, X., and Abbeel, P. Equivalence between policy gradients and soft q-learning. ar Xiv preprint ar Xiv:1704.06440, 2017a. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization algorithms. ar Xiv preprint ar Xiv:1707.06347, 2017b. Sutton, R. S. Learning to predict by the methods of temporal differences. Machine learning, 3(1):9 44, 1988. Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. MIT press, 2018. Toromanoff, M., Wirbel, E., and Moutarde, F. Is deep reinforcement learning really superhuman on atari? leveling the playing field. ar Xiv preprint ar Xiv:1908.04683, 2019. Tsividis, P. A., Pouncy, T., Xu, J. L., Tenenbaum, J. B., and Gershman, S. J. Human learning in atari. In 2017 AAAI Spring Symposium Series, 2017. Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575 (7782):350 354, 2019. Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., and Freitas, N. Dueling network architectures for deep reinforcement learning. In International conference on machine learning, pp. 1995 2003, 2016. Watkins, C. J. and Dayan, P. Q-learning. Machine learning, 8(3-4):279 292, 1992. Watkins, C. J. C. H. Learning from delayed rewards. King s College, Cambridge United Kingdom, 1989. Williams, R. J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine learning, 8(3-4):229 256, 1992. Xiao, C., Shi, H., Fan, J., and Deng, S. CASA: A bridge between gradient of policy improvement and policy evaluation. Co RR, abs/2105.03923, 2021a. URL https://arxiv.org/abs/2105.03923. Xiao, C., Shi, H., Fan, J., and Deng, S. An entropy regularization free mechanism for policy-based reinforcement learning. Co RR, abs/2106.00707, 2021b. URL https://arxiv.org/abs/2106.00707. Generalized Data Distribution Iteration A. Summary of Notation and Abbreviation In this section, we briefly summarize some common notations and abbreviations in this paper for the convenience of readers, which are illustrated in Tab. 2 and Tab. 3. Table 2. Summary of Notation Notation Description s state a action S set of all states A set of all actions probability simplex 碌 behavior policy 蟺 target policy Gt cumulative discounted reward or return at t the states visitation distribution of 蟺 with the initial state distribution 蟻0 J蟺 the expectation of the returns with the states visitation distribution of 蟺 V 蟺 the state value function of 蟺 Q蟺 the state-action value function of 蟺 纬 discount-rate parameter 未t temporal-difference error at t 螞 set of indexes 位 one index in 螞 P螞 one probability measure on 螞 螛 set of all possible parameter values 胃 one parameter value in 螛 胃位 a subset of 胃, indicates the parameter in 胃 being used by the index 位 X set of samples x one sample in X D set of all possible states visitation distributions E the data distribution optimization operator T the RL algorithm optimization operator LE the loss function of E to be maximized, calculated by the samples set X LE expectation of LE, with respect to each sample x X LT the loss function of T to be maximized, calculated by the samples set X LT expectation of LT , with respect to each sample x X Generalized Data Distribution Iteration Table 3. Summary of Abbreviation Abbreviation Description Sec. Section (Badia et al., 2020a) Figs. Figures (Hafner et al., 2020) Fig. Figure (Badia et al., 2020a) Eq. Equation (Badia et al., 2020a) Tab. Table (Badia et al., 2020a) App. Appendix (Badia et al., 2020a) SOTA State-of-The-Art (Badia et al., 2020a) RL Reinforcement Learning (Sutton & Barto, 2018) DRL Deep Reinforcement Learning (Sutton & Barto, 2018) GPI Generalized Policy Iteration (Sutton & Barto, 2018) PG Policy Gradient (Sutton & Barto, 2018) AC Actor Critic (Sutton & Barto, 2018) ALE Atari Learning Environment (Bellemare et al., 2013) HNS Human Normalized Score (Bellemare et al., 2013) HWRB Human World Records Breakthrough HWRNS Human World Records Normalized Score SABER Standardized Atari BEnchmark for RL (Toromanoff et al., 2019) CHWRNS Capped Human World Records Normalized Score WLOG Without Loss of Generality w/o Without Generalized Data Distribution Iteration B. Background on RL The RL problem can be formulated by a Markov decision process (Howard, 1960, MDP) defined by the tuple (S, A, p, r, 纬, 蟻0). Considering a discounted episodic MDP, the initial state s0 will be sampled from the distribution denoted by 蟻0(s) : S (S). At each time t, the agent choose an action at A according to the policy 蟺(at|st) : S (A) at state st S. The environment receives the action, produces a reward rt r(s, a) : S A R and transfers to the next state st+1 submitted to the transition distribution p (s | s, a) : S A (S). The process continues until the agent reaches a terminal state or a maximum time step. Define return Gt = P k=0 纬krt+k, state value function V 蟺(st) = E P k=0 纬krt+k|st , state-action value function Q蟺(st, at) = E P k=0 纬krt+k|st, at , and advantage function A蟺(st, at) = Q蟺(st, at) V 蟺(st), wherein 纬 (0, 1) is the discount factor. The connections between V 蟺 and Q蟺 is given by the Bellman equation, T Q蟺(st, at) = E 蟺[rt + 纬V 蟺(st+1)], where V 蟺(st) = E蟺[Q蟺(st, at)]. The goal of reinforcement learning is to find the optimal policy 蟺 that maximizes the expected sum of discounted rewards, denoted by J (Sutton & Barto, 2018): 蟺 = argmax 蟺 J蟺(蟿) = argmax 蟺 E蟺 [Gt] = argmax 蟺 E蟺[ k=0 纬krt+k] Model-free reinforcement learning (MFRL) has made many impressive breakthroughs in a wide range of Markov decision processes (Vinyals et al., 2019; Pedersen, 2019; Badia et al., 2020a, MDP). MFRL mainly consists of two categories, valued-based methods (Mnih et al., 2015; Hessel et al., 2017) and policy-based methods (Schulman et al., 2015; 2017b; Espeholt et al., 2018). Value-based methods learn state-action values and select actions according to these values. One merit of value-based methods is to accurately control the exploration rate of the behavior policies by some trivial mechanism, such like 系-greedy. The drawback is also apparent. The policy improvement of valued-based methods totally depends on the policy evaluation. Unless the selected action is changed by a more accurate policy evaluation, the policy won t be improved. So the policy improvement of each policy iteration is limited, which leads to a low learning efficiency. Previous works equip valued-based methods with many appropriated designed structures, achieving a more promising learning efficiency (Wang et al., 2016; Schaul et al., 2015; Kapturowski et al., 2018). In practice, value-based methods maximize J by policy iteration (Sutton & Barto, 2018). The policy evaluation is fulfilled by minimizing E蟺[(G Q蟺)2], which gives the gradient ascent direction E蟺[(G Q蟺) Q蟺]. The policy improvement is usually achieved by 系-greedy. Q-learning is a typical value-based methods, which updates the state-action value function Q(s, a) with Bellman Optimality Equation (Watkins & Dayan, 1992): 未t = rt+1 + 纬 arg maxa Q (st+1, a) Q (st, at) Q (st, at) Q (st, at) + 伪未t wherein 未t is the temporal difference error (Sutton, 1988), and 伪 is the learning rate. A refined structure design of Q蟺 is achieved by (Wang et al., 2016). It estimates Q蟺 by a summation of two separated networks, Q蟺 = A蟺 + V 蟺, which has been widely studied in (Wang et al., 2016; Xiao et al., 2021a). Policy gradient (Williams, 1992, PG) methods is an outstanding representative of policy-based RL algorithms, which directly parameterizes the policy and updates through optimizing the following objective: t=0 log 蟺胃 (at | st) R(蟿) wherein R(蟿) is the cumulative return on trajectory 蟿. In PG method, policy improves via ascending along the gradient of Generalized Data Distribution Iteration the above equation, denoted as policy gradient: 胃J (蟺胃) = E 蟿 蟺胃 t=0 胃 log 蟺胃 (at | st) R(蟿) One merit of policy-based methods is that they incorporate a policy improvement phase every training step, suggesting a higher learning efficiency than value-based methods. Nevertheless, policy-based methods easily fall into a suboptimal solution, where the entropy drops to 0 (Haarnoja et al., 2018). The actor-critic methods introduce a value function as the baseline to reduce the variance of the policy gradient (Mnih et al., 2016), but maintain the other characteristics unchanged. Actor-Critic (Sutton & Barto, 2018, AC) reinforcement learning updates the policy gradient with an value-based critic, which can reduce variance of estimates and thereby ensure more stable and rapid optimization. 胃J (胃) = E蟺 t=0 蠄t 胃 log 蟺胃 (at | st) wherein 蠄t is the critic to guide the improvement directions of policy improvement, which can be the state-action value function Q蟺 (st, at), the advantage function A蟺 (st, at) = Q蟺 (st, at) V 蟺(st). B.1. Retrace When large scale training is involved, the off-policy problem is inevitable. Denote 碌 to be the behavior policy, 蟺 to be the target policy, and ct = min{ 蟺t 碌t , c} to be the clipped importance sampling. For brevity, denote c[t:t+k] = Qk i=0 ct+i. Re Trace (Munos et al., 2016) estimates Q(st, at) by clipped per-step importance sampling Q 蟺(st, at) = E碌[Q(st, at) + X k 0 纬kc[t+1:t+k]未Q t+k Q], where 未Q t Q def = rt + 纬Q(st+1, at+1) Q(st, at). The above operator is a contraction mapping, and Q converges to Q 蟺Re T race that corresponds to some 蟺Re T race. B.2. Vtrace Policy-based methods maximize J by policy gradient. It s shown (Sutton & Barto, 2018) that J = E蟺[G log 蟺]. When involved with a baseline, it becomes an actor-critic algorithm such as J = E蟺[(G V 蟺) log 蟺], where V 蟺 is optimized by minimizing E蟺[(G V 蟺)2], i.e. gradient ascent direction E蟺[(G V 蟺) V 蟺]. IMPALA (Espeholt et al., 2018) introduces V-Trace off-policy actor-critic algorithm to correct for the discrepancy between target policy and behavior policy. Denote 蟻t = min{ 蟺t 碌t , 蟻}. V-Trace estimates V (st) by V 蟺(st) = E碌[V (st) + X k 0 纬kc[t:t+k 1]蟻t+k未V t+k V ], where 未V t V def = rt + 纬V (st+1) V (st). If c 蟻, the above operator is a contraction mapping, and V converges to V 蟺 that corresponds to 蟺(a|s) = min { 蟻碌(a|s), 蟺(a|s)} P b A min { 蟻碌(b|s), 蟺(b|s)}. The policy gradient is given by E碌 蟻t(rt + 纬V 蟺(st+1) V (st)) log 蟺 . Generalized Data Distribution Iteration C. Theoretical Proof For a monotonic sequence of numbers which satisfies a = x0 < x1 < < xn < b, we call it a split of interval [a, b]. Lemma 1 (Discretized Upper Triangular Transport Inequality for Increasing Functions in R1). Assume 碌 is a continuous probability measure supported on [0, 1]. Let 0 = x0 < x1 < < xn < 1 to be any split of [0, 1]. Define 碌(xi) = 碌([xi, xi+1)). Define 尾(xi) = 碌(xi) exp(xi)/Z, Z = X i 碌(xi) exp(xi). Then there exists a probability measure 纬 : {xi}i=0,...,n {xi}i=0,...,n [0, 1], s.t. j 纬(xi, yj) = 碌(xi), i = 0, . . . , n; i 纬(xi, yj) = 尾(yj), j = 0, . . . , n; 纬(xi, yj) = 0, i > j. Then for any monotonic increasing function f : {xi}i=0,...,n R, we have E 碌[f] E 尾[f]. Proof of Lemma 1. For any couple of measures (碌, 尾), we say the couple satisfies Upper Triangular Transport Condition (UTTC), if there exists 纬 s.t. (3) holds. Given 0 = x0 < x1 < < xn < 1, we prove the existence of 纬 by induction. 碌([xi, xi+1)), i < m, 碌([xi, 1)), i = m, Define 尾m(xi) = 碌m(xi) exp(xi)/Zm, Zm = X i 碌m(xi) exp(xi). Noting if we prove that ( 碌m, 尾m) satisfies UTTC for m = n, it s equivalent to prove the existence of 纬 in (3). To clarify the proof, we use xi to represent the point for 碌-axis in coupling and yj to represent the point for 尾-axis, but they are actually identical, i.e. xi = yj when i = j. When m = 0, it s obvious that ( 碌0, 尾0) satisfies UTTC, as 纬0(xi, yj) = ( 1, i = 0, j = 0, Assume UTTC holds for m, i.e. there exists 纬m s.t. ( 碌m, 尾m) satisfies UTTC, we want to prove it also holds for m + 1. By definition of 碌m, we have 碌m(xi) = 碌m+1(xi), i < m, 碌m(xi) = 碌m+1(xi) + 碌m+1(xi+1), i = m, 碌m(xm+1) = 碌m(xi) = 碌m+1(xi) = 0, i > m + 1. Generalized Data Distribution Iteration By definition of 尾m, we have 尾m(xi) = 尾m+1(xi) Zm+1 Zm , i < m, 尾m(xi) = 尾m+1(xi) + 尾m+1(xi+1) exp(xi xi+1) Zm+1 Zm , i = m, 尾m(xm+1) = 尾m(xi) = 尾m+1(xi) = 0, i > m + 1. Multiplying 纬m by Zm Zm+1 , we get the following UTTC Zm Zm+1 纬m(xi, yj) = Zm Zm+1 碌m+1(xi), i < m; Zm Zm+1 纬m(xi, yj) = Zm Zm+1 ( 碌m+1(xi) + 碌m+1(xi+1)), i = m; Zm Zm+1 纬m(xi, yj) = 0, i = m + 1; Zm Zm+1 纬m(xi, yj) = 碌m+1(xi) = 0, i > m + 1; Zm Zm+1 纬m(xi, yj) = 尾m+1(yj), j < m; Zm Zm+1 纬m(xi, yj) = 尾m+1(yi) + 尾m+1(yj+1) exp(yj yj+1), j = m; Zm Zm+1 纬m(xi, yj) = 0, j = m + 1; Zm Zm+1 纬m(xi, yj) = 尾m+1(yj) = 0, j > m + 1; Zm Zm+1 纬m(xi, yj) = 0, i > j. By definition of Zm, Zm+1 Zm = 碌m+1(xm+1)(exp(xm+1) exp(xm)) > 0, (4) so we have Zm Zm+1 碌m+1(xi) < 碌m+1(xi). Noticing that 尾m+1(yi+1) exp(yi yi+1) < 尾m+1(yi+1) and Zm Zm+1 碌m+1(xi) < 碌m+1(xi), we decompose the measure of Zm Zm+1 纬m at (xi, ym) to (xi, ym), (xi, ym+1) for i = 0, . . . , m 1, and complement a positive measure at (xi, ym+1) to make up the difference between Zm Zm+1 碌m+1(xi) and 碌m+1(xi). For i = m, we decompose the measure at (xm, ym) to (xm, ym), (xm, ym+1), (xm+1, ym+1) and also complement a proper positive measure. Generalized Data Distribution Iteration Now we define 纬m+1 by 纬m+1(xi, yj) = Zm Zm+1 纬m(xi, yj), i < m and j < m, 纬m+1(xi, yj) = Zm Zm+1 纬m(xi, yj) + Zm+1 Zm Zm+1 碌m+1(xi) 尾m+1(yj) 尾m+1(yj) + 尾m+1(yj+1) , i < m and j = m, 纬m+1(xi, yj) = Zm Zm+1 纬m(xi, yj) + Zm+1 Zm Zm+1 碌m+1(xi) 尾m+1(yj+1) 尾m+1(yj) + 尾m+1(yj+1) , i < m and j = m + 1, 纬m+1(xi, yj) = 0, i > j or i > m + 1 or j > m + 1, 纬m+1(xm, ym) = u, 纬m+1(xm, ym+1) = v, 纬m+1(xm+1, ym+1) = w, where we assume u, v, w to be the solution of the following equations u + v + w = 碌m+1(xm) + 碌m+1(xm+1), w u + v = 碌m+1(xm+1) u = 尾m+1(xm+1) It s obvious that j 纬m+1(xi, yj) = 碌m+1(xi) = 0, i > m + 1, i 纬m+1(xi, yj) = 尾m+1(yj) = 0, j > m + 1, 纬(xi, yj) = 0, i > j. For j < m, since P i Zm Zm+1 纬m(xi, yj) = 尾m+1(yj), we have i 纬m+1(xi, yj) = 尾m+1(yj), j < m. For i < m, since P j Zm Zm+1 纬m(xi, yj) = Zm Zm+1 碌m+1(xi) < 碌m+1(xi), we add Zm+1 碌m+1(xi) 尾m+1(ym) 尾m+1(ym)+ 尾m+1(ym+1), Zm+1 Zm Zm+1 碌m+1(xi) 尾m+1(ym+1) 尾m+1(ym)+ 尾m+1(ym+1) to 纬m+1(xi, ym), 纬m+1(xi, ym+1), respectively. So we have X j 纬m+1(xi, yj) = 碌m+1(xi), i < m. For i = m, m + 1, since assumption (5) holds, we have u + v + w = 碌m+1(xm) + 碌m+1(xm+1), w u+v = 碌m+1(xm+1) 碌m+1(xm) , it s obvious that u + v = 碌m+1(xm), w = 碌m+1(xm+1), which is X j 纬m+1(xi, yj) = 碌m+1(xi), i = m, m + 1. Generalized Data Distribution Iteration For j = m, m + 1, we firstly have X i 纬m+1(xi, yj) = X i 纬m+1(xi, yj) X i 纬m+1(xi, yj) j 纬m+1(xi, yj) X j =m,m+1 尾m+1(yj) i 碌m+1(xi) X j =m,m+1 尾m+1(yj) = 1 (1 尾m+1(ym) 尾m+1(ym+1)) = 尾m+1(ym) + 尾m+1(ym+1). By definition of 纬m+1, we know 纬m+1(xi,ym) 纬m(xi,ym) = 尾m+1(xm+1) 尾m+1(xm) for i < m. By assumption (5), we know v+w u = 尾m+1(xm+1) 尾m+1(xm) . Combining three equations above together, we have X i 纬m+1(xi, yj) = 尾m+1(yj), j = m, m + 1. Now we only need to prove assumption (5) holds. With linear algebra, we solve (5) and have u = w 1 + 碌m+1(xm+1) 碌m+1(xm) 1 + 尾m+1(xm+1) 尾m+1(xm) 碌m+1(xm+1) 碌m+1(xm) 1 + 尾m+1(xm+1) w = ( 碌m+1(xm) + 碌m+1(xm+1)) 碌m+1(xm+1) 碌m+1(xm) 1 + 尾m+1(xm+1) 1 + 碌m+1(xm+1) 碌m+1(xm) 1 + 尾m+1(xm+1) It s obvious that u, w 0. v 0 also holds, because 尾m+1(xm) 碌m+1(xm+1) 碌m+1(xm) = 碌m+1(xm+1) exp(xm+1) 碌m+1(xm) exp(xm) 碌m+1(xm+1) = 碌m+1(xm+1) 碌m+1(xm) (exp(xm+1 xm) 1) 0. So we can find a proper solution of assumption (5). So 纬m+1 defined above satisfies UTTC for ( 碌m+1, 尾m+1). By induction, for any 0 = x0 < x1 < < xn < 1, there exists 纬 s.t. UTTC (3) holds for ( 碌, 尾). Then for any monotonic increasing function, since 纬(xi, yj) = 0 when i > j, we know 纬(xi, yj)f(xi) 纬(xi, yj)f(yj). Hence we have E 碌[f] = X i 碌(xi)f(xi) = X j 纬(xi, yj)f(xi) j 纬(xi, yj)f(yj) i 纬(xi, yj)f(yj) j 尾(yj)f(yj) = E 尾[f]. Generalized Data Distribution Iteration Lemma 2 (Discretized Upper Triangular Transport Inequality for Co-Monotonic Functions in R1). Assume 碌 is a continuous probability measure supported on [0, 1]. Let 0 = x0 < x1 < < xn < 1 to be any split of [0, 1]. Let f, g : {xi}i=0,...,n R to be two co-monotonic functions that satisfy (f(xi) f(xj)) (g(xi) g(xj)) 0, i, j. Define 碌(xi) = 碌([xi, xi+1)). Define 尾(xi) = 碌(xi) exp(g(xi))/Z, Z = X i 碌(xi) exp(g(xi)). Then we have E 碌[f] E 尾[f]. Proof of Lemma 2. If the Upper Triangular Transport Condition (UTTC) holds for ( 碌, 尾), i.e. there exists a probability measure 纬 : {xi}i=0,...,n {xi}i=0,...,n [0, 1], s.t. j 纬(xi, yj) = 碌(xi), i = 0, . . . , n; i 纬(xi, yj) = 尾(yj), j = 0, . . . , n; 纬(xi, yj) = 0, g(xi) > g(yj), then we finish the proof by E 碌[f] = X i 碌(xi)f(xi) = X j 纬(xi, yj)f(xi) j 纬(xi, yj)f(yj) i 纬(xi, yj)f(yj) j 尾(yj)f(yj) = E 尾[f], where 纬(xi, yj)f(xi) 纬(xi, yj)f(yj) is because of 纬(xi, yj) = 0, g(xi) > g(yj) and (f(xi) f(xj)) (g(xi) g(xj)) 0. Now we only need to prove UTTC holds for ( 碌, 尾). Given 0 = x0 < x1 < < xn < 1, we prove the existence of 纬 by induction. With g to be the transition function in the definition of 尾, we mimic the proof of Lemma 1 and sort (x0, . . . , xn) in the increasing order of g, which is g(xk0) g(xk1) g(xkn). 碌([xki, min{1, xkl| xkl > xki, l m})), i m, xki = min{xkl| l m}, 碌([0, min{1, xkl| xkl > xki, l m})), i m, xki = min{xkl| l m}, Define 尾m(xki) = 碌m(xki) exp(g(xki))/Zm, Zm = X i 碌m(xki) exp(g(xki)). To clarify the proof, we use xki to represent the point for 碌-axis in coupling and ykj to represent the point for 尾-axis, but they are actually identical, i.e. xki = ykj when i = j. Generalized Data Distribution Iteration When m = 0, it s obvious that ( 碌0, 尾0) satisfies UTTC, as 纬0(xki, ykj) = ( 1, i = 0, j = 0, Assume UTTC holds for m, i.e. there exists 纬m s.t. ( 碌m, 尾m) satisfies UTTC, we want to prove it also holds for m + 1. When xkm+1 > min{xkl| l m}, let xk = max{xkl| xkl < xkm+1, l m} to be the closest left neighbor of xkm+1 in {xkl| l m}. Then we have 碌m(xk ) = 碌m+1(xk ) + 碌m+1(xkm+1). When xkm+1 < min{xkl| l m}, let xk = min{xkl| l m} to be the leftmost point in {xkl| l m}. Then we have 碌m(xk ) = 碌m+1(xk ) + 碌m+1(xkm+1). In either case, we always have 碌m(xk ) = 碌m+1(xk ) + 碌m+1(xkm+1). By definition of 碌m and 尾m, we have 碌m(xki) = 碌m+1(xki), i m, ki = k , 碌m(xki) = 碌m+1(xki) + 碌m+1(xkm+1), i m, ki = k , 碌m(xkm+1) = 碌m(xki) = 碌m+1(xki) = 0, i > m + 1, 尾m(xki) = 尾m+1(xki) Zm+1 Zm , i m, ki = k , 尾m(xki) = 尾m+1(xki) + 尾m+1(xkm+1) exp g(xki) g(xkm+1) Zm+1 Zm , i m, ki = k , 尾m(xm+1) = 尾m(xi) = 尾m+1(xi) = 0, i > m + 1. If g(xk ) = g(xkm+1), it s easy to check that 碌m+1(xkm+1) 碌m+1(xk ) = 尾m+1(xkm+1) 尾m+1(xk ) , we can simply define the following 纬m+1 which achieves UTTC for ( 碌m+1, 尾m+1): 纬m+1(xk , ykj) = 纬m(xk , ykj) 碌m+1(xk ) 碌m+1(xk ) + 碌m+1(xkm+1), j m, kj = k , 纬m+1(xkm+1, ykj) = 纬m(xkm+1, ykj) 碌m+1(xkm+1) 碌m+1(xk ) + 碌m+1(xkm+1), j m, kj = k , 纬m+1(xki, yk ) = 纬m(xki, yk ) 尾m+1(yk ) 尾m+1(yk ) + 尾m+1(ykm+1) , i m, ki = k , 纬m+1(xki, ykm+1) = 纬m(xki, ykm+1) 尾m+1(ykm+1) 尾m+1(yk ) + 碌m+1(xkm+1) , i m, ki = k , 纬m+1(xk , yk ) = 纬m(xk , yk ) 碌m+1(xk ) 碌m+1(xk ) + 碌m+1(xkm+1), 纬m+1(xkm+1, ykm+1) = 纬m(xkm+1, ykm+1) 碌m+1(xkm+1) 碌m+1(xk ) + 碌m+1(xkm+1), 纬m+1(xki, ykj) = 0, others. If g(xk ) < g(xkm+1), recalling the proof of Lemma 1, it s crucial to prove inequalities (4) and (6). Inequality (4) guarantees that Zm Zm+1 < 1, so we can shrinkage 纬m entrywise by Zm Zm+1 and add some proper measure at proper points. Inequality (6) guarantees that (xm, ym) can be decomposed to (xm, ym), (xm, ym+1), (xm+1, ym+1). Following the idea, we check that Zm+1 Zm = 碌m+1(xkm+1) exp(g(xkm+1) g(xk )) > 0, 尾m+1(xkm+1) 尾m+1(xk ) 碌m+1(xkm+1) 碌m+1(xk ) = 碌m+1(xkm+1) exp(g(xkm+1)) 碌m+1(xk ) exp(g(xk )) 碌m+1(xkm+1) = 碌m+1(xkm+1) 碌m+1(xk ) exp(g(xkm+1) g(xk )) 1 > 0. Generalized Data Distribution Iteration Replacing xm, xm+1 in the proof of Lemma 1 by xk , xkm+1, we can construct 纬m+1 all the same way as in the proof of Lemma 1. By induction, we prove UTTC for ( 碌, 尾). The proof is done. Theorem 3 (Upper Triangular Transport Inequality for Co-Monotonic Functions in R1). Assume 碌 is a continuous probability measure supported on [0, 1]. Let f, g : [0, 1] R to be two co-monotonic functions that satisfy (f(x) f(y)) (g(x) g(y)) 0, x, y [0, 1]. f is continuous. Define 尾(x) = 碌(x) exp(g(x))/Z, Z = Z [0,1] 碌(x) exp(g(x)). Then we have E碌[f] E尾[f]. Proof of Theorem 3. For 系 > 0, since f is continuous, f is uniformly continuous, so there exists 未 > 0 s.t. |f(x) f(y)| < 系, x, y [0, 1]. We can split [0, 1] by 0 < x0 < x1 < < xn < 1 s.t. xi+1 xi < 未. Define 碌 and 尾 as in Lemma 2. Since xi+1 xi < 未, by uniform continuity and the definition of the expectation, we have |E碌[f] E 碌[f]| < 系, |E尾[f] E 尾[f]| < 系, By Lemma 2, we have E 碌[f] E 尾[f]. So we have E碌[f] < E 碌[f] + 系 E 尾[f] + 系 < E尾[f] + 2系. Since 系 is arbitrary, we prove E碌[f] E尾[f]. Lemma 3 (Discretized Upper Triangular Transport Inequality for Co-Monotonic Functions in Rp). Assume 碌 is a continuous probability measure supported on [0, 1]p. Let 0 = xd 0 < xd 1 < < xd n < 1 to be any split of [0, 1], d = 1, . . . , p. Denote xi def = (x1 i1, . . . , xp ip). Define 碌(xi) = 碌(Q d=1,...,p[xd id, xd id+1)). Let f, g : {xi}i {0,...,n}p R to be two co-monotonic functions that satisfy (f(xi) f(xj)) (g(xi) g(xj)) 0, i, j. Define 尾(xi) = 碌(xi) exp(g(xi))/Z, Z = X i 碌(xi) exp(g(xi)). Then there exists a probability measure 纬 : {xi}i {0,...,n}p {xj}j {0,...,n}p [0, 1], s.t. j 纬(xi, yj) = 碌(xi), i; i 纬(xi, yj) = 尾(yj), j; 纬(xi, yj) = 0, g(xi) > g(yj). Then we have E 碌[f] E 尾[f]. Generalized Data Distribution Iteration Proof of Lemma 3. The proof is almost identical to the proof of Lemma 2, except for the definition of ( 碌m, 尾m) in Rp. Given {xi}i {0,...,n}p, we sort xi in the increasing order of g, which is g(xk0) g(xk1) g(xk(n+1)p 1), where {ki}i {0,...,(n+1)p 1} is a permutation of {i}i {0,...,n}p. For i, j {0, . . . , n}p, we define the partial order i < j on {0, . . . , n}p, if 0 d0 n, s.t. id jd, d < d0 and id0 < jd0. It s obvious that i {0, . . . , n}p, i i, i, j {0, . . . , n}p, i < j j i, i, j, k {0, . . . , n}p, i < j, j < k i < k. We define i = j if id = jd, 0 d n. So we define the partial order relation, and we can further define the min function and the max function on {0, . . . , n}p. Now using this partial order relation, we define k ki,kki,l m} 碌(xk), i m, ki = min{kl| l m}, kki,l m} 碌(xk), i m, ki = min{kl| l m}, With this definition of 碌m, other parts are identical to the proof of Lemma 2. The proof is done. Theorem 4 (Upper Triangular Transport Inequality for Co-Monotonic Functions in Rp). Assume 碌 is a continuous probability measure supported on [0, 1]p. Denote x def = (x1, . . . , xp). Let f, g : [0, 1]p R to be two co-monotonic functions that satisfy (f(x) f(y)) (g(x) g(y)) 0, x, y [0, 1]p. f is continuous. Define 尾(x) = 碌(x) exp(g(x))/Z, Z = Z [0,1]p 碌(x) exp(g(x)). Let f, g : [0, 1]p R to be two co-monotonic functions that satisfy (f(x) f(y)) (g(x) g(y)) 0, x, y [0, 1]p. Then we have E碌[f] E尾[f]. Proof of Theorem 4. For 系 > 0, since f is continuous, f is uniformly continuous, so there exists 未 > 0 s.t. |f(x) f(y)| < 系, x, y [0, 1]p. We can split [0, 1] by 0 < x0 < x1 < < xn < 1 s.t. xi+1 xi < 未/ p. Define xd i = xi, 0 d p. Define 碌 and 尾 as in Lemma 3. Since xi+1 xi < 未/ p, |(x0 i+1, . . . , xp i+1) (x0 i , . . . , xp i )| < 未, by uniform continuity and the definition of the expectation, we have |E碌[f] E 碌[f]| < 系, |E尾[f] E 尾[f]| < 系, By Lemma 3, we have E 碌[f] E 尾[f]. Generalized Data Distribution Iteration So we have E碌[f] < E 碌[f] + 系 E 尾[f] + 系 < E尾[f] + 2系. Since 系 is arbitrary, we prove E碌[f] E尾[f]. Lemma 4 (Performance Difference Lemma). For any policies 蟺, 蟺 and any state s0, we have V 蟺(s0) V 蟺 (s0) = 1 1 纬 Es d蟺 s0Ea 蟺( |s) h A蟺 (s, a) i . Proof. See (Kakade & Langford, 2002). Generalized Data Distribution Iteration D. Algorithm Pseudocode D.1. GDI-I3 In this section, we provide the implementation pseudocode of GDI-I3, which is shown in Algorithm 2. ( A = A胃 (st) , V = V胃 (st) , A = A E蟺[A], Q = A + V. (7) 位 = (蟿1, 蟿2, 系), 蟺胃位 = 系 Softmax A | {z } Exploration +(1 系) Softmax A | {z } Exploitation Generalized Data Distribution Iteration Algorithm 2 GDI-I3 Algorithm. Initialize Parameter Server (PS) and Data Collector (DC). // LEARNER Initialize dpush. Initialize 胃 as Eq. (7) and (8). Initialize count = 0. while True do Load data from DC. Estimate qs and vs by proper off-policy algorithms. (For instance, Re Trace (B.1) for qs and V-Trace (B.2) for vs.) Update 胃 via policy gradient and policy evaluation. if count mod dpush = 0 then Push 胃 to PS. end if count count + 1. end while // ACTOR Initialize dpull, M. Initialize 胃 as Eq. (7) and (8). Initialize {Bm}m=1,...,M and sample 位 as in Algorithm 4. Initialize count = 0, G = 0. while True do Calculate 蟺胃位( |s). Sample a 蟺胃位( |s). s, r, done p( |s, a). G G + r. if done then Update {Bm}m=1,...,M with (位, G) as in Algorithm 4. Send data to DC and reset the environment. G 0. Sample 位 as in Algorithm 4 end if if count mod dpull = 0 then Pull 胃 from PS and update 胃. end if count count + 1. end while Generalized Data Distribution Iteration D.2. GDI-H3 In this section, we provide the implementation pseudocode of GDI-H3, which is shown in Algorithm 3. ( A胃1 = A胃1 (st) , V胃1 = V胃1 (st) , A胃1 = A胃1 E蟺[A胃1], Q胃1 = A胃1 + V胃1. ( A胃2 = A胃2 (st) , V胃2 = V胃2 (st) , A胃2 = A胃2 E蟺[A胃2], Q胃2 = A胃2 + V胃2. 位 = (蟿1, 蟿2, 系), 蟺胃位 = 系 Softmax A胃1 + (1 系) Softmax A胃2 Generalized Data Distribution Iteration Algorithm 3 GDI-H3 Algorithm. Initialize Parameter Server (PS) and Data Collector (DC). // LEARNER Initialize dpush. Initialize 胃 as Eq. (9) and (10). Initialize count = 0. while True do Load data from DC. Estimate qs1, qs2 and vs1, vs2 by proper off-policy algorithms. (For instance, Re Trace (B.1) for qs1, qs2 and V-Trace (B.2) for vs1, vs2.) Update 胃1, 胃2 via policy gradient and policy evaluation, respectively. if count mod dpush = 0 then Push 胃1, 胃2 to PS. end if count count + 1. end while // ACTOR Initialize dpull, M. Initialize 胃1, 胃2 as Eq. (9) and (10). Initialize {Bm}m=1,...,M and sample 位 as in Algorithm 4. Initialize count = 0, G = 0. while True do Calculate 蟺胃位( |s). Sample a 蟺胃位( |s). s, r, done p( |s, a). G G + r. if done then Update {Bm}m=1,...,M with (位, G) as in Algorithm 4. Send data to DC and reset the environment. G 0. Sample 位 as in Algorithm 4 end if if count mod dpull = 0 then Pull 胃 from PS and update 胃. end if count count + 1. end while Generalized Data Distribution Iteration E. Adaptive Controller Formalism In practice, we use a Bandits Controller (BC) to control the behavior sampling distribution adaptively, which has been widely used in prior works (Badia et al., 2020a; Xiao et al., 2021b). More details on Bandits can see (Sutton & Barto, 2018). The whole algorithm is shown in Algorithm 4. As the behavior policy can be parameterized and thereby sampling behaviors from the policy space is equivalent to sampling indexes x from the index set. Let s firstly define a bandit as B = Bandit(mode, l, r, lr, d, acc, ta, to, w, N). mode is the mode of sampling, with two choices, argmax and random, wherein argmax greedily chooses the behaviors with top estimated value from the policy space, and random samples behaviors according to a distribution calculated by Softmax(V ). l is the left boundary of the index set, and each x is clipped to x = max{x, l}. r is the right boundary of the index set, and each x is clipped to x = min{x, r}. acc is the accuracy of space to be optimized, where each x is located in the (min{max{x, l}, r} l)/acc th block. tile coding is a representation method of continuous space (Sutton & Barto, 2018), and each kind of tile coding can be uniquely determined by l, r, to and ta, wherein to represents the tile offset and ta represents the accuracy of the tile coding. to is the offset of each tile coding, which represents the relative offset of the basic coordinate system (normally we select the space to be optimized as basic coordinate system). ta is the accuracy of each tile coding, where each x is located in the (min{max{x to, l}, r} l)/ta th tile. Mbtt represents block-to-tile, which is a mapping from the block of the original space to the tile coding space. Mttb represents tile-to-block, which is a mapping from the tile coding space to the block of the original space. w is a vector in R (r l)/ta , which represents the weight of each tile. N is a vector in R (r l)/ta , which counts the number of sampling of each tile. lr is the learning rate. d is an integer, which represents how many candidates is provided by each bandit when sampling. During the evaluation process, we evaluate the value of the ith tile by Vi = PMbtt(blocki) k wk len(Mbtt(blocki)) (11) During the training process, for each sample (x, g), where g is the target value. Since x locates in the jth tile of kth tile_coding, we update B by j = (min{max{x tok, l}, r} l)/tak , wj wj + lr (g Vi) Nj Nj + 1 (12) During the sampling process, we firstly evaluate B by (11) and get (V1, ..., V (r l)/acc ). We calculate the score of ith tile by scorei = Vi 碌({Vj}j=1,..., (r l)/acc ) 蟽({Vj}j=1,..., (r l)/acc ) + c 1 + Ni . (13) For different modes, we sample the candidates by the following mechanism, Generalized Data Distribution Iteration if mode = argmax, find blocks with top-d scores, then sample d candidates from these blocks, one uniformly from a block; if mode = random, sample d blocks with scores as the logits without replacement, then sample d candidates from these blocks, one uniformly from a block; In practice, we define a set of bandits Bm = {Bm}m=1,...,M. At each step, we sample d candidates {cm,i}i=1,...,d from each Bm, so we have a set of m d candidates {cm,i}m=1,...,M;i=1,...,d. Then we sample uniformly from these m d candidates to get x. At last, we transform the selected x to 伪 = {蟿1, 蟿2, 系} by 蟿1,2 = 1 exp(x1,2) 1 and 系 = x3 When we receive (伪, g), we transform 伪 to x by x1,2 = log(1 + 1/蟿1,2), and x3 = 系. Then we update each Bm by (12). Algorithm 4 Bandits Controller for m = 1, ..., M do Sample mode {argmax, random} and other initialization parameters Initialize Bm = Bandit(mode, l, r, lr, d, acc, to, ta, w, N) Ensemble Bm to constitute Bm end for while True do for m = 1, ..., M do Evaluate Bm by (11). Sample candidates cm,1, ..., cm,d from Bm via (13) following its mode. end for Sample x from {cm,i}m=1,...,M;i=1,...,d. Execute x and receive the return G. for m = 1, ..., M do Update Bm with (x, G) by (12). end for end while Generalized Data Distribution Iteration F. Experiment Details The overall training architecture is on the top of the Learner-Actor framework (Espeholt et al., 2018), which supports large-scale training. Additionally, the recurrent encoder with LSTM (Schmidhuber, 1997) is used to handle the partially observable MDP problem (Bellemare et al., 2013). The burn-in technique is adopted to deal with the representational drift (Kapturowski et al., 2018), and we train each sample twice. A complete description of the hyperparameters can see App. G. We employ additional environments to evaluate the scores during training, and the undiscounted episode returns averaged over 32 environments with different seeds have been recorded. Details on relevant evaluation criteria can see App. H. We evaluated all agents on 57 Atari 2600 games from the arcade learning environment (Bellemare et al., 2013, ALE) by recording the average score of the population of agents during training. We have demonstrated our evaluation metrics for ALE in App. H, and we will describe more details in the following. Besides, all the experiment is accomplished using a single CPU with 92 cores and a single Tesla-V100-SXM2-32GB GPU. Noting that episodes will be truncated at 100K frames (or 30 minutes of simulated play) as other baseline algorithms (Hessel et al., 2017; Badia et al., 2020a; Schmitt et al., 2020; Badia et al., 2020b; Kapturowski et al., 2018) and thereby we calculate the mean playtime over 57 games which is called Playtime. In addition to comparing the mean and median human normalized scores (HNS), we also report the performance based on human world records among these algorithms and the related learning efficiency to further highlight the significance of our algorithm. Inspired by (Toromanoff et al., 2019), human world records normalized score (HWRNS) and SABER are better descriptors for evaluating algorithms on human top level on Atari games, which simultaneously give rise to more challenges and lead the related research into a new journey to train the superhuman agent instead of just paying attention to the human average level. Generalized Data Distribution Iteration G. Hyperparameters In this section, we firstly detail the hyperparameters we use to pre-process the environment frames received from the Arcade Learning Environment. The hyperparameters that we used in all experiments are almost the same as Agent57 (Badia et al., 2020a), NGU (Badia et al., 2020b), Mu Zero (Schrittwieser et al., 2020) and R2D2 (Kapturowski et al., 2018). In Tab. 4, we detail these pre-processing hyperparameters. Then we will detail the hyperparameters we used for Atari experiments, which is demonstrated in Tab. 5. Table 4. Atari pre-processing hyperparameters. Hyperparameter Value Random modes and difficulties No Sticky action probability 0.0 Life information Not allowed Image Size (84, 84) Num. Action Repeats 4 Num. Frame Stacks 4 Action Space Full Max episode length 100000 Random noops range 30 Grayscaled/RGB Grayscaled Generalized Data Distribution Iteration Table 5. Hyperparameters for Atari experiments. Parameter Value Num. Frames 200M (2E+8) Replay 2 Num. Environments 160 GDI-I3 Reward Shape log(abs(r) + 1.0) (2 1{r 0} 1{r<0}) GDI-H3 Reward Shape 1 log(abs(r) + 1.0) (2 1{r 0} 1{r<0}) GDI-H3 Reward Shape 2 sign(r) ((abs(r) + 1.0)0.25 1.0) + 0.001 r Reward Clip No Intrinsic Reward No Entropy Regularization No Burn-in 40 Seq-length 80 Burn-in Stored Recurrent State Yes Bootstrap Yes Batch size 64 Discount (纬) 0.997 V -loss Scaling (尉) 1.0 Q-loss Scaling (伪) 10.0 蟺-loss Scaling (尾) 10.0 Importance Sampling Clip c 1.05 Importance Sampling Clip 蟻 1.05 Backbone IMPALA,deep LSTM Units 256 Optimizer Adam Weight Decay Weight Decay Rate 0.01 Weight Decay Schedule Anneal linearly to 0 Learning Rate 5e-4 Warmup Steps 4000 Learning Rate Schedule Anneal linearly to 0 Adam W 尾1 0.9 Adam W 尾2 0.98 Adam W 系 1e-6 Adam W Clip Norm 50.0 Auxiliary Forward Dynamic Task Yes Auxiliary Inverse Dynamic Task Yes Learner Push Model Every N Steps 25 Actor Pull Model Every N Steps 64 Num. Bandits 7 Bandit Learning Rate Uniform([0.05, 0.1, 0.2]) Bandit Tiling Width Uniform([2, 3, 4]) Num. Bandit Candidates 3 Offset of Tile coding Uniform([0, 60]) Accuracy of Tile coding Uniform([2, 3, 4]) Accuracy of Search Range for [1/蟿1,1/蟿2,系] [1.0, 1.0, 0.1] Fixed Selection for [1/蟿1,1/蟿2,系] [1.0,0.0,1.0] Bandit Search Range for 1/蟿1 [0.0, 50.0] Bandit Search Range for 1/蟿2 [0.0, 50.0] Bandit Search Range for 系 [0.0, 1.0] Generalized Data Distribution Iteration H. Evaluation Metrics for ALE In this section, we will mainly introduce the evaluation metrics in ALE, including those that have been commonly used by previous works like the raw score and the normalized score over all the Atari games based on human average score baseline, and some novel evaluation criteria for the superhuman Atari benchmark such as the normalized score based on human world records, learning efficiency, and human world record breakthrough. For the summary of benchmark results on these evaluation metrics can see App. J. For more details on these evaluation metrics, we refer to see (Fan, 2021). H.1. Raw Score Raw score refers to using tables (e.g., Table of Scores) or figures (e.g., Training Curve) to show the total scores of RL algorithms on all Atari games, which can be calculated by the sum of the undiscounted reward of the gth game of Atari using algorithm i as follows: Gg,i = Est d蟺 蟻0E蟺 k=0 rt+k|st , g [1, 57] (14) As Bellemare et al. (2013) firstly put it, raw score over the whole 57 Atari games can reflect the performance and generality of RL agents to a certain extent. However, this evaluation metric has many limitations: 1. It is difficult to compare the performance of the two algorithms directly. 2. Its value is easily affected by the score scale. For example, the score scale of Pong is [-21,21], but that of Chopper Command is [0,999900], so the Chopper Command will dominate the mean score of those games. In recent RL advances, this metric is used to avoid any issues that aggregated metrics may have (Badia et al., 2020a). Furthermore, this paper used these metrics to prove whether the RL agents have surpassed the human world records, which will be introduced in detail later. H.2. Normalized Scores To handle the drawbacks of the raw score, some methods (Bellemare et al., 2013; Mnih et al., 2015) proposed the normalized score. The normalized score of the gth game of Atari using algorithm i can be calculated as follows: Zg,i = Gg,i Gg,base Gg,reference Gg,base (15) As Bellemare et al. (2013) put it, we can compare games with different scoring scales by normalizing scores, which makes the numerical values become comparable. In practice, we can make Gg,base = rg,min and Gg,reference = rg,max, where [rg,min, rg,max] is the score scale of the gth game. Then Equ. (15) becomes Zg,i = Gg,i rg,min ri,max rg,min , which is a Min-Max Scaling and thereby Zg,i [0, 1] become comparable across the 57 games. It seems this metric can be served to compare the performance between two different algorithms. However, the Min-Max normalized score fail to intuitively reflect the gap between the algorithm and the average level of humans. Thus, we need a human baseline normalized score. H.2.1. HUMAN AVERAGE SCORE BASELINE As we mentioned above, recent reinforcement learning advances (Badia et al., 2020a;b; Kapturowski et al., 2018; Ecoffet et al., 2019; Schrittwieser et al., 2020; Hessel et al., 2021; 2017) are seeking agents that can achieve superhuman performance. Thus, we need a metric to intuitively reflect the level of the algorithms compared to human performance. Since being proposed by (Bellemare et al., 2013), the Human Normalized Score (HNS) is widely used in the RL research(Machado et al., 2018). HNS can be calculated as follows: HNSg,i = Gg,i Gg,random Gg,human average Gg,random (16) Generalized Data Distribution Iteration wherein g denotes the gth game of Atari, i represents the algorithm i, Gg,human average represents the human average score baseline (Toromanoff et al., 2019), and Gg,random represents the performance of a random policy. Adopting HNS as an evaluation metric has the following advantages: 1. Intuitive comparison with human performance. HNSg,i 100% means algorithm i have surpassed the human average performance in game g. Therefore, we can directly use HNS to reflect which games the RL agents have surpassed the average human performance. 2. Performance across algorithms become comparable. Like Max-Min Scaling, the human normalized score can also make two different algorithms comparable. The value of HNSg,i represents the degree to which algorithm i surpasses the average level of humans in game g. Mean HNS represents the mean performance of the algorithms across the 57 Atari games based on the human average score. However, it is susceptible to interference from individual high-scoring games like the hard-exploration problems in Atari (Ecoffet et al., 2019). While taking it as the only evaluation metric, Go-Explore(Ecoffet et al., 2019) has achieved SOTA compared to Agent57(Badia et al., 2020a), NGU(Badia et al., 2020b), R2D2(Kapturowski et al., 2018). However, Go-Explore fails to handle many other games in Atari like Demon Attack, Breakout, Boxing, Phoenix. Additionally, Go-Explore fails to balance the trade-off between exploration and exploitation, which makes it suffer from the low sample efficiency problem, which will be discussed later. Median HNS represents the median performance of the algorithms across the 57 Atari games based on the human average score. Some methods (Schrittwieser et al., 2020; Hessel et al., 2021) have adopted it as a more reasonable metric for comparing performance between different algorithms. The median HNS has overcome the interference from individual high-scoring games. However, As far as we can see, there are at least two problems while only referring to it as the evaluation metrics. First of all, the median HNS only represents the mediocre performance of an algorithm. How about the top performance? One algorithm (Hessel et al., 2021) can easily achieve high median HNS, but at the same time obtain a poor mean HNS by adjusting the hyperparameters of algorithms for games near the median score. It shows that these metrics can show the generality of the algorithms but fail to reflect the algorithm s potential. Moreover, adopting these metrics will urge us to pursue rather mediocre methods. In practice, we often use mean HNS or median HNS to show the final performance or generality of an algorithm. Dispute upon whether the mean value or the median value is more representative to show the generality and performance of the algorithms lasts for several years (Mnih et al., 2015; Hessel et al., 2017; Hafner et al., 2020; Hessel et al., 2021; Bellemare et al., 2013; Machado et al., 2018). To avoid any issues that aggregated metrics may have, we advocate calculating both of them in the final results because they serve different purposes, and we could not evaluate any algorithm via a single one of them. H.2.2. CAPPED NORMALIZED SCORE Capped Normalized Score is also widely used in many reinforcement learning advances (Toromanoff et al., 2019; Badia et al., 2020a). Among them, Agent57 (Badia et al., 2020a) adopts the capped human normalized score (CHNS) as a better descriptor for evaluating general performance, which can be calculated as CHNS = max{min{HNS, 1}, 0}. Agent57 claimed CHNS emphasizes the games that are below the average human performance benchmark and used CHNS to judge whether an algorithm has surpassed the human performance via CHNS 100%. The mean/median CHNS represents the mean/median completeness of surpassing human performance. However, there are several problems while adopting these metrics: 1. CHNS fails to reflect the real performance in specific games. For example, CHNS 100% represents the algorithms surpassed the human performance but failed to reveal how good the algorithm is in this game. From the view of CHNS, Agent57 (Badia et al., 2020a) has achieved SOTA performance across 57 Atari games, but while referring to the mean HNS or median HNS, Agent57 lost to Mu Zero. 2. It is still controversial that using CHNS 100% to represent the superhuman performance because it underestimates the human performance (Toromanoff et al., 2019). 3. CHNS ignores the low sample efficiency problem as other metrics using normalized scores. Generalized Data Distribution Iteration In practice, CHNS can serve as an indicator to reflect whether RL agents can surpass the average human performance. The mean/median CHNS can be used to reflect the generality of the algorithms. H.2.3. HUMAN WORLD RECORDS BASELINE As (Toromanoff et al., 2019) put it, the Human Average Score Baseline potentially underestimates human performance relative to what is possible. To better reflect the performance of the algorithm compared to the human world record, we introduced a complete human world record baseline extended from (Hafner et al., 2020; Toromanoff et al., 2019) to normalize the raw score, which is called the Human World Records Normalized Score (HWRNS), which can be calculated as follows: HWRNSg,i = Gg,i Gg,random Gg,human world records Gg,random (17) wherein g denotes the gth game of Atari, i represents the RL algorithm, Gi,human represents the human world records, and Gg,random represents means the performance of a random policy. Adopting HWRNS as an evaluation metric of algorithm performance has the following advantages: 1. Intuitive comparison with human world records. As HNSg,i 100% means algorithm i have surpassed the human world records performance in game g. We can directly use HWRNS to reflect which games the RL agents have surpassed the human world records, which can be used to calculate the human world records breakthrough in Atari benchmarks. 2. Performance across algorithms become comparable. Like the Max-Min Scaling, the HWRNS can also make two different algorithms comparable. The value of HWRNSg,i represents the degree to which algorithm i has surpassed the human world records in game g. Mean HWRNS represents the mean performance of the algorithms across the 57 Atari games. Compared to mean HNS, mean HWRNS put forward higher requirements on the algorithm. Poor performance algorithms like Sim PLe (Kaiser et al., 2019) will can be directly distinguished from other algorithms. It requires the algorithms to pursue a better performance across all the games rather than concentrate on one or two of them because breaking through any human world record is a huge milestone, which puts forward significant challenges to the performance and generality of the algorithm. For example, current model-free SOTA algorithms on HNS is Agent57 (Badia et al., 2020a), which only acquires 125.92% mean HWRNS, while GDI-H3 obtained 154.27% mean HWRNS and thereby became the new state-of-the-art. Median HWRNS represents the median performance of the algorithms across the 57 Atari games. Compared to Median HNS, median HWRNS also puts forward higher requirements for the algorithm. For example, current SOTA RL algorithms like Muzero (Schrittwieser et al., 2020) obtain much higher median HNS over GDI-H3 but relatively lower median HWRNS. Capped HWRNS Capped HWRNS (also called SABER) is firstly proposed and used by (Toromanoff et al., 2019), which is calculated by SABER = max{min{HWRNS, 2}, 0}. SABER also has the same problems as CHNS, and we will not repeat them here. For more details on SABER, can see (Toromanoff et al., 2019). H.3. Learning Efficiency As we mentioned above, traditional SOTA algorithms typically ignore the low learning efficiency problem, which makes the data used for training continuously increasing (e.g., from 10B (Kapturowski et al., 2018) to 100B (Badia et al., 2020a)). Increasing the training volume hinders the application of reinforcement learning algorithms into the real world. In this paper, we advocate not to improve the final performance via improving the learning efficiency instead of increasing the training volume. We advocate achieving SOTA within 200M training frames for Atari. To evaluate the learning efficiency of an algorithm, we introduce three promising metrics. H.3.1. TRAINING SCALE As one of the commonly used metrics to reveal the learning efficiency for machine learning algorithms, training scale can also serve the purpose in RL problems. In ALE, the training scale means the scale of video frames used for training. Training frames for world modeling or planning via real-world models also need to be counted in model-based settings. Generalized Data Distribution Iteration H.3.2. PLAYTIME Playtime is a unique metric of Atari, which means the equivalent real-time gameplay (Machado et al., 2018). We can use the following formula to calculate this metric: Playtime (day) = Num.Frames 108000*2*24 (18) For example, 200M training frames equal to 38.5 days real-time gameplay, and 100B training frames equal to 19250 days (52.7 years) real-time gameplay (Badia et al., 2020a). As far as we know, no Atari human world record was achieved by playing a game continuously for more than 52.7 years because it is less than 52.7 years since the birth of the Atari games. H.3.3. LEARNING EFFICIENCY As we mentioned several times while discussing the drawbacks of the normalized score, learning efficiency has been ignored in massive SOTA algorithms. Many SOTA algorithms achieved SOTA through training with vast amounts of data, which may equal 52.7 years continuously playing for a human. In this paper, we argue it is unreasonable to rely on the increase of data to improve the algorithm s performance. Thus, we proposed the following metric to evaluate the learning efficiency of an algorithm: Learning Efficiency = Related Evaluation Metric Num.Frames (19) For example, the learning efficiency of an algorithm over means HNS is mean HNS Num.Frames, which means the algorithms obtaining higher mean HNS via lower training frames are better than those acquiring more training data methods. H.4. Human World Record Breakthrough As we mentioned above, we need higher requirements to prove RL agents achieve real superhuman performance. Therefore, like the CHNS (Badia et al., 2020a), the Human World Record Breakthrough (HWRB) can serve as the metric to reveal whether the algorithm has achieved the real superhuman performance, which can be calculated by HWRB = P57 i=1(HWRNS 1). Generalized Data Distribution Iteration I. Atari Benchmark In this section, we introduce some SOTA algorithms in the Atari Benchmarks. For more details on evaluation metrics for ALE, can see App. H. For summary of the benchmark results on those evaluation metrics can see App. J. I.1. Model-Free Reinforcement Learning I.1.1. RAINBOW Rainbow (Hessel et al., 2017) is a classic value-based RL algorithm among the DQN algorithm family, which has fruitfully combined six extensions of the DQN algorithm family. It is recognized to achieve state-of-the-art performance on the ALE benchmark. Thus, we select it as one of the representative algorithms of the SOTA DQN algorithms. I.1.2. IMPALA IMPALA, namely the Importance Weighted Actor Learner Architecture (Espeholt et al., 2018), is a classic distributed off-policy actor-critic framework, which decouples acting from learning and learning from experience trajectories using V-trace. IMPALA actors communicate trajectories of experience (sequences of states, actions, and rewards) to a centralized learner, which boosts distributed large-scale training. Thus, we select it as one of the representative algorithms of the traditional distributed RL algorithm. I.1.3. LASER LASER (Schmitt et al., 2020) is a classic Actor-Critic algorithm, which investigated the combination of Actor-Critic algorithms with a uniform large-scale experience replay. It trained populations of actors with shared experiences and claimed to achieve SOTA in Atari. Thus, we select it as one of the SOTA RL algorithms within 200M training frames. I.1.4. R2D2 (Kapturowski et al., 2018) Like IMPALA, R2D2 (Kapturowski et al., 2018) is also a classic distributed RL algorithms. It trained RNN-based RL agents from distributed prioritized experience replay, which achieved SOTA in Atari. Thus, we select it as one of the representative value-based distributed RL algorithms. One of the classical problems in ALE for RL agents is the hard exploration problems (Ecoffet et al., 2019; Bellemare et al., 2013; Badia et al., 2020a) like Private Eye, Montezuma s Revenge, Pitfall!. NGU (Badia et al., 2020b), or Never Give Up, try to ease this problem by augmenting the reward signal with an internally generated intrinsic reward that is sensitive to novelty at two levels: short-term novelty within an episode and long-term novelty across episodes. It then learns a family of policies for exploring and exploiting (sharing the same parameters) to obtain the highest score under the exploitative policy. NGU has achieved SOTA in Atari and thus we selected it as one of the representative population-based model-free RL algorithms. I.1.6. AGENT57 Agent57 (Badia et al., 2020a) is the SOTA model-free RL algorithms on CHNS or Median HNS of Atari Benchmark. Built on the NGU agents, Agent57 proposed a novel state-action value function parameterization method and adopted an adaptive exploration over a family of policies, which overcome the drawback of NGU (Badia et al., 2020a). We select it as one of the SOTA model-free RL algorithms. GDI, or Generalized Data Distribution Iteration, claimed to have achieved SOTA on mean/median HWRNS, mean HNS, HWRB, median SABER of Atari Benchmark. GDI is one of the novel Reinforcement Learning paradigms, which combined a data distribution optimization operator into the traditional generalized policy iteration (GPI) (Sutton & Barto, 2018) and thus achieved human-level learning efficiency. Thus, we select them as one of the SOTA model-free RL algorithms. Generalized Data Distribution Iteration I.2. Model-Based Reinforcement Learning I.2.1. SIMPLE As one of the classic model-based RL algorithms on Atari, Sim PLe, or Simulated Policy Learning (Kaiser et al., 2019), adopted a video prediction model to enable RL agents to solve Atari problems with higher sample efficiency. It claimed to outperform the SOTA model-free algorithms in most games, so we selected it as representative model-based RL algorithms. I.2.2. DREAMER-V2 Dreamer-V2 (Hafner et al., 2020) built world models to facilitate generalization across the experience and allow learning behaviors from imagined outcomes in the compact latent space of the world model to increase sample efficiency. Dreamer-V2 is claimed to achieve SOTA in Atari and thus we select it as one of the SOTA model-based RL algorithms within the 200M training scale. I.2.3. MUZERO Muzero (Schrittwieser et al., 2020) combined a tree-based search with a learned model and has achieved superhuman performance on Atari. We thus selected it as one of the SOTA model-based RL algorithms. I.3. Other SOTA algorithms I.3.1. GO-EXPLORE As mentioned in NGU, a grand challenge in reinforcement learning is intelligent exploration, which is called the hardexploration problem (Machado et al., 2018). Go-Explore (Ecoffet et al., 2019) adopted three principles to solve this problem. Firstly, agents remember previously visited states. Secondly, agents first return to a promising state and then explore it. Finally, solve simulated environment through any available means, and then robustify via imitation learning. Go-Explore has achieved SOTA in Atari, so we select it as one of the SOTA algorithms of the hard exploration problem. I.3.2. MUESLI Muesli (Hessel et al., 2021) proposed a novel policy update that combines regularized policy optimization with model learning as an auxiliary loss. It acts directly with a policy network and has a computation speed comparable to model-free baselines. As it claimed to achieve SOTA in Atari within 200M training frames, we select it as one of the SOTA RL algorithms within 200M training frames. I.4. Summary of Benchmark Results This part summarizes the results among all the algorithms we mentioned above on the human world record benchmark for Atari. In Figs, we illustrated the benchmark results on HNS, HWRNS, SABER, and the corresponding training scale. 6, 9 and 12, HWRB and corresponding game time and learning efficiency in Fig. 13. From those results, we see GDI has achieved SOTA in learning efficiency, HWRB, HWRNS, mean HNS, and median SABER within 200M training frames. Agent57 has achieved SOTA in mean SABER, and Muzero (Schrittwieser et al., 2020) has achieved SOTA in median HNS. Generalized Data Distribution Iteration GDI-I3 (Ours) GDI-H3 (Ours) Mean Human Normalized Score Playtime (Day) Mean HNS Playtime GDI-I3 (Ours) GDI-H3 (Ours) Median Human Normalized Score Playtime (Day) Median HNS Playtime Figure 4. SOTA algorithms of Atari 57 games on mean and median HNS (%) and playtime. GDI-I3 (Ours) GDI-H3 (Ours) Mean Human Normalized Score Learning Efficiency Mean HNS Learning Efficiency GDI-I3 (Ours) GDI-H3 (Ours) Median Human Normalized Score Learning Efficiency Median HNS Learning Efficiency Figure 5. SOTA algorithms of Atari 57 games on mean and median HNS (%) and corresponding learning efficiency calculated by MEAN HNS/MEDIAN HNS TRAINING FRAMES . J. Summary of Benchmark Results In this section, we illustrate the benchmark results of all the SOTA algorithms mentioned in this paper. For more details on these algorithms, can see App. I. J.1. RL Benchmarks on HNS We report several milestones of Atari benchmarks on HNS, including DQN (Mnih et al., 2015), RAINBOW (Hessel et al., 2017), IMPALA (Espeholt et al., 2018), LASER (Schmitt et al., 2020), R2D2 (Kapturowski et al., 2018), NGU (Badia et al., 2020b), Agent57 (Badia et al., 2020a), Go-Explore (Ecoffet et al., 2019), Mu Zero (Schrittwieser et al., 2020), Dreamer V2 (Hafner et al., 2020), Sim PLe (Kaiser et al., 2019) and Muesli (Hessel et al., 2021). We summarize mean HNS and median HNS of these algorithms with their playtime (human playtime), learning efficiency , and training scale in Fig 4, 5 and 6. J.2. RL Benchmarks on HWRNS We report several milestones of Atari benchmarks on Human World Records Normalized Score (HWRNS), including DQN (Mnih et al., 2015), RAINBOW (Hessel et al., 2017), IMPALA (Espeholt et al., 2018), LASER (Schmitt et al., 2020), R2D2 (Kapturowski et al., 2018), NGU (Badia et al., 2020b), Agent57 (Badia et al., 2020a), Go-Explore (Ecoffet et al., 2019), Mu Zero (Schrittwieser et al., 2020), Dreamer V2 (Hafner et al., 2020), Sim PLe (Kaiser et al., 2019) and Muesli (Hessel Generalized Data Distribution Iteration GDI-I3 (Ours) GDI-H3 (Ours) Mean Human Normalized Score Training Scale (Frames) Mean HNS Training Scale GDI-I3 (Ours) GDI-H3 (Ours) Median Human Normalized Score Training Scale (Frames) Median HNS Training Scale Figure 6. SOTA algorithms of Atari 57 games on mean and median HNS (%) and corresponding training scale. GDI-I3 (Ours) GDI-H3 (Ours) Playtime (Day) Mean HWRNS Playtime GDI-I3 (Ours) GDI-H3 (Ours) Playtime (Day) Median HWRNS Playtime Figure 7. SOTA algorithms of Atari 57 games on mean and median HWRNS (%) and corresponding playtime. et al., 2021). We summarize mean HWRNS and median HWRNS of these algorithms with their playtime (day), learning efficiency , and training scale in Fig 7, 8 and 9. J.3. RL Benchmarks on SABER We report several milestones of Atari benchmarks on Standardized Atari BEnchmark for RL (SABER), including DQN (Mnih et al., 2015), RAINBOW (Hessel et al., 2017), IMPALA (Espeholt et al., 2018), LASER (Schmitt et al., 2020), R2D2 (Kapturowski et al., 2018), NGU (Badia et al., 2020b), Agent57 (Badia et al., 2020a), Go-Explore (Ecoffet et al., 2019), Mu Zero (Schrittwieser et al., 2020), Dreamer V2 (Hafner et al., 2020), Sim PLe (Kaiser et al., 2019) and Muesli (Hessel et al., 2021). We summarize mean SABER and median SABER of these algorithms with their playtime, learning efficiency, and training scale in Figs 10, 11 and 12. J.4. RL Benchmarks on HWRB We report several milestones of Atari benchmarks on HWRB, including DQN (Mnih et al., 2015), RAINBOW (Hessel et al., 2017), IMPALA (Espeholt et al., 2018), LASER (Schmitt et al., 2020), R2D2 (Kapturowski et al., 2018), NGU (Badia et al., 2020b), Agent57 (Badia et al., 2020a), Go-Explore (Ecoffet et al., 2019), Mu Zero (Schrittwieser et al., 2020), Dreamer V2 (Hafner et al., 2020), Sim PLe (Kaiser et al., 2019) and Muesli (Hessel et al., 2021). We summarize HWRB of these algorithms with their playtime, learning efficiency , and training scale in Figs 13. Generalized Data Distribution Iteration GDI-I3 (Ours) GDI-H3 (Ours) Learning Efficiency Mean HWRNS Learning Efficiency GDI-I3 (Ours) GDI-H3 (Ours) Learning Efficiency Median HWRNS Learning Efficiency Figure 8. SOTA algorithms of Atari 57 games on mean and median HWRNS (%) and corresponding learning efficiency calculated by MEAN HWRNS/MEDIAN HWRNS TRAINING FRAMES . GDI-I3 (Ours) GDI-H3 (Ours) Training Scale (Frames) Mean HWRNS Training Scale GDI-I3 (Ours) GDI-H3 (Ours) Training Scale (Frames) Median HWRNS Training Scale Figure 9. SOTA algorithms of Atari 57 games on mean and median HWRNS (%) and corresponding training scale. GDI-I3 (Ours) GDI-H3 (Ours) Playtime (Day) Mean SABER Playtime GDI-I3 (Ours) GDI-H3 (Ours) Median SABER Playtime (Day) Median SABER Playtime Figure 10. SOTA algorithms of Atari 57 games on mean and median SABER (%) and corresponding playtime. Generalized Data Distribution Iteration GDI-I3 (Ours) GDI-H3 (Ours) Learning Efficiency Mean SABER Learning Efficiency GDI-I3 (Ours) GDI-H3 (Ours) Median SABER Learning Efficiency Median SABER Learning Efficiency Figure 11. SOTA algorithms of Atari 57 games on mean and median SABER (%) and corresponding learning efficiency calculated by MEAN SABER/MEDIAN SABER TRAINING FRAMES . GDI-I3 (Ours) GDI-H3 (Ours) Training Scale (Frames) Mean SABER Training Scale GDI-I3 (Ours) GDI-H3 (Ours) Median SABER Training Scale (Frames) Median SABER Training Scale Figure 12. SOTA algorithms of Atari 57 games on mean and median SABER (%) and corresponding training scale. Generalized Data Distribution Iteration GDI-I3 (Ours) GDI-H3 (Ours) Human World Records Breakthrough Playtime (Day) HWRB Playtime GDI-I3 (Ours) GDI-H3 (Ours) Human World Records Breakthrough Learning Efficiency HWRB Learning Efficiency GDI-I3 (Ours) GDI-H3 (Ours) Human World Records Breakthrough Training Scale (Frames) HWRB Training Scale Figure 13. SOTA algorithms of Atari 57 games on HWRB. HWRB of Sim PLe is 0, so it s not shown in the up-right figure. Generalized Data Distribution Iteration K. Experimental Results In this section, we report the performance of GDI-H3, GDI-I3, and many well-known SOTA algorithms, including both the model-based and model-free methods (see App. I). First of all, we summarize the performance of all the algorithms over all the evaluation criteria of our evaluation system in App. K.1 which is mentioned in App. F. In the following three parts, we visualize the performance of GDI-H3, GDI-I3 over HNS in App. K.2, HWRNS in App. K.3, SABER in App. K.4 via histogram. Furthermore, we detail all the original scores of all the algorithms and provide raw data that calculates those evaluation criteria, wherein we first provide all the human world records in 57 Atari games and calculate the HNS in App. K.5, HWRNS in App. K.6 and SABER in App. K.7 of all 57 Atari games. We further provide all the evaluation curves of GDI-H3 and GDI-I3 over 57 Atari games in the App. K.8. K.1. Full Performance Comparison In this part, we summarize the performance of all mentioned algorithms over all the evaluation criteria in Tab. 6. In the following sections, we will detail the performance of each algorithm on all Atari games one by one. Table 6. Full performance comparison on Atari. The units of training scale is sampled frames. The units of playtime is huamn playtime (day). HNS(%), HWRNS(%), and SABER(%) adopts the percentage format (i.e., %). Bold scores indicate the SOTA performance Algorithms Training Scale Playtime HWRB Mean HNS Median HNS Mean HWRNS Median HWRNS Mean SABER Median SABER GDI-I3 2.00E+08 38.5 17 7810.1 832.5 117.98 35.78 61.66 35.78 Rainbow 2.00E+08 38.5 4 873.54 230.99 28.39 4.92 28.39 4.92 IMPALA 2.00E+08 38.5 3 956.99 191.82 34.52 4.31 29.45 4.31 LASER 2.00E+08 38.5 7 1740.94 454.91 45.39 8.08 36.78 8.08 GDI-I3 2.00E+08 38.5 17 7810.1 832.5 117.98 35.78 61.66 35.78 R2D2 1.00E+10 1929 15 3373.48 1342.27 98.78 33.62 60.43 33.62 NGU 3.50E+10 6751.5 8 3169.07 1174.92 76.00 21.19 50.47 21.19 Agent57 1.00E+11 19290 18 4762.17 1933.49 125.92 43.62 76.26 43.62 GDI-I3 2.00E+08 38.5 17 7810.1 832.5 117.98 35.78 61.66 35.78 Sim PLe 1.00E+06 0.19 0 25.78 5.55 4.80 0.13 4.80 0.13 Dreamer V2 2.00E+08 38.58 3 642.49 178.04 38.60 4.29 27.73 4.29 Mu Zero 2.00E+10 3858 19 4994.97 2041.12 152.10 49.80 71.94 49.80 GDI-I3 2.00E+08 38.5 17 7810.1 832.5 117.98 35.78 61.66 35.78 Muesli 2.00E+08 38.5 5 2538.12 1077.47 75.52 24.86 48.74 24.86 Go-Explore 1.00E+10 1929 15 4989.31 1451.55 116.89 50.50 71.80 50.50 GDI-H3 2.00E+08 38.5 22 9620.33 1146.39 154.27 50.63 71.26 50.63 Rainbow 2.00E+08 38.5 4 873.54 230.99 28.39 4.92 28.39 4.92 IMPALA 2.00E+08 38.5 3 956.99 191.82 34.52 4.31 29.45 4.31 LASER 2.00E+08 38.5 7 1740.94 454.91 45.39 8.08 36.78 8.08 GDI-H3 2.00E+08 38.5 22 9620.33 1146.39 154.27 50.63 71.26 50.63 R2D2 1.00E+10 1929 15 3373.48 1342.27 98.78 33.62 60.43 33.62 NGU 3.50E+10 6751.5 8 3169.07 1174.92 76.00 21.19 50.47 21.19 Agent57 1.00E+11 19290 18 4762.17 1933.49 125.92 43.62 76.26 43.62 GDI-H3 2.00E+08 38.5 22 9620.33 1146.39 154.27 50.63 71.26 50.63 Sim PLe 1.00E+06 0.19 0 25.78 5.55 4.80 0.13 4.80 0.13 Dreamer V2 2.00E+08 38.58 3 642.49 178.04 38.60 4.29 27.73 4.29 Mu Zero 2.00E+10 3858 19 4994.97 2041.12 152.10 49.80 71.94 49.80 GDI-H3 2.00E+08 38.5 22 9620.33 1146.39 154.27 50.63 71.26 50.63 Muesli 2.00E+08 38.5 5 2538.12 1077.47 75.52 24.86 48.74 24.86 Go-Explore 1.00E+10 1929 15 4989.31 1451.55 116.89 50.50 71.80 50.50 Generalized Data Distribution Iteration K.2. Figure of HNS In this part, we visualize the HNS using GDI-H3 and GDI-I3 in all 57 games. The HNS histogram of GDI-I3 is illustrated in Fig. 14. The HNS histogram of GDI-H3 is illustrated in Fig. 15. Alien Amidar Assault Asterix Asteroids Atlantis Bank Heist Battle Zone Beam Rider Berzerk Bowling Boxing Breakout Centipede Chopper Command Crazy Climber Defender Demon Attack Double Dunk Enduro Fishing Derby Freeway Frostbite Gopher Gravitar Hero Ice Hockey Jamesbond Krull Kung Fu Master Montezuma Revenge Ms Pacman Name This Game Pong Private Eye Qbert Riverraid Road Runner Skiing Solaris Space Invaders Star Gunner Tennis Time Pilot Tutankham Up n Down Venture Video Pinball Wizard of Wor Yars Revenge 1% 100% 10,000% 1,000,000% Figure 14. HNS (%) of Atari 57 games using GDI-I3. Generalized Data Distribution Iteration Alien Amidar Assault Asterix Asteroids Atlantis Bank Heist Battle Zone Beam Rider Berzerk Bowling Boxing Breakout Centipede Chopper Command Crazy Climber Defender Demon Attack Double Dunk Enduro Fishing Derby Freeway Frostbite Gopher Gravitar Hero Ice Hockey Jamesbond Krull Kung Fu Master Montezuma Revenge Ms Pacman Name This Game Pong Private Eye Qbert Riverraid Road Runner Skiing Solaris Space Invaders Star Gunner Tennis Time Pilot Tutankham Up n Down Venture Video Pinball Wizard of Wor Yars Revenge 1% 100% 10,000% 1,000,000% Figure 15. HNS (%) of Atari 57 games using GDI-H3. Generalized Data Distribution Iteration K.3. Figure of HWRNS In this part, we visualize the HWRNS (Hafner et al., 2020; Toromanoff et al., 2019) using GDI-H3 and GDI-I3 in all 57 games. The HWRNS histogram of GDI-I3 is illustrated in Fig. 16. The HWRNS histogram of GDI-H3 is illustrated in Fig. 17. Alien Amidar Assault Asterix Asteroids Atlantis Bank Heist Battle Zone Beam Rider Berzerk Bowling Boxing Breakout Centipede Chopper Command Crazy Climber Defender Demon Attack Double Dunk Enduro Fishing Derby Freeway Frostbite Gopher Gravitar Hero Ice Hockey Jamesbond Krull Kung Fu Master Montezuma Revenge Ms Pacman Name This Game Pong Private Eye Qbert Riverraid Road Runner Skiing Solaris Space Invaders Star Gunner Tennis Time Pilot Tutankham Up n Down Venture Video Pinball Wizard of Wor Yars Revenge 1% 10% 100% 1,000% 10,000% Figure 16. HWRNS (%) of Atari 57 games using GDI-I3. Generalized Data Distribution Iteration Alien Amidar Assault Asterix Asteroids Atlantis Bank Heist Battle Zone Beam Rider Berzerk Bowling Boxing Breakout Centipede Chopper Command Crazy Climber Defender Demon Attack Double Dunk Enduro Fishing Derby Freeway Frostbite Gopher Gravitar Hero Ice Hockey Jamesbond Krull Kung Fu Master Montezuma Revenge Ms Pacman Name This Game Pong Private Eye Qbert Riverraid Road Runner Skiing Solaris Space Invaders Star Gunner Tennis Time Pilot Tutankham Up n Down Venture Video Pinball Wizard of Wor Yars Revenge 1% 10% 100% 1,000% 10,000% Figure 17. HWRNS (%) of Atari 57 games using GDI-H3. Generalized Data Distribution Iteration K.4. Figure of SABER In this part, we illustrate the SABER (Hafner et al., 2020; Toromanoff et al., 2019) using GDI-H3 and GDI-I3 in all 57 games. The SABER histogram of GDI-I3 is illustrated in Fig. 18. The SABER histogram of GDI-H3 is illustrated in Fig. 19. Alien Amidar Assault Asterix Asteroids Atlantis Bank Heist Battle Zone Beam Rider Berzerk Bowling Boxing Breakout Centipede Chopper Command Crazy Climber Defender Demon Attack Double Dunk Enduro Fishing Derby Freeway Frostbite Gopher Gravitar Hero Ice Hockey Jamesbond Krull Kung Fu Master Montezuma Revenge Ms Pacman Name This Game Pong Private Eye Qbert Riverraid Road Runner Skiing Solaris Space Invaders Star Gunner Tennis Time Pilot Tutankham Up n Down Venture Video Pinball Wizard of Wor Yars Revenge 1% 10% 100% 1,000% Figure 18. SABER (%) of Atari 57 games using GDI-I3. Generalized Data Distribution Iteration Alien Amidar Assault Asterix Asteroids Atlantis Bank Heist Battle Zone Beam Rider Berzerk Bowling Boxing Breakout Centipede Chopper Command Crazy Climber Defender Demon Attack Double Dunk Enduro Fishing Derby Freeway Frostbite Gopher Gravitar Hero Ice Hockey Jamesbond Krull Kung Fu Master Montezuma Revenge Ms Pacman Name This Game Pong Private Eye Qbert Riverraid Road Runner Skiing Solaris Space Invaders Star Gunner Tennis Time Pilot Tutankham Up n Down Venture Video Pinball Wizard of Wor Yars Revenge 1% 10% 100% 1,000% Figure 19. SABER (%) of Atari 57 games using GDI-H3. Generalized Data Distribution Iteration K.5. Atari Games Table of Scores Based on Human Average Records In this part, we detail the raw score of several representative SOTA algorithms , including the SOTA 200M model-free algorithms, SOTA 10B+ model-free algorithms, SOTA model-based algorithms and other SOTA algorithms.1 Additionally, we calculate the Human Normalized Score (HNS) of each game with each algorithm. First of all, we demonstrate the sources of the scores that we used. Random scores and average human s scores are from (Badia et al., 2020a). Rainbow s scores are from (Hessel et al., 2017). IMPALA s scores are from (Espeholt et al., 2018). LASER s scores are from (Schmitt et al., 2020), with no sweep at 200M. As there are many versions of R2D2 and NGU, we use original papers . R2D2 s scores are from (Kapturowski et al., 2018). NGU s scores are from (Badia et al., 2020b). Agent57 s scores are from (Badia et al., 2020a). Mu Zero s scores are from (Schrittwieser et al., 2020). Dreamer V2 s scores are from (Hafner et al., 2020). Sim PLe s scores are from (Kaiser et al., 2019). Go-Explore s scores are from (Ecoffet et al., 2019). Muesli s scores are from (Hessel et al., 2021). In the following, we detail the raw scores and HNS of each algorithm on 57 Atari games. 1200M and 10B+ represent the training scale. Generalized Data Distribution Iteration Table 7. Score table of SOTA 200M model-free algorithms on HNS(%) (GDI-I3). Games RND HUMAN RAINBOW HNS IMPALA HNS LASER HNS GDI-I3 HNS Scale 200M 200M 200M 200M Alien 227.8 7127.8 9491.7 134.26 15962.1 228.03 35565.9 512.15 43384 625.45 Amidar 5.8 1719.5 5131.2 299.08 1554.79 90.39 1829.2 106.4 1442 83.81 Assault 222.4 742 14198.5 2689.78 19148.47 3642.43 21560.4 4106.62 63876 12250.50 Asterix 210 8503.3 428200 5160.67 300732 3623.67 240090 2892.46 759910 9160.41 Asteroids 719 47388.7 2712.8 4.27 108590.05 231.14 213025 454.91 751970 1609.72 Atlantis 12850 29028.1 826660 5030.32 849967.5 5174.39 841200 5120.19 3803000 23427.66 Bank Heist 14.2 753.1 1358 181.86 1223.15 163.61 569.4 75.14 1401 187.68 Battle Zone 236 37187.5 62010 167.18 20885 55.88 64953.3 175.14 478830 1295.20 Beam Rider 363.9 16926.5 16850.2 99.54 32463.47 193.81 90881.6 546.52 162100 976.51 Berzerk 123.7 2630.4 2545.6 96.62 1852.7 68.98 25579.5 1015.51 7607 298.53 Bowling 23.1 160.7 30 5.01 59.92 26.76 48.3 18.31 201.9 129.94 Boxing 0.1 12.1 99.6 829.17 99.96 832.17 100 832.5 100 832.50 Breakout 1.7 30.5 417.5 1443.75 787.34 2727.92 747.9 2590.97 864 2994.10 Centipede 2090.9 12017 8167.3 61.22 11049.75 90.26 292792 2928.65 155830 1548.84 Chopper Command 811 7387.8 16654 240.89 28255 417.29 761699 11569.27 999999 15192.62 Crazy Climber 10780.5 36829.4 168788.5 630.80 136950 503.69 167820 626.93 201000 759.39 Defender 2874.5 18688.9 55105 330.27 185203 1152.93 336953 2112.50 893110 5629.27 Demon Attack 152.1 1971 111185 6104.40 132826.98 7294.24 133530 7332.89 675530 37131.12 Double Dunk -18.6 -16.4 -0.3 831.82 -0.33 830.45 14 1481.82 24 1936.36 Enduro 0 860.5 2125.9 247.05 0 0.00 0 0.00 14330 1665.31 Fishing Derby -91.7 -38.8 31.3 232.51 44.85 258.13 45.2 258.79 59 285.71 Freeway 0 29.6 34 114.86 0 0.00 0 0.00 34 114.86 Frostbite 65.2 4334.7 9590.5 223.10 317.75 5.92 5083.5 117.54 10485 244.05 Gopher 257.6 2412.5 70354.6 3252.91 66782.3 3087.14 114820.7 5316.40 488830 22672.63 Gravitar 173 3351.4 1419.3 39.21 359.5 5.87 1106.2 29.36 5905 180.34 Hero 1027 30826.4 55887.4 184.10 33730.55 109.75 31628.7 102.69 38330 125.18 Ice Hockey -11.2 0.9 1.1 101.65 3.48 121.32 17.4 236.36 44.94 463.97 Jamesbond 29 302.8 19809 72.24 601.5 209.09 37999.8 13868.08 594500 217118.70 Kangaroo 52 3035 14637.5 488.05 1632 52.97 14308 477.91 14500 484.34 Krull 1598 2665.5 8741.5 669.18 8147.4 613.53 9387.5 729.70 97575 8990.82 Kung Fu Master 258.5 22736.3 52181 230.99 43375.5 191.82 607443 2701.26 140440 623.64 Montezuma Revenge 0 4753.3 384 8.08 0 0.00 0.3 0.01 3000 63.11 Ms Pacman 307.3 6951.6 5380.4 76.35 7342.32 105.88 6565.5 94.19 11536 169.00 Name This Game 2292.3 8049 13136 188.37 21537.2 334.30 26219.5 415.64 34434 558.34 Phoenix 761.5 7242.6 108529 1662.80 210996.45 3243.82 519304 8000.84 894460 13789.30 Pitfall -229.4 6463.7 0 3.43 -1.66 3.40 -0.6 3.42 0 3.43 Pong -20.7 14.6 20.9 117.85 20.98 118.07 21 118.13 21 118.13 Private Eye 24.9 69571.3 4234 6.05 98.5 0.11 96.3 0.10 15100 21.68 Qbert 163.9 13455.0 33817.5 253.20 351200.12 2641.14 21449.6 160.15 27800 207.93 Riverraid 1338.5 17118.0 22920.8 136.77 29608.05 179.15 40362.7 247.31 28075 169.44 Road Runner 11.5 7845 62041 791.85 57121 729.04 45289 578.00 878600 11215.78 Robotank 2.2 11.9 61.4 610.31 12.96 110.93 62.1 617.53 108.2 1092.78 Seaquest 68.4 42054.7 15898.9 37.70 1753.2 4.01 2890.3 6.72 943910 2247.98 Skiing -17098 -4336.9 -12957.8 32.44 -10180.38 54.21 -29968.4 -100.86 -6774 80.90 Solaris 1236.3 12326.7 3560.3 20.96 2365 10.18 2273.5 9.35 11074 88.70 Space Invaders 148 1668.7 18789 1225.82 43595.78 2857.09 51037.4 3346.45 140460 9226.80 Star Gunner 664 10250 127029 1318.22 200625 2085.97 321528 3347.21 465750 4851.72 Surround -10 6.5 9.7 119.39 7.56 106.42 8.4 111.52 -7.8 13.33 Tennis -23.8 -8.3 0 153.55 0.55 157.10 12.2 232.26 24 308.39 Time Pilot 3568 5229.2 12926 563.36 48481.5 2703.84 105316 6125.34 216770 12834.99 Tutankham 11.4 167.6 241 146.99 292.11 179.71 278.9 171.25 423.9 264.08 Up N Down 533.4 11693.2 125755 1122.08 332546.75 2975.08 345727 3093.19 986440 8834.45 Venture 0 1187.5 5.5 0.46 0 0.00 0 0.00 2035 171.37 Video Pinball 0 17667.9 533936.5 3022.07 572898.27 3242.59 511835 2896.98 925830 5240.18 Wizard of Wor 563.5 4756.5 17862.5 412.57 9157.5 204.96 29059.3 679.60 64239 1519.90 Yars Revenge 3092.9 54576.9 102557 193.19 84231.14 157.60 166292.3 316.99 972000 1881.96 Zaxxon 32.5 9173.3 22209.5 242.62 32935.5 359.96 41118 449.47 109140 1193.63 MEAN HNS(%) 0.00 100.00 873.54 956.99 1740.94 7810.1 MEDIAN HNS(%) 0.00 100.00 230.99 191.82 454.91 832.5 Generalized Data Distribution Iteration Table 8. Score table of SOTA 200M model-free algorithms on HNS(%) (GDI-H3). Games RND HUMAN RAINBOW HNS IMPALA HNS LASER HNS GDI-H3 HNS Scale 200M 200M 200M 200M Alien 227.8 7127.8 9491.7 134.26 15962.1 228.03 35565.9 512.15 48735 703.00 Amidar 5.8 1719.5 5131.2 299.08 1554.79 90.39 1829.2 106.4 1065 61.81 Assault 222.4 742 14198.5 2689.78 19148.47 3642.43 21560.4 4106.62 97155 18655.23 Asterix 210 8503.3 428200 5160.67 300732 3623.67 240090 2892.46 999999 12055.38 Asteroids 719 47388.7 2712.8 4.27 108590.05 231.14 213025 454.91 760005 1626.94 Atlantis 12850 29028.1 826660 5030.32 849967.5 5174.39 841200 5120.19 3837300 23639.67 Bank Heist 14.2 753.1 1358 181.86 1223.15 163.61 569.4 75.14 1380 184.84 Battle Zone 236 37187.5 62010 167.18 20885 55.88 64953.3 175.14 824360 2230.29 Beam Rider 363.9 16926.5 16850.2 99.54 32463.47 193.81 90881.6 546.52 422890 2551.09 Berzerk 123.7 2630.4 2545.6 96.62 1852.7 68.98 25579.5 1015.51 14649 579.46 Bowling 23.1 160.7 30 5.01 59.92 26.76 48.3 18.31 205.2 132.34 Boxing 0.1 12.1 99.6 829.17 99.96 832.17 100 832.5 100 832.50 Breakout 1.7 30.5 417.5 1443.75 787.34 2727.92 747.9 2590.97 864 2994.10 Centipede 2090.9 12017 8167.3 61.22 11049.75 90.26 292792 2928.65 195630 1949.80 Chopper Command 811 7387.8 16654 240.89 28255 417.29 761699 11569.27 999999 15192.62 Crazy Climber 10780.5 36829.4 168788.5 630.80 136950 503.69 167820 626.93 241170 919.76 Defender 2874.5 18688.9 55105 330.27 185203 1152.93 336953 2112.50 970540 6118.89 Demon Attack 152.1 1971 111185 6104.40 132826.98 7294.24 133530 7332.89 787985 43313.70 Double Dunk -18.6 -16.4 -0.3 831.82 -0.33 830.45 14 1481.82 24 1936.36 Enduro 0 860.5 2125.9 247.05 0 0.00 0 0.00 14300 1661.82 Fishing Derby -91.7 -38.8 31.3 232.51 44.85 258.13 45.2 258.79 65 296.22 Freeway 0 29.6 34 114.86 0 0.00 0 0.00 34 114.86 Frostbite 65.2 4334.7 9590.5 223.10 317.75 5.92 5083.5 117.54 11330 263.84 Gopher 257.6 2412.5 70354.6 3252.91 66782.3 3087.14 114820.7 5316.40 473560 21964.01 Gravitar 173 3351.4 1419.3 39.21 359.5 5.87 1106.2 29.36 5915 180.66 Hero 1027 30826.4 55887.4 184.10 33730.55 109.75 31628.7 102.69 38225 124.83 Ice Hockey -11.2 0.9 1.1 101.65 3.48 121.32 17.4 236.36 481.90 Jamesbond 29 302.8 19809 72.24 601.5 209.09 37999.8 13868.08 620780 226716.95 Kangaroo 52 3035 14637.5 488.05 1632 52.97 14308 477.91 14636 488.00 Krull 1598 2665.5 8741.5 669.18 8147.4 613.53 9387.5 729.70 594540 55544.92 Kung Fu Master 258.5 22736.3 52181 230.99 43375.5 191.82 607443 2701.26 1666665 7413.57 Montezuma Revenge 0 4753.3 384 8.08 0 0.00 0.3 0.01 2500 52.60 Ms Pacman 307.3 6951.6 5380.4 76.35 7342.32 105.88 6565.5 94.19 11573 169.55 Name This Game 2292.3 8049 13136 188.37 21537.2 334.30 26219.5 415.64 36296 590.68 Phoenix 761.5 7242.6 108529 1662.80 210996.45 3243.82 519304 8000.84 959580 14794.07 Pitfall -229.4 6463.7 0 3.43 -1.66 3.40 -0.6 3.42 -4.345 3.36 Pong -20.7 14.6 20.9 117.85 20.98 118.07 21 118.13 21 118.13 Private Eye 24.9 69571.3 4234 6.05 98.5 0.11 96.3 0.10 15100 21.68 Qbert 163.9 13455.0 33817.5 253.20 351200.12 2641.14 21449.6 160.15 28657 214.38 Riverraid 1338.5 17118.0 22920.8 136.77 29608.05 179.15 40362.7 247.31 28349 171.17 Road Runner 11.5 7845 62041 791.85 57121 729.04 45289 578.00 999999 12765.53 Robotank 2.2 11.9 61.4 610.31 12.96 110.93 62.1 617.53 113.4 1146.39 Seaquest 68.4 42054.7 15898.9 37.70 1753.2 4.01 2890.3 6.72 1000000 2381.57 Skiing -17098 -4336.9 -12957.8 32.44 -10180.38 54.21 -29968.4 -100.86 -6025 86.77 Solaris 1236.3 12326.7 3560.3 20.96 2365 10.18 2273.5 9.35 9105 70.95 Space Invaders 148 1668.7 18789 1225.82 43595.78 2857.09 51037.4 3346.45 154380 10142.17 Star Gunner 664 10250 127029 1318.22 200625 2085.97 321528 3347.21 677590 7061.61 Surround -10 6.5 9.7 119.39 7.56 106.42 8.4 111.52 2.606 76.40 Tennis -23.8 -8.3 0 153.55 0.55 157.10 12.2 232.26 24 308.39 Time Pilot 3568 5229.2 12926 563.36 48481.5 2703.84 105316 6125.34 450810 26924.45 Tutankham 11.4 167.6 241 146.99 292.11 179.71 278.9 171.25 418.2 260.44 Up N Down 533.4 11693.2 125755 1122.08 332546.75 2975.08 345727 3093.19 966590 8656.58 Venture 0 1187.5 5.5 0.46 0 0.00 0 0.00 2000 168.42 Video Pinball 0 17667.9 533936.5 3022.07 572898.27 3242.59 511835 2896.98 978190 5536.54 Wizard of Wor 563.5 4756.5 17862.5 412.57 9157.5 204.96 29059.3 679.60 63735 1506.59 Yars Revenge 3092.9 54576.9 102557 193.19 84231.14 157.60 166292.3 316.99 968090 1874.36 Zaxxon 32.5 9173.3 22209.5 242.62 32935.5 359.96 41118 449.47 216020 2362.89 MEAN HNS(%) 0.00 100.00 873.54 956.99 1740.94 9620.33 MEDIAN HNS(%) 0.00 100.00 230.99 191.82 454.91 1146.39 Generalized Data Distribution Iteration Table 9. Score table of 10B+ SOTA model-free algorithms on HNS(%). Games R2D2 HNS NGU HNS AGENT57 HNS GDI-I3 HNS GDI-H3 HNS Scale 10B 35B 100B 200M 200M Alien 109038.4 1576.97 248100 3592.35 297638.17 4310.30 43384 625.45 48735 703.00 Amidar 27751.24 1619.04 17800 1038.35 29660.08 1730.42 1442 83.81 1065 61.81 Assault 90526.44 17379.53 34800 6654.66 67212.67 12892.66 63876 12250.50 97155 18655.23 Asterix 999080 12044.30 950700 11460.94 991384.42 11951.51 759910 9160.41 999999 12055.38 Asteroids 265861.2 568.12 230500 492.36 150854.61 321.70 751970 1609.72 760005 1626.94 Atlantis 1576068 9662.56 1653600 10141.80 1528841.76 9370.64 3803000 23427.66 3837300 23639.67 Bank Heist 46285.6 6262.20 17400 2352.93 23071.5 3120.49 1401 187.68 1380 184.84 Battle Zone 513360 1388.64 691700 1871.27 934134.88 2527.36 478830 1295.20 824360 2230.29 Beam Rider 128236.08 772.05 63600 381.80 300509.8 1812.19 162100 976.51 422390 2548.07 Berzerk 34134.8 1356.81 36200 1439.19 61507.83 2448.80 7607 298.53 14649 579.46 Bowling 196.36 125.92 211.9 137.21 251.18 165.76 201.9 129.94 205.2 132.34 Boxing 99.16 825.50 99.7 830.00 100 832.50 100 832.50 100 832.50 Breakout 795.36 2755.76 559.2 1935.76 790.4 2738.54 864 2994.10 864 2994.10 Centipede 532921.84 5347.83 577800 5799.95 412847.86 4138.15 155830 1548.84 195630 1949.80 Chopper Command 960648 14594.29 999900 15191.11 999900 15191.11 999999 15192.62 999999 15192.62 Crazy Climber 312768 1205.59 313400 1208.11 565909.85 2216.18 201000 759.39 241170 919.76 Defender 562106 3536.22 664100 4181.16 677642.78 4266.80 893110 5629.27 970540 6118.89 Demon Attack 143664.6 7890.07 143500 7881.02 143161.44 7862.41 675530 37131.12 787985 43313.70 Double Dunk 23.12 1896.36 -14.1 204.55 23.93 1933.18 24 1936.36 24 1936.36 Enduro 2376.68 276.20 2000 232.42 2367.71 275.16 14330 1665.31 14300 1661.82 Fishing Derby 81.96 328.28 32 233.84 86.97 337.75 59 285.71 65 296.22 Freeway 34 114.86 28.5 96.28 32.59 110.10 34 114.86 34 114.86 Frostbite 11238.4 261.70 206400 4832.76 541280.88 12676.32 10485 244.05 11330 263.84 Gopher 122196 5658.66 113400 5250.47 117777.08 5453.59 488830 22672.63 473560 21964.01 Gravitar 6750 206.93 14200 441/32 19213.96 599.07 5905 180.34 5915 180.66 Hero 37030.4 120.82 69400 229.44 114736.26 381.58 38330 125.18 38225 124.83 Ice Hockey 71.56 683.97 -4.1 58.68 63.64 618.51 44.94 463.97 47.11 481.90 Jamesbond 23266 8486.85 26600 9704.53 135784.96 49582.16 594500 217118.70 620780 226716.95 Kangaroo 14112 471.34 35100 1174.92 24034.16 803.96 14500 484.34 14636 488.90 Krull 145284.8 13460.12 127400 11784.73 251997.31 23456.61 97575 8990.82 594540 55544.92 Kung Fu Master 200176 889.40 212100 942.45 206845.82 919.07 140440 623.64 1666665 7413.57 Montezuma Revenge 2504 52.68 10400 218.80 9352.01 196.75 3000 63.11 2500 52.60 Ms Pacman 29928.2 445.81 40800 609.44 63994.44 958.52 11536 169.00 11573 169.55 Name This Game 45214.8 745.61 23900 375.35 54386.77 904.94 34434 558.34 36296 590.68 Phoenix 811621.6 125.11 959100 14786.66 908264.15 14002.29 894460 13789.30 959580 14794.07 Pitfall 0 3.43 7800 119.97 18756.01 283.66 0 3.43 -4.3 3.36 Pong 21 118.13 19.6 114.16 20.67 117.20 21 118.13 21 118.13 Private Eye 300 0.40 100000 143.75 79716.46 114.59 15100 21.68 15100 21.68 Qbert 161000 1210.10 451900 3398.79 580328.14 4365.06 27800 207.93 28657 214.38 Riverraid 34076.4 207.47 36700 224.10 63318.67 392.79 28075 169.44 28349 171.17 Road Runner 498660 6365.59 128600 1641.52 243025.8 3102.24 878600 11215.78 999999 12765.53 Robotank 132.4 1342.27 9.1 71.13 127.32 1289.90 108.2 1092.78 113.4 1146.39 Seaquest 999991.84 2381.55 1000000 2381.57 999997.63 2381.56 943910 2247.98 1000000 2381.57 Skiing -29970.32 -100.87 -22977.9 -46.08 -4202.6 101.05 -6774 80.90 -6025 86.77 Solaris 4198.4 26.71 4700 31.23 44199.93 387.39 11074 88.70 9105 70.95 Space Invaders 55889 3665.48 43400 2844.22 48680.86 3191.48 140460 9226.80 154380 10142.17 Star Gunner 521728 5435.68 414600 4318.13 839573.53 8751.40 465750 4851.72 677590 7061.61 Surround 9.96 120.97 -9.6 2.42 9.5 118.18 -7.8 13.33 2.606 76.40 Tennis 24 308.39 10.2 219.35 23.84 307.35 24 308.39 24 308.39 Time Pilot 348932 20791.28 344700 20536.51 405425.31 24192.24 216770 12834.99 450810 26924.45 Tutankham 393.64 244.71 191.1 115.04 2354.91 1500.33 423.9 264.08 418.2 260.44 Up N Down 542918.8 4860.17 620100 5551.77 623805.73 5584.98 986440 8834.45 966590 8656.58 Venture 1992 167.75 1700 143.16 2623.71 220.94 2035 171.37 2000 168.42 Video Pinball 483569.72 2737.00 965300 5463.58 992340.74 5616.63 925830 5240.18 978190 5536.54 Wizard of Wor 133264 3164.81 106200 2519.35 157306.41 3738.20 64293 1519.90 63735 1506.59 Yars Revenge 918854.32 1778.73 986000 1909.15 998532.37 1933.49 972000 1881.96 968090 1874.36 Zaxxon 181372 1983.85 111100 1215.07 249808.9 2732.54 109140 1193.63 216020 2362.89 MEAN HNS(%) 3373.48 3169.07 4762.17 7810.1 9620.33 MEDIAN HNS(%) 1342.27 1174.92 1933.49 832.5 1146.39 Generalized Data Distribution Iteration Table 10. Score table of SOTA model-based algorithms on HNS(%). Sim PLe (Kaiser et al., 2019) and Dreamer V2(Hafner et al., 2020) haven t evaluated all 57 Atari Games in their paper. For fairness, we set the score on those games as N/A, which will not be considered when calculating the median and mean HNS. Games Mu Zero HNS Dreamer V2 HNS Sim PLe HNS GDI-I3 HNS GDI-H3 HNS Scale 20B 200M 1M 200M 200M Alien 741812.63 10747.61 3483 47.18 616.9 5.64 43384 625.45 48735 703.00 Amidar 28634.39 1670.57 2028 118.00 74.3 4.00 1442 83.81 1065 61.81 Assault 143972.03 27665.44 7679 1435.07 527.2 58.66 63876 12250.50 97155 18655.23 Asterix 998425 12036.40 25669 306.98 1128.3 11.07 759910 9160.41 999999 12055.38 Asteroids 678558.64 1452.42 3064 5.02 793.6 0.16 751970 1609.72 760005 1626.94 Atlantis 1674767.2 10272.64 989207 6035.05 20992.5 50.33 3803000 23427.66 3837300 23639.67 Bank Heist 1278.98 171.17 1043 139.23 34.2 2.71 1401 187.68 1380 184.84 Battle Zone 848623 2295.95 31225 83.86 4031.2 10.27 478830 1295.20 824360 2230.29 Beam Rider 454993.53 2744.92 12413 72.75 621.6 1.56 162100 976.51 422390 2548.07 Berzerk 85932.6 3423.18 751 25.02 N/A N/A 7607 298.53 14649 579.46 Bowling 260.13 172.26 48 18.10 30 5.01 202 129.94 205.2 132.34 Boxing 100 832.50 87 724.17 7.8 64.17 100 832.50 100 832.50 Breakout 864 2994.10 350 1209.38 16.4 51.04 864 2994.10 864 2994.10 Centipede 1159049.27 11655.72 6601 45.44 N/A N/A 155830 1548.84 195630 1949.80 Chopper Command 991039.7 15056.39 2833 30.74 979.4 2.56 999999 15192.62 999999 15192.62 Crazy Climber 458315.4 1786.64 141424 521.55 62583.6 206.81 201000 759.39 241170 919.76 Defender 839642.95 5291.18 N/A N/A N/A N/A 893110 5629.27 970540 6118.89 Demon Attack 143964.26 7906.55 2775 144.20 208.1 3.08 675530 37131.12 787985 43313.70 Double Dunk 23.94 1933.64 22 1845.45 N/A N/A 24 1936.36 24 1936.36 Enduro 2382.44 276.87 2112 245.44 N/A N/A 14330 1665.31 14300 1661.82 Fishing Derby 91.16 345.67 60 286.77 -90.7 1.89 59 285.71 65 296.22 Freeway 33.03 111.59 34 114.86 16.7 56.42 34 114.86 34 114.86 Frostbite 631378.53 14786.59 15622 364.37 236.9 4.02 10485 244.05 11330 263.84 Gopher 130345.58 6036.85 53853 2487.14 596.8 15.74 488830 22672.6 473560 21964.01 Gravitar 6682.7 204.81 3554 106.37 173.4 0.01 5905 180.34 5915 180.66 Hero 49244.11 161.81 30287 98.19 2656.6 5.47 38330 125.18 38225 124.83 Ice Hockey 67.04 646.61 29 332.23 -11.6 -3.31 44.94 463.97 47.11 481.90 Jamesbond 41063.25 14986.94 9269 3374.73 100.5 26.11 594500 217118.70 620780 226716.95 Kangaroo 16763.6 560.23 11819 394.47 51.2 -0.03 14500 484.34 14636 488.90 Krull 269358.27 25082.93 9687 757.75 2204.8 56.84 97575 8990.82 594540 55544.92 Kung Fu Master 204824 910.08 66410 294.30 14862.5 64.97 140440 623.64 1666665 7413.57 Montezuma Revenge 0 0.00 1932 40.65 N/A N/A 3000 63.11 2500 52.60 Ms Pacman 243401.1 3658.68 5651 80.43 1480 17.65 11536 169.00 11573 169.55 Name This Game 157177.85 2690.53 14472 211.57 2420.7 2.23 34434 558.34 36296 590.68 Phoenix 955137.84 14725.53 13342 194.11 N/A N/A 894460 13789.30 959580 14794.07 Pitfall 0 3.43 -1 3.41 N/A N/A 0 3.43 -4.3 3.36 Pong 21 118.13 19 112.46 12.8 94.90 21 118.13 21 118.13 Private Eye 15299.98 21.96 158 0.19 35 0.01 15100 21.68 15100 21.68 Qbert 72276 542.56 162023 1217.80 1288.8 8.46 27800 207.93 28657 214.38 Riverraid 323417.18 2041.12 16249 94.49 1957.8 3.92 28075 169.44 28349 171.17 Road Runner 613411.8 7830.48 88772 1133.09 5640.6 71.86 878600 11215.78 999999 12765.53 Robotank 131.13 1329.18 65 647.42 N/A N/A 108 1092.78 113.4 1146.39 Seaquest 999976.52 2381.51 45898 109.15 683.3 1.46 943910 2247.98 1000000 2381.57 Skiing -29968.36 -100.86 -8187 69.83 N/A N/A -6774 80.90 -6025 86.77 Solaris 56.62 -10.64 883 -3.19 N/A N/A 11074 88.70 9105 70.95 Space Invaders 74335.3 4878.50 2611 161.96 N/A N/A 140460 9226.80 154380 10142.17 Star Gunner 549271.7 5723.01 29219 297.88 N/A N/A 465750 4851.72 677590 7061.61 Surround 9.99 121.15 N/A N/A N/A N/A -7.8 13.33 2.606 76.40 Tennis 0 153.55 23 301.94 N/A N/A 24 308.39 24 308.39 Time Pilot 476763.9 28486.90 32404 1735.96 N/A N/A 216770 12834.99 450810 26924.45 Tutankham 491.48 307.35 238 145.07 N/A N/A 424 264.08 418.2 260.44 Up N Down 715545.61 6407.03 648363 5805.03 3350.3 25.24 986440 8834.45 966590 8656.58 Venture 0.4 0.03 0 0.00 N/A N/A 2035 171.37 2000 168.42 Video Pinball 981791.88 5556.92 22218 125.75 N/A N/A 925830 5240.18 978190 5536.54 Wizard of Wor 197126 4687.87 14531 333.11 N/A N/A 64439 1523.38 63735 1506.59 Yars Revenge 553311.46 1068.72 20089 33.01 5664.3 4.99 972000 1881.96 968090 1874.36 Zaxxon 725853.9 7940.46 18295 199.79 N/A N/A 109140 1193.63 216020 2362.89 MEAN HNS(%) 4994.97 642.49 25.78 7810.1 9620.33 MEDIAN HNS(%) 2041.12 178.04 5.55 832.5 1146.39 Generalized Data Distribution Iteration Table 11. Score table of other SOTA algorithms on HNS(%). Go-Explore (Ecoffet et al., 2019) and Muesli (Hessel et al., 2021). Games Muesli HNS Go-Explore HNS GDI-I3 HNS GDI-H3 HNS Scale 200M 10B 200M 200M Alien 139409 2017.12 959312 13899.77 43384 625.45 48735 703.00 Amidar 21653 1263.18 19083 1113.22 1442 83.81 1065 61.81 Assault 36963 7070.94 30773 5879.64 63876 12250.50 97155 18655.23 Asterix 316210 3810.30 999500 12049.37 759910 9160.41 999999 12055.38 Asteroids 484609 1036.84 112952 240.48 751970 1609.72 760005 1626.94 Atlantis 1363427 8348.18 286460 1691.24 3803000 23427.66 3837300 23639.67 Bank Heist 1213 162.24 3668 494.49 1401 187.68 1380 184.84 Battle Zone 414107 1120.04 998800 2702.36 478830 1295.20 824360 2230.29 Beam Rider 288870 1741.91 371723 2242.15 162100 976.51 422390 2548.07 Berzerk 44478 1769.43 131417 5237.69 7607 298.53 14649 579.46 Bowling 191 122.02 247 162.72 202 129.94 205.2 132.34 Boxing 99 824.17 91 757.50 100 832.50 100 832.50 Breakout 791 2740.63 774 2681.60 864 2994.10 864 2994.10 Centipede 869751 8741.20 613815 6162.78 155830 1548.84 195630 1949.80 Chopper Command 101289 1527.76 996220 15135.16 999999 15192.62 999999 15192.62 Crazy Climber 175322 656.88 235600 897.52 201000 759.39 241170 919.76 Defender 629482 3962.26 N/A N/A 893110 5629.27 970540 6118.89 Demon Attack 129544 7113.74 239895 13180.65 675530 37131.12 787985 43313.70 Double Dunk -3 709.09 24 1936.36 24 1936.36 24 1936.36 Enduro 2362 274.49 1031 119.81 14330 1665.31 14300 1661.82 Fishing Derby 51 269.75 67 300.00 59 285.71 65 296.22 Freeway 33 111.49 34 114.86 34 114.86 34 114.86 Frostbite 301694 7064.73 999990 23420.19 10485 244.05 11330 263.84 Gopher 104441 4834.72 134244 6217.75 488830 22672.63 473560 21964.01 Gravitar 11660 361.41 13385 415.68 5905 180.34 5915 180.66 Hero 37161 121.26 37783 123.34 38330 125.18 38225 124.83 Ice Hockey 25 299.17 33 365.29 44.94 463.97 47.11 481.90 Jamesbond 19319 7045.29 200810 73331.26 594500 217118.70 620780 226716.95 Kangaroo 14096 470.80 24300 812.87 14500 484.34 14636 488.90 Krull 34221 3056.02 63149 5765.90 97575 8990.82 594540 55544.92 Kung Fu Master 134689 598.06 24320 107.05 140440 623.64 1666665 7413.57 Montezuma Revenge 2359 49.63 24758 520.86 3000 63.11 2500 52.60 Ms Pacman 65278 977.84 456123 6860.25 11536 169.00 11573 169.55 Name This Game 105043 1784.89 212824 3657.16 34434 558.34 36296 590.68 Phoenix 805305 12413.69 19200 284.50 894460 13789.30 959580 14794.07 Pitfall 0 3.43 7875 121.09 0 3.43 -4.3 3.36 Pong 20 115.30 21 118.13 21 118.13 21 118.13 Private Eye 10323 14.81 69976 100.58 15100 21.68 15100 21.68 Qbert 157353 1182.66 999975 7522.41 27800 207.93 28657 214.38 Riverraid 47323 291.42 35588 217.05 28075 169.44 28349 171.17 Road Runner 327025 4174.55 999900 12764.26 878600 11215.78 999999 12765.53 Robotank 59 585.57 143 1451.55 108 1092.78 113.4 1146.39 Seaquest 815970 1943.26 539456 1284.68 943910 2247.98 1000000 2381.57 Skiing -18407 -10.26 -4185 101.19 -6774 80.90 -6025 86.77 Solaris 3031 16.18 20306 171.95 11074 88.70 9105 70.95 Space Invaders 59602 3909.65 93147 6115.54 140460 9226.80 154380 10142.17 Star Gunner 214383 2229.49 609580 6352.14 465750 4851.72 677590 7061.61 Surround 9 115.15 N/A N/A -8 13.33 2.606 76.40 Tennis 12 230.97 24 308.39 24 308.39 24 308.39 Time Pilot 359105 21403.71 183620 10839.32 216770 12834.99 450810 26924.45 Tutankham 252 154.03 528 330.73 424 264.08 418.2 260.44 Up N Down 649190 5812.44 553718 4956.94 986440 8834.45 966590 8656.58 Venture 2104 177.18 3074 258.86 2035 171.37 2000 168.42 Video Pinball 685436 3879.56 999999 5659.98 925830 5240.18 978190 5536.54 Wizard of Wor 93291 2211.48 199900 4754.03 64293 1519.90 63735 1506.59 Yars Revenge 557818 1077.47 999998 1936.34 972000 1881.96 968090 1874.36 Zaxxon 65325 714.30 18340 200.28 109140 1193.63 216020 2362.89 MEAN HNS(%) 2538.12 4989.31 7810.1 9620.33 MEDIAN HNS(%) 1077.47 1451.55 832.5 1146.39 Generalized Data Distribution Iteration K.6. Atari Games Table of Scores Based on Human World Records In this part, we detail the raw score of several representative SOTA algorithms , including the SOTA 200M model-free algorithms, SOTA 10B+ model-free algorithms, SOTA model-based algorithms and other SOTA algorithms.2 Additionally, we calculate the human world records normalized world score (HWRNS) of each game with each algorithm. First of all, we demonstrate the sources of the scores that we used. Random scores are from (Badia et al., 2020a). Human world records (HWR) are from (Hafner et al., 2020; Toromanoff et al., 2019). Rainbow s scores are from (Hessel et al., 2017). IMPALA s scores are from (Espeholt et al., 2018). LASER s scores are from (Schmitt et al., 2020), with no sweep at 200M. As there are many versions of R2D2 and NGU, we use original papers . R2D2 s scores are from (Kapturowski et al., 2018). NGU s scores are from (Badia et al., 2020b). Agent57 s scores are from (Badia et al., 2020a). Mu Zero s scores are from (Schrittwieser et al., 2020). Dreamer V2 s scores are from (Hafner et al., 2020). Sim PLe s scores are from (Kaiser et al., 2019). Go-Explore s scores are from (Ecoffet et al., 2019). Muesli s scores are from (Hessel et al., 2021). In the following, we detail the raw scores and HWRNS of each algorithm on 57 Atari games. 2200M and 10B+ represent the training scale. Generalized Data Distribution Iteration Table 12. Score table of SOTA 200M model-free algorithms on HWRNS(%) (GDI-I3). Games RND HWR RAINBOW HWRNS IMPALA HWRNS LASER HWRNS GDI-I3 HWRNS Scale 200M 200M 200M 200M Alien 227.8 251916 9491.7 3.68 15962.1 6.25 976.51 14.04 43384 17.15 Amidar 5.8 104159 5131.2 4.92 1554.79 1.49 1829.2 1.75 1442 1.38 Assault 222.4 8647 14198.5 165.90 19148.47 224.65 21560.4 253.28 63876 755.57 Asterix 210 1000000 428200 42.81 300732 30.06 240090 23.99 759910 75.99 Asteroids 719 10506650 2712.8 0.02 108590.05 1.03 213025 2.02 751970 7.15 Atlantis 12850 10604840 826660 7.68 849967.5 7.90 841200 7.82 3803000 35.78 Bank Heist 14.2 82058 1358 1.64 1223.15 1.47 569.4 0.68 1401 1.69 Battle Zone 236 801000 62010 7.71 20885 2.58 64953.3 8.08 478830 59.77 Beam Rider 363.9 999999 16850.2 1.65 32463.47 3.21 90881.6 9.06 162100 16.18 Berzerk 123.7 1057940 2545.6 0.23 1852.7 0.16 25579.5 2.41 7607 0.71 Bowling 23.1 300 30 2.49 59.92 13.30 48.3 9.10 201.9 64.57 Boxing 0.1 100 99.6 99.60 99.96 99.96 100 100.00 100 100.00 Breakout 1.7 864 417.5 48.22 787.34 91.11 747.9 86.54 864 100.00 Centipede 2090.9 1301709 8167.3 0.47 11049.75 0.69 292792 22.37 155830 11.83 Chopper Command 811 999999 16654 1.59 28255 2.75 761699 76.15 999999 100.00 Crazy Climber 10780.5 219900 168788.5 75.56 136950 60.33 167820 75.10 201000 90.96 Defender 2874.5 6010500 55105 0.87 185203 3.03 336953 5.56 893110 14.82 Demon Attack 152.1 1556345 111185 7.13 132826.98 8.53 133530 8.57 675530 43.40 Double Dunk -18.6 21 -0.3 46.21 -0.33 46.14 14 82.32 24 107.58 Enduro 0 9500 2125.9 22.38 0 0.00 0 0.00 14330 150.84 Fishing Derby -91.7 71 31.3 75.60 44.85 83.93 45.2 84.14 59 92.89 Freeway 0 38 34 89.47 0 0.00 0 0.00 34 89.47 Frostbite 65.2 454830 9590.5 2.09 317.75 0.06 5083.5 1.10 10485 2.29 Gopher 257.6 355040 70354.6 19.76 66782.3 18.75 114820.7 32.29 488830 137.71 Gravitar 173 162850 1419.3 0.77 359.5 0.11 1106.2 0.57 5905 3.52 Hero 1027 1000000 55887.4 5.49 33730.55 3.27 31628.7 3.06 38330 3.73 Ice Hockey -11.2 36 1.1 26.06 3.48 31.10 17.4 60.59 44.92 118.94 Jamesbond 29 45550 19809 43.45 601.5 1.26 37999.8 83.41 594500 1305.93 Kangaroo 52 1424600 14637.5 1.02 1632 0.11 14308 1.00 14500 1.01 Krull 1598 104100 8741.5 6.97 8147.4 6.39 9387.5 7.60 97575 93.63 Kung Fu Master 258.5 1000000 52181 5.19 43375.5 4.31 607443 60.73 140440 14.02 Montezuma Revenge 0 1219200 384 0.03 0 0.00 0.3 0.00 3000 0.25 Ms Pacman 307.3 290090 5380.4 1.75 7342.32 2.43 6565.5 2.16 11536 3.87 Name This Game 2292.3 25220 13136 47.30 21537.2 83.94 26219.5 104.36 34434 140.19 Phoenix 761.5 4014440 108529 2.69 210996.45 5.24 519304 12.92 894460 22.27 Pitfall -229.4 114000 0 0.20 -1.66 0.20 -0.6 0.20 0 0.20 Pong -20.7 21 20.9 99.76 20.98 99.95 21 100.00 21 100.00 Private Eye 24.9 101800 4234 4.14 98.5 0.07 96.3 0.07 15100 14.81 Qbert 163.9 2400000 33817.5 1.40 351200.12 14.63 21449.6 0.89 27800 1.15 Riverraid 1338.5 1000000 22920.8 2.16 29608.05 2.83 40362.7 3.91 28075 2.68 Road Runner 11.5 2038100 62041 3.04 57121 2.80 45289 2.22 878600 43.11 Robotank 2.2 76 61.4 80.22 12.96 14.58 62.1 81.17 108.2 143.63 Seaquest 68.4 999999 15898.9 1.58 1753.2 0.17 2890.3 0.28 943910 94.39 Skiing -17098 -3272 -12957.8 29.95 -10180.38 50.03 -29968.4 -93.09 -6774 74.67 Solaris 1236.3 111420 3560.3 2.11 2365 1.02 2273.5 0.94 11074 8.93 Space Invaders 148 621535 18789 3.00 43595.78 6.99 51037.4 8.19 140460 22.58 Star Gunner 664 77400 127029 164.67 200625 260.58 321528 418.14 465750 606.09 Surround -10 9.6 9.7 100.51 7.56 89.59 8.4 93.88 -7.8 11.22 Tennis -23.8 21 0 53.13 0.55 54.35 12.2 80.36 24 106.70 Time Pilot 3568 65300 12926 15.16 48481.5 72.76 105316 164.82 216770 345.37 Tutankham 11.4 5384 241 4.27 292.11 5.22 278.9 4.98 423.9 7.68 Up N Down 533.4 82840 125755 152.14 332546.75 403.39 345727 419.40 986440 1197.85 Venture 0 38900 5.5 0.01 0 0.00 0 0.00 2000 5.23 Video Pinball 0 89218328 533936.5 0.60 572898.27 0.64 511835 0.57 925830 1.04 Wizard of Wor 563.5 395300 17862.5 4.38 9157.5 2.18 29059.3 7.22 64439 16.14 Yars Revenge 3092.9 15000105 102557 0.66 84231.14 0.54 166292.3 1.09 972000 6.46 Zaxxon 32.5 83700 22209.5 26.51 32935.5 39.33 41118 49.11 109140 130.41 MEAN HWRNS(%) 0.00 100.00 28.39 34.52 45.39 117.98 MEDIAN HWRNS(%) 0.00 100.00 4.92 4.31 8.08 35.78 Generalized Data Distribution Iteration Table 13. Score table of SOTA 200M model-free algorithms on HWRNS(%) (GDI-H3). Games RND HWR RAINBOW HWRNS IMPALA HWRNS LASER HWRNS GDI-H3 HWRNS Scale 200M 200M 200M 200M Alien 227.8 251916 9491.7 3.68 15962.1 6.25 976.51 14.04 48735 19.27 Amidar 5.8 104159 5131.2 4.92 1554.79 1.49 1829.2 1.75 1065 1.02 Assault 222.4 8647 14198.5 165.90 19148.47 224.65 21560.4 253.28 97155 1150.59 Asterix 210 1000000 428200 42.81 300732 30.06 240090 23.99 999999 100.00 Asteroids 719 10506650 2712.8 0.02 108590.05 1.03 213025 2.02 760005 7.23 Atlantis 12850 10604840 826660 7.68 849967.5 7.90 841200 7.82 3837300 36.11 Bank Heist 14.2 82058 1358 1.64 1223.15 1.47 569.4 0.68 1380 1.66 Battle Zone 236 801000 62010 7.71 20885 2.58 64953.3 8.08 824360 102.92 Beam Rider 363.9 999999 16850.2 1.65 32463.47 3.21 90881.6 9.06 422390 42.22 Berzerk 123.7 1057940 2545.6 0.23 1852.7 0.16 25579.5 2.41 14649 1.37 Bowling 23.1 300 30 2.49 59.92 13.30 48.3 9.10 205.2 65.76 Boxing 0.1 100 99.6 99.60 99.96 99.96 100 100.00 100 100.00 Breakout 1.7 864 417.5 48.22 787.34 91.11 747.9 86.54 864 100.00 Centipede 2090.9 1301709 8167.3 0.47 11049.75 0.69 292792 22.37 195630 14.89 Chopper Command 811 999999 16654 1.59 28255 2.75 761699 76.15 999999 100.00 Crazy Climber 10780.5 219900 168788.5 75.56 136950 60.33 167820 75.10 241170 110.17 Defender 2874.5 6010500 55105 0.87 185203 3.03 336953 5.56 970540 16.11 Demon Attack 152.1 1556345 111185 7.13 132826.98 8.53 133530 8.57 787985 50.63 Double Dunk -18.6 21 -0.3 46.21 -0.33 46.14 14 82.32 24 107.58 Enduro 0 9500 2125.9 22.38 0 0.00 0 0.00 14300 150.53 Fishing Derby -91.7 71 31.3 75.60 44.85 83.93 45.2 84.14 65 96.31 Freeway 0 38 34 89.47 0 0.00 0 0.00 34 89.47 Frostbite 65.2 454830 9590.5 2.09 317.75 0.06 5083.5 1.10 11330 2.48 Gopher 257.6 355040 70354.6 19.76 66782.3 18.75 114820.7 32.29 473560 133.41 Gravitar 173 162850 1419.3 0.77 359.5 0.11 1106.2 0.57 5915 3.53 Hero 1027 1000000 55887.4 5.49 33730.55 3.27 31628.7 3.06 38225 3.72 Ice Hockey -11.2 36 1.1 26.06 3.48 31.10 17.4 60.59 47.11 123.54 Jamesbond 29 45550 19809 43.45 601.5 1.26 37999.8 83.41 620780 1363.66 Kangaroo 52 1424600 14637.5 1.02 1632 0.11 14308 1.00 14636 1.02 Krull 1598 104100 8741.5 6.97 8147.4 6.39 9387.5 7.60 594540 578.47 Kung Fu Master 258.5 1000000 52181 5.19 43375.5 4.31 607443 60.73 1666665 166.68 Montezuma Revenge 0 1219200 384 0.03 0 0.00 0.3 0.00 2500 0.21 Ms Pacman 307.3 290090 5380.4 1.75 7342.32 2.43 6565.5 2.16 11573 3.89 Name This Game 2292.3 25220 13136 47.30 21537.2 83.94 26219.5 104.36 36296 148.31 Phoenix 761.5 4014440 108529 2.69 210996.45 5.24 519304 12.92 959580 23.89 Pitfall -229.4 114000 0 0.20 -1.66 0.20 -0.6 0.20 -4.3 0.20 Pong -20.7 21 20.9 99.76 20.98 99.95 21 100.00 21 100.00 Private Eye 24.9 101800 4234 4.14 98.5 0.07 96.3 0.07 15100 14.81 Qbert 163.9 2400000 33817.5 1.40 351200.12 14.63 21449.6 0.89 28657 1.19 Riverraid 1338.5 1000000 22920.8 2.16 29608.05 2.83 40362.7 3.91 28349 2.70 Road Runner 11.5 2038100 62041 3.04 57121 2.80 45289 2.22 999999 49.06 Robotank 2.2 76 61.4 80.22 12.96 14.58 62.1 81.17 113.4 150.68 Seaquest 68.4 999999 15898.9 1.58 1753.2 0.17 2890.3 0.28 1000000 100.00 Skiing -17098 -3272 -12957.8 29.95 -10180.38 50.03 -29968.4 -93.09 -6025 86.77 Solaris 1236.3 111420 3560.3 2.11 2365 1.02 2273.5 0.94 9105 7.14 Space Invaders 148 621535 18789 3.00 43595.78 6.99 51037.4 8.19 154380 24.82 Star Gunner 664 77400 127029 164.67 200625 260.58 321528 418.14 677590 882.15 Surround -10 9.6 9.7 100.51 7.56 89.59 8.4 93.88 2.606 64.32 Tennis -23.8 21 0 53.13 0.55 54.35 12.2 80.36 24 106.70 Time Pilot 3568 65300 12926 15.16 48481.5 72.76 105316 164.82 450810 724.49 Tutankham 11.4 5384 241 4.27 292.11 5.22 278.9 4.98 418.2 7.57 Up N Down 533.4 82840 125755 152.14 332546.75 403.39 345727 419.40 966590 1173.73 Venture 0 38900 5.5 0.01 0 0.00 0 0.00 2000 5.14 Video Pinball 0 89218328 533936.5 0.60 572898.27 0.64 511835 0.57 978190 1.10 Wizard of Wor 563.5 395300 17862.5 4.38 9157.5 2.18 29059.3 7.22 63735 16.00 Yars Revenge 3092.9 15000105 102557 0.66 84231.14 0.54 166292.3 1.09 968090 6.43 Zaxxon 32.5 83700 22209.5 26.51 32935.5 39.33 41118 49.11 216020 258.15 MEAN HWRNS(%) 0.00 100.00 28.39 34.52 45.39 154.27 MEDIAN HWRNS(%) 0.00 100.00 4.92 4.31 8.08 50.63 Generalized Data Distribution Iteration Table 14. Score table of SOTA 10B+ model-free algorithms on HWRNS(%). Games R2D2 HWRNS NGU HWRNS AGENT57 HWRNS GDI-I3 HWRNS GDI-H3 HWRNS Scale 10B 35B 100B 200M 200M Alien 109038.4 43.23 248100 98.48 297638.17 118.17 43384 17.15 48735 19.27 Amidar 27751.24 26.64 17800 17.08 29660.08 28.47 1442 1.38 1065 1.02 Assault 90526.44 1071.91 34800 410.44 67212.67 795.17 63876 755.57 97155 1150.59 Asterix 999080 99.91 950700 95.07 991384.42 99.14 759910 75.99 999999 100.00 Asteroids 265861.2 2.52 230500 2.19 150854.61 1.43 751970 7.15 760005 7.23 Atlantis 1576068 14.76 1653600 15.49 1528841.76 14.31 3803000 35.78 3837300 36.11 Bank Heist 46285.6 56.40 17400 21.19 23071.5 28.10 1401 1.69 1380 1.66 Battle Zone 513360 64.08 691700 86.35 934134.88 116.63 478830 59.77 824360 102.92 Beam Rider 128236.08 12.79 63600 6.33 300509.8 30.03 162100 16.18 422390 42.22 Berzerk 34134.8 3.22 36200 3.41 61507.83 5.80 7607 0.71 14649 1.37 Bowling 196.36 62.57 211.9 68.18 251.18 82.37 201.9 64.57 205.2 65.76 Boxing 99.16 99.16 99.7 99.70 100 100.00 100 100.00 100 100.00 Breakout 795.36 92.04 559.2 64.65 790.4 91.46 864 100.00 864 100.00 Centipede 532921.84 40.85 577800 44.30 412847.86 31.61 155830 11.83 195630 14.89 Chopper Command 960648 96.06 999900 99.99 999900 99.99 999999 100.00 999999 100.00 Crazy Climber 312768 144.41 313400 144.71 565909.85 265.46 201000 90.96 241170 110.17 Defender 562106 9.31 664100 11.01 677642.78 11.23 893110 14.82 970540 16.11 Demon Attack 143664.6 9.22 143500 9.21 143161.44 9.19 675530 43.40 787985 50.63 Double Dunk 23.12 105.35 -14.1 11.36 23.93 107.40 24 107.58 24 107.58 Enduro 2376.68 25.02 2000 21.05 2367.71 24.92 14330 150.84 14300 150.53 Fishing Derby 81.96 106.74 32 76.03 86.97 109.82 59 92.89 65 96.31 Freeway 34 89.47 28.5 75.00 32.59 85.76 34 89.47 34 89.47 Frostbite 11238.4 2.46 206400 45.37 541280.88 119.01 10485 2.29 11330 2.48 Gopher 122196 34.37 113400 31.89 117777.08 33.12 488830 137.71 473560 133.41 Gravitar 6750 4.04 14200 8.62 19213.96 11.70 5905 3.52 5915 3.53 Hero 37030.4 3.60 69400 6.84 114736.26 11.38 38330 3.73 38225 3.72 Ice Hockey 71.56 175.34 -4.1 15.04 63.64 158.56 37.89 118.94 47.11 123.54 Jamesbond 23266 51.05 26600 58.37 135784.96 298.23 594500 1305.93 620780 1363.66 Kangaroo 14112 0.99 35100 2.46 24034.16 1.68 14500 1.01 14636 1.02 Krull 145284.8 140.18 127400 122.73 251997.31 244.29 97575 93.63 594540 578.47 Kung Fu Master 200176 20.00 212100 21.19 206845.82 20.66 140440 14.02 1666665 166.68 Montezuma Revenge 2504 0.21 10400 0.85 9352.01 0.77 3000 0.25 2500 0.21 Ms Pacman 29928.2 10.22 40800 13.97 63994.44 21.98 11536 3.87 11573 3.89 Name This Game 45214.8 187.21 23900 94.24 54386.77 227.21 34434 140.19 36296 148.31 Phoenix 811621.6 20.20 959100 23.88 908264.15 22.61 894460 22.27 959580 23.89 Pitfall 0 0.20 7800 7.03 18756.01 16.62 0 0.20 -4.3 0.20 Pong 21 100.00 19.6 96.64 20.67 99.21 21 100.00 21 100.00 Private Eye 300 0.27 100000 98.23 79716.46 78.30 15100 14.81 15100 14.81 Qbert 161000 6.70 451900 18.82 580328.14 24.18 27800 1.15 28657 1.19 Riverraid 34076.4 3.28 36700 3.54 63318.67 6.21 28075 2.68 28349 2.70 Road Runner 498660 24.47 128600 6.31 243025.8 11.92 878600 43.11 999999 49.06 Robotank 132.4 176.42 9.1 9.35 127.32 169.54 108 143.63 113.4 150.68 Seaquest 999991.84 100.00 1000000 100.00 999997.63 100.00 943910 94.39 1000000 100.00 Skiing -29970.32 -93.10 -22977.9 -42.53 -4202.6 93.27 -6774 74.67 -6025 86.77 Solaris 4198.4 2.69 4700 3.14 44199.93 38.99 11074 8.93 9105 7.14 Space Invaders 55889 8.97 43400 6.96 48680.86 7.81 140460 22.58 154380 24.82 Star Gunner 521728 679.03 414600 539.43 839573.53 1093.24 465750 606.09 677590 882.15 Surround 9.96 101.84 -9.6 2.04 9.5 99.49 -7.8 11.22 2.606 64.32 Tennis 24 106.70 10.2 75.89 23.84 106.34 24 106.70 24 106.70 Time Pilot 348932 559.46 344700 552.60 405425.31 650.97 216770 345.37 450810 724.49 Tutankham 393.64 7.11 191.1 3.34 2354.91 43.62 423.9 7.68 418.2 7.57 Up N Down 542918.8 658.98 620100 752.75 623805.73 757.26 986440 1197.85 966590 1173.73 Venture 1992 5.12 1700 4.37 2623.71 6.74 2000 5.23 2000 5.14 Video Pinball 483569.72 0.54 965300 1.08 992340.74 1.11 925830 1.04 978190 1.10 Wizard of Wor 133264 33.62 106200 26.76 157306.41 39.71 64439 16.14 63735 16.00 Yars Revenge 918854.32 6.11 986000 6.55 998532.37 6.64 972000 6.46 968090 6.43 Zaxxon 181372 216.74 111100 132.75 249808.9 298.53 109140 130.41 216020 258.15 MEAN HWRNS(%) 98.78 76.00 125.92 117.98 154.27 MEDIAN HWRNS(%) 33.62 21.19 43.62 35.78 50.63 Generalized Data Distribution Iteration Table 15. Score table of SOTA model-based algorithms on HWRNS(%). Sim PLe (Kaiser et al., 2019) and Dreamer V2(Hafner et al., 2020) haven t evaluated all 57 Atari Games in their paper. For fairness, we set the score on those games as N/A, which will not be considered when calculating the median and mean HWRNS and human world record breakthrough (HWRB). Games Mu Zero HWRNS Dreamer V2 HWRNS Sim PLe HWRNS GDI-I3 HWRNS GDI-H3 HWRNS Scale 20B 200M 1M 200M 200M Alien 741812.63 294.64 3483 1.29 616.9 0.15 43384 17.15 48735 19.27 Amidar 28634.39 27.49 2028 1.94 74.3 0.07 1442 1.38 1065 1.02 Assault 143972.03 1706.31 7679 88.51 527.2 3.62 63876 755.57 97155 1150.59 Asterix 998425 99.84 25669 2.55 1128.3 0.09 759910 75.99 999999 100.00 Asteroids 678558.64 6.45 3064 0.02 793.6 0.00 751970 7.15 760005 7.23 Atlantis 1674767.2 15.69 989207 9.22 20992.5 0.08 3803000 35.78 3837300 36.11 Bank Heist 1278.98 1.54 1043 1.25 34.2 0.02 1401 1.69 1380 1.66 Battle Zone 848623 105.95 31225 3.87 4031.2 0.47 478830 59.77 824360 102.92 Beam Rider 454993.53 45.48 12413 1.21 621.6 0.03 162100 16.18 422390 42.22 Berzerk 85932.6 8.11 751 0.06 N/A N/A 7607 0.71 14649 1.37 Bowling 260.13 85.60 48 8.99 30 2.49 202 64.57 205.2 65.76 Boxing 100 100.00 87 86.99 7.8 7.71 100 100.00 100 100.00 Breakout 864 100.00 350 40.39 16.4 1.70 864 100.00 864 100.00 Centipede 1159049.27 89.02 6601 0.35 N/A N/A 155830 11.83 195630 14.89 Chopper Command 991039.7 99.10 2833 0.20 979.4 0.02 999999 100.00 999999 100.00 Crazy Climber 458315.4 214.01 141424 62.47 62583.6 24.77 201000 90.96 241170 110.17 Defender 839642.95 13.93 N/A N/A N/A N/A 893110 14.82 970540 16.11 Demon Attack 143964.26 9.24 2775 0.17 208.1 0.00 675530 43.40 787985 50.63 Double Dunk 23.94 107.42 22 102.53 N/A N/A 24 107.58 24 107.58 Enduro 2382.44 25.08 2112 22.23 N/A N/A 14330 150.84 14300 150.53 Fishing Derby 91.16 112.39 93.24 286.77 -90.7 0.61 59 92.89 65 96.31 Freeway 33.03 86.92 34 89.47 16.7 43.95 34 89.47 34 89.47 Frostbite 631378.53 138.82 15622 3.42 236.9 0.04 10485 2.29 11330 2.48 Gopher 130345.58 36.67 53853 15.11 596.8 0.10 488830 137.71 473560 133.41 Gravitar 6682.7 4.00 3554 2.08 173.4 0.00 5905 3.52 5915 3.53 Hero 49244.11 4.83 30287 2.93 2656.6 0.16 38330 3.73 38225 3.72 Ice Hockey 67.04 165.76 29 85.17 -11.6 -0.85 38 118.94 47.11 123.54 Jamesbond 41063.25 90.14 9269 20.30 100.5 0.16 594500 1305.93 620780 1363.66 Kangaroo 16763.6 1.17 11819 0.83 51.2 0.00 14500 1.01 14636 1.02 Krull 269358.27 261.22 9687 7.89 2204.8 0.59 97575 93.63 594540 578.47 Kung Fu Master 204824 20.46 66410 6.62 14862.5 1.46 140440 14.02 1666665 166.68 Montezuma Revenge 0 0.00 1932 0.16 N/A N/A 3000 0.25 2500 0.21 Ms Pacman 243401.1 83.89 5651 1.84 1480 0.40 11536 3.87 11573 3.89 Name This Game 157177.85 675.54 14472 53.12 2420.7 0.56 34434 140.19 36296 148.31 Phoenix 955137.84 23.78 13342 0.31 N/A N/A 894460 22.27 959580 23.89 Pitfall 0 0.20 -1 0.20 N/A N/A 0 0.20 -4.3 0.20 Pong 21 100.00 19 95.20 12.8 80.34 21 100.00 21 100.00 Private Eye 15299.98 15.01 158 0.13 35 0.01 15100 14.81 15100 14.81 Qbert 72276 3.00 162023 6.74 1288.8 0.05 27800 1.15 28657 1.19 Riverraid 323417.18 32.25 16249 1.49 1957.8 0.06 28075 2.68 28349 2.70 Road Runner 613411.8 30.10 88772 4.36 5640.6 0.28 878600 43.11 999999 49.06 Robotank 131.13 174.70 65 85.09 N/A N/A 108 143.63 113.4 150.68 Seaquest 999976.52 100.00 45898 4.58 683.3 0.06 943910 94.39 1000000 100.00 Skiing -29968.36 -93.09 -8187 64.45 N/A N/A -6774 74.67 -6025 86.77 Solaris 56.62 -1.07 883 -0.32 N/A N/A 11074 8.93 9105 7.14 Space Invaders 74335.3 11.94 2611 0.40 N/A N/A 140460 22.58 154380 24.82 Star Gunner 549271.7 714.93 29219 37.21 N/A N/A 465750 606.09 677590 882.15 Surround 9.99 101.99 N/A N/A N/A N/A -8 11.22 2.606 64.32 Tennis 0 53.13 23 104.46 N/A N/A 24 106.70 24 106.70 Time Pilot 476763.9 766.53 32404 46.71 N/A N/A 216770 345.37 450810 724.49 Tutankham 491.48 8.94 238 4.22 N/A N/A 424 7.68 418.2 7.57 Up N Down 715545.61 868.72 648363 787.09 3350.3 3.42 986440 1197.85 966590 1173.73 Venture 0.4 0.00 0 0.00 N/A N/A 2030 5.23 2000 5.14 Video Pinball 981791.88 1.10 22218 0.02 N/A N/A 925830 1.04 978190 1.10 Wizard of Wor 197126 49.80 14531 3.54 N/A N/A 64439 16.14 63735 16.00 Yars Revenge 553311.46 3.67 20089 0.11 5664.3 0.02 972000 6.46 968090 6.43 Zaxxon 725853.9 867.51 18295 21.83 N/A N/A 109140 130.41 216020 258.15 MEAN HWRNS(%) 152.10 4.29 4.80 117.98 154.27 MEDIAN HWRNS(%) 49.80 4.29 0.13 35.78 50.63 Generalized Data Distribution Iteration Table 16. Score table of other SOTA algorithms on HWRNS(%). Go-Explore (Ecoffet et al., 2019) and Muesli (Hessel et al., 2021). Games Muesli HWRNS Go-Explore HWRNS GDI-I3 HWRNS GDI-H3 HWRNS Scale 200M 10B 200M 200M Alien 139409 55.30 959312 381.06 43384 17.15 48735 19.27 Amidar 21653 20.78 19083 18.32 1442 1.38 1065 1.02 Assault 36963 436.11 30773 362.64 63876 755.57 97155 1150.59 Asterix 316210 31.61 999500 99.95 759910 75.99 999999 100.00 Asteroids 484609 4.61 112952 1.07 751970 7.15 760005 7.23 Atlantis 1363427 12.75 286460 2.58 3803000 35.78 3837300 36.11 Bank Heist 1213 1.46 3668 4.45 1401 1.69 1380 1.66 Battle Zone 414107 51.68 998800 124.70 478830 59.77 824360 102.92 Beam Rider 288870 28.86 371723 37.15 162100 16.18 422390 42.22 Berzerk 44478 4.19 131417 12.41 7607 0.71 14649 1.37 Bowling 191 60.64 247 80.86 202 64.57 205.2 65.76 Boxing 99 99.00 91 90.99 100 100.00 100 100.00 Breakout 791 91.53 774 89.56 864 100.00 864 100.00 Centipede 869751 66.76 613815 47.07 155830 11.83 195630 14.89 Chopper Command 101289 10.06 996220 99.62 999999 100.00 999999 100.00 Crazy Climber 175322 78.68 235600 107.51 201000 90.96 241170 110.17 Defender 629482 10.43 N/A N/A 893110 14.82 970540 16.11 Demon Attack 129544 8.31 239895 15.41 675530 43.40 787985 50.63 Double Dunk -3 39.39 24 107.58 24 107.58 24 107.58 Enduro 2362 24.86 1031 10.85 14330 150.84 14300 150.53 Fishing Derby 51 87.71 67 97.54 59 92.89 65 96.31 Freeway 33 86.84 34 89.47 34 89.47 34 89.47 Frostbite 301694 66.33 999990 219.88 10485 2.29 11330 2.48 Gopher 104441 29.37 134244 37.77 488830 137.71 473560 133.41 Gravitar 11660 7.06 13385 8.12 5905 3.52 5915 3.53 Hero 37161 3.62 37783 3.68 38330 3.73 38225 3.72 Ice Hockey 25 76.69 33 93.64 45 118.94 47.11 123.54 Jamesbond 19319 42.38 200810 441.07 594500 1305.93 620780 1363.66 Kangaroo 14096 0.99 24300 1.70 14500 1.01 14636 1.02 Krull 34221 31.83 63149 60.05 97575 93.63 594540 578.47 Kung Fu Master 134689 13.45 24320 2.41 140440 14.02 1666665 166.68 Montezuma Revenge 2359 0.19 24758 2.03 3000 0.25 2500 0.21 Ms Pacman 65278 22.42 456123 157.30 11536 3.87 11573 3.89 Name This Game 105043 448.15 212824 918.24 34434 140.19 36296 148.31 Phoenix 805305 20.05 19200 0.46 894460 22.27 959580 23.89 Pitfall 0 0.20 7875 7.09 0 0.2 -4.3 0.20 Pong 20 97.60 21 100.00 21 100 21 100.00 Private Eye 10323 10.12 69976 68.73 15100 14.81 15100 14.81 Qbert 157353 6.55 999975 41.66 27800 1.15 28657 1.19 Riverraid 47323 4.60 35588 3.43 28075 2.68 28349 2.70 Road Runner 327025 16.05 999900 49.06 878600 43.11 999999 49.06 Robotank 59 76.96 143 190.79 108 143.63 113.4 150.68 Seaquest 815970 81.60 539456 53.94 943910 94.39 1000000 100.00 Skiing -18407 -9.47 -4185 93.40 -6774 74.67 -6025 86.77 Solaris 3031 1.63 20306 17.31 11074 8.93 9105 7.14 Space Invaders 59602 9.57 93147 14.97 140460 22.58 154380 24.82 Star Gunner 214383 278.51 609580 793.52 465750 606.09 677590 882.15 Surround 9 96.94 N/A N/A -8 11.22 2.606 64.32 Tennis 12 79.91 24 106.7 24 106.70 24 106.70 Time Pilot 359105 575.94 183620 291.67 216770 345.37 450810 724.49 Tutankham 252 4.48 528 9.62 424 7.68 418.2 7.57 Up N Down 649190 788.10 553718 672.10 986440 1197.85 966590 1173.73 Venture 2104 5.41 3074 7.90 2035 5.23 2000 5.14 Video Pinball 685436 0.77 999999 1.12 925830 1.04 978190 1.10 Wizard of Wor 93291 23.49 199900 50.50 64293 16.14 63735 16.00 Yars Revenge 557818 3.70 999998 6.65 972000 6.46 968090 6.43 Zaxxon 65325 78.04 18340 21.88 109140 130.41 216020 258.15 MEAN HWRNS(%) 75.52 116.89 117.98 154.27 MEDIAN HWRNS(%) 24.86 50.50 35.78 50.63 Generalized Data Distribution Iteration K.7. Atari Games Table of Scores Based on SABER In this part, we detail the raw score of several representative SOTA algorithms , including the SOTA 200M model-free algorithms, SOTA 10B+ model-free algorithms, SOTA model-based algorithms and other SOTA algorithms.3 Additionally, we calculate the capped human world records normalized world score (CHWRNS) or called SABER (Toromanoff et al., 2019) of each game with each algorithm. First of all, we demonstrate the sources of the scores that we used. Random scores are from (Badia et al., 2020a). Human world records (HWR) are from (Hafner et al., 2020; Toromanoff et al., 2019). Rainbow s scores are from (Hessel et al., 2017). IMPALA s scores are from (Espeholt et al., 2018). LASER s scores are from (Schmitt et al., 2020), with no sweep at 200M. As there are many versions of R2D2 and NGU, we use original papers . R2D2 s scores are from (Kapturowski et al., 2018). NGU s scores are from (Badia et al., 2020b). Agent57 s scores are from (Badia et al., 2020a). Mu Zero s scores are from (Schrittwieser et al., 2020). Dreamer V2 s scores are from (Hafner et al., 2020). Sim PLe s scores are from (Kaiser et al., 2019). Go-Explore s scores are from (Ecoffet et al., 2019). Muesli s scores are from (Hessel et al., 2021). In the following, we detail the raw scores and SABER of each algorithm on 57 Atari games. 3200M and 10B+ represent the training scale. Generalized Data Distribution Iteration Table 17. Score table of SOTA 200M model-free algorithms on SABER(%) (GDI-I3). Games RND HWR RAINBOW SABER IMPALA SABER LASER SABER GDI-I3 SABER Scale 200M 200M 200M 200M Alien 227.8 251916 9491.7 3.68 15962.1 6.25 976.51 14.04 43384 17.15 Amidar 5.8 104159 5131.2 4.92 1554.79 1.49 1829.2 1.75 1442 1.38 Assault 222.4 8647 14198.5 165.90 19148.47 200.00 21560.4 200.00 63876 200.00 Asterix 210 1000000 428200 42.81 300732 30.06 240090 23.99 759910 75.99 Asteroids 719 10506650 2712.8 0.02 108590.05 1.03 213025 2.02 751970 7.15 Atlantis 12850 10604840 826660 7.68 849967.5 7.90 841200 7.82 3803000 35.78 Bank Heist 14.2 82058 1358 1.64 1223.15 1.47 569.4 0.68 1401 1.69 Battle Zone 236 801000 62010 7.71 20885 2.58 64953.3 8.08 478830 59.77 Beam Rider 363.9 999999 16850.2 1.65 32463.47 3.21 90881.6 9.06 162100 16.18 Berzerk 123.7 1057940 2545.6 0.23 1852.7 0.16 25579.5 2.41 7607 0.71 Bowling 23.1 300 30 2.49 59.92 13.30 48.3 9.10 201.9 64.57 Boxing 0.1 100 99.6 99.60 99.96 99.96 100 100.00 100 100.00 Breakout 1.7 864 417.5 48.22 787.34 91.11 747.9 86.54 864 100.00 Centipede 2090.9 1301709 8167.3 0.47 11049.75 0.69 292792 22.37 155830 11.83 Chopper Command 811 999999 16654 1.59 28255 2.75 761699 76.15 999999 100.00 Crazy Climber 10780.5 219900 168788.5 75.56 136950 60.33 167820 75.10 201000 90.96 Defender 2874.5 6010500 55105 0.87 185203 3.03 336953 5.56 893110 14.82 Demon Attack 152.1 1556345 111185 7.13 132826.98 8.53 133530 8.57 675530 43.10 Double Dunk -18.6 21 -0.3 46.21 -0.33 46.14 14 82.32 24 107.58 Enduro 0 9500 2125.9 22.38 0 0.00 0 0.00 14330 150.84 Fishing Derby -91.7 71 31.3 75.60 44.85 83.93 45.2 84.14 59 95.08 Freeway 0 38 34 89.47 0 0.00 0 0.00 34 89.47 Frostbite 65.2 454830 9590.5 2.09 317.75 0.06 5083.5 1.10 10485 2.29 Gopher 257.6 355040 70354.6 19.76 66782.3 18.75 114820.7 32.29 488830 137.71 Gravitar 173 162850 1419.3 0.77 359.5 0.11 1106.2 0.57 5905 3.52 Hero 1027 1000000 55887.4 5.49 33730.55 3.27 31628.7 3.06 38330 3.73 Ice Hockey -11.2 36 1.1 26.06 3.48 31.10 17.4 60.59 44.92 118.94 Jamesbond 29 45550 19809 43.45 601.5 1.26 37999.8 83.41 594500 200.00 Kangaroo 52 1424600 14637.5 1.02 1632 0.11 14308 1.00 14500 1.01 Krull 1598 104100 8741.5 6.97 8147.4 6.39 9387.5 7.60 97575 93.63 Kung Fu Master 258.5 1000000 52181 5.19 43375.5 4.31 607443 60.73 140440 14.02 Montezuma Revenge 0 1219200 384 0.03 0 0.00 0.3 0.00 3000 0.25 Ms Pacman 307.3 290090 5380.4 1.75 7342.32 2.43 6565.5 2.16 11536 3.87 Name This Game 2292.3 25220 13136 47.30 21537.2 83.94 26219.5 104.36 34434 140.19 Phoenix 761.5 4014440 108529 2.69 210996.45 5.24 519304 12.92 894460 22.27 Pitfall -229.4 114000 0 0.20 -1.66 0.20 -0.6 0.20 0 0.20 Pong -20.7 21 20.9 99.76 20.98 99.95 21 100.00 21 100.00 Private Eye 24.9 101800 4234 4.14 98.5 0.07 96.3 0.07 15100 14.81 Qbert 163.9 2400000 33817.5 1.40 351200.12 14.63 21449.6 0.89 27800 1.03 Riverraid 1338.5 1000000 22920.8 2.16 29608.05 2.83 40362.7 3.91 28075 2.68 Road Runner 11.5 2038100 62041 3.04 57121 2.80 45289 2.22 878600 43.11 Robotank 2.2 76 61.4 80.22 12.96 14.58 62.1 81.17 108.2 143.63 Seaquest 68.4 999999 15898.9 1.58 1753.2 0.17 2890.3 0.28 943910 94.39 Skiing -17098 -3272 -12957.8 29.95 -10180.38 50.03 -29968.4 -93.09 -6774 74.67 Solaris 1236.3 111420 3560.3 2.11 2365 1.02 2273.5 0.94 11074 8.93 Space Invaders 148 621535 18789 3.00 43595.78 6.99 51037.4 8.19 140460 22.58 Star Gunner 664 77400 127029 164.67 200625 200.00 321528 418.14 465750 200.00 Surround -10 9.6 9.7 100.51 7.56 89.59 8.4 93.88 -7.8 11.22 Tennis -23.8 21 0 53.13 0.55 54.35 12.2 80.36 24 106.70 Time Pilot 3568 65300 12926 15.16 48481.5 72.76 105316 164.82 216770 200.00 Tutankham 11.4 5384 241 4.27 292.11 5.22 278.9 4.98 423.9 7.68 Up N Down 533.4 82840 125755 152.14 332546.75 200.00 345727 200.00 986440 200.00 Venture 0 38900 5.5 0.01 0 0.00 0 0.00 2000 5.14 Video Pinball 0 89218328 533936.5 0.60 572898.27 0.64 511835 0.57 925830 1.04 Wizard of Wor 563.5 395300 17862.5 4.38 9157.5 2.18 29059.3 7.22 64439 16.18 Yars Revenge 3092.9 15000105 102557 0.66 84231.14 0.54 166292.3 1.09 972000 6.46 Zaxxon 32.5 83700 22209.5 26.51 32935.5 39.33 41118 49.11 109140 130.41 MEAN SABER(%) 0.00 100.00 28.39 29.45 36.78 61.66 MEDIAN SABER(%) 0.00 100.00 4.92 4.31 8.08 35.78 Generalized Data Distribution Iteration Table 18. Score table of SOTA 200M model-free algorithms on SABER(%) (GDI-H3). Games RND HWR RAINBOW SABER IMPALA SABER LASER SABER GDI-H3 SABER Scale 200M 200M 200M 200M Alien 227.8 251916 9491.7 3.68 15962.1 6.25 976.51 14.04 48735 19.27 Amidar 5.8 104159 5131.2 4.92 1554.79 1.49 1829.2 1.75 1065 1.02 Assault 222.4 8647 14198.5 165.90 19148.47 200.00 21560.4 200.00 97155 200.00 Asterix 210 1000000 428200 42.81 300732 30.06 240090 23.99 999999 100.00 Asteroids 719 10506650 2712.8 0.02 108590.05 1.03 213025 2.02 760005 7.23 Atlantis 12850 10604840 826660 7.68 849967.5 7.90 841200 7.82 3837300 36.11 Bank Heist 14.2 82058 1358 1.64 1223.15 1.47 569.4 0.68 1380 1.66 Battle Zone 236 801000 62010 7.71 20885 2.58 64953.3 8.08 824360 102.92 Beam Rider 363.9 999999 16850.2 1.65 32463.47 3.21 90881.6 9.06 422390 42.22 Berzerk 123.7 1057940 2545.6 0.23 1852.7 0.16 25579.5 2.41 14649 1.37 Bowling 23.1 300 30 2.49 59.92 13.30 48.3 9.10 205.2 65.76 Boxing 0.1 100 99.6 99.60 99.96 99.96 100 100.00 100 100.00 Breakout 1.7 864 417.5 48.22 787.34 91.11 747.9 86.54 864 100.00 Centipede 2090.9 1301709 8167.3 0.47 11049.75 0.69 292792 22.37 195630 14.89 Chopper Command 811 999999 16654 1.59 28255 2.75 761699 76.15 999999 100.00 Crazy Climber 10780.5 219900 168788.5 75.56 136950 60.33 167820 75.10 241170 110.17 Defender 2874.5 6010500 55105 0.87 185203 3.03 336953 5.56 970540 16.11 Demon Attack 152.1 1556345 111185 7.13 132826.98 8.53 133530 8.57 787985 50.63 Double Dunk -18.6 21 -0.3 46.21 -0.33 46.14 14 82.32 24 107.58 Enduro 0 9500 2125.9 22.38 0 0.00 0 0.00 14300 150.53 Fishing Derby -91.7 71 31.3 75.60 44.85 83.93 45.2 84.14 65 96.31 Freeway 0 38 34 89.47 0 0.00 0 0.00 34 89.47 Frostbite 65.2 454830 9590.5 2.09 317.75 0.06 5083.5 1.10 11330 2.48 Gopher 257.6 355040 70354.6 19.76 66782.3 18.75 114820.7 32.29 473560 133.41 Gravitar 173 162850 1419.3 0.77 359.5 0.11 1106.2 0.57 5915 3.53 Hero 1027 1000000 55887.4 5.49 33730.55 3.27 31628.7 3.06 38225 3.72 Ice Hockey -11.2 36 1.1 26.06 3.48 31.10 17.4 60.59 47.11 123.54 Jamesbond 29 45550 19809 43.45 601.5 1.26 37999.8 83.41 620780 200.00 Kangaroo 52 1424600 14637.5 1.02 1632 0.11 14308 1.00 14636 1.02 Krull 1598 104100 8741.5 6.97 8147.4 6.39 9387.5 7.60 594540 200.00 Kung Fu Master 258.5 1000000 52181 5.19 43375.5 4.31 607443 60.73 1666665 166.68 Montezuma Revenge 0 1219200 384 0.03 0 0.00 0.3 0.00 2500 0.21 Ms Pacman 307.3 290090 5380.4 1.75 7342.32 2.43 6565.5 2.16 11573 3.89 Name This Game 2292.3 25220 13136 47.30 21537.2 83.94 26219.5 104.36 36296 148.31 Phoenix 761.5 4014440 108529 2.69 210996.45 5.24 519304 12.92 959580 23.89 Pitfall -229.4 114000 0 0.20 -1.66 0.20 -0.6 0.20 -4.3 0.20 Pong -20.7 21 20.9 99.76 20.98 99.95 21 100.00 21 100.00 Private Eye 24.9 101800 4234 4.14 98.5 0.07 96.3 0.07 15100 14.81 Qbert 163.9 2400000 33817.5 1.40 351200.12 14.63 21449.6 0.89 28657 1.19 Riverraid 1338.5 1000000 22920.8 2.16 29608.05 2.83 40362.7 3.91 28349 2.70 Road Runner 11.5 2038100 62041 3.04 57121 2.80 45289 2.22 999999 49.06 Robotank 2.2 76 61.4 80.22 12.96 14.58 62.1 81.17 113.4 150.68 Seaquest 68.4 999999 15898.9 1.58 1753.2 0.17 2890.3 0.28 1000000 100.00 Skiing -17098 -3272 -12957.8 29.95 -10180.38 50.03 -29968.4 -93.09 -6025 86.77 Solaris 1236.3 111420 3560.3 2.11 2365 1.02 2273.5 0.94 9105 7.14 Space Invaders 148 621535 18789 3.00 43595.78 6.99 51037.4 8.19 154380 24.82 Star Gunner 664 77400 127029 164.67 200625 200.00 321528 418.14 677590 200.00 Surround -10 9.6 9.7 100.51 7.56 89.59 8.4 93.88 2.606 64.32 Tennis -23.8 21 0 53.13 0.55 54.35 12.2 80.36 24 106.70 Time Pilot 3568 65300 12926 15.16 48481.5 72.76 105316 164.82 450810 200.00 Tutankham 11.4 5384 241 4.27 292.11 5.22 278.9 4.98 418.2 7.57 Up N Down 533.4 82840 125755 152.14 332546.75 200.00 345727 200.00 966590 200.00 Venture 0 38900 5.5 0.01 0 0.00 0 0.00 2000 5.14 Video Pinball 0 89218328 533936.5 0.60 572898.27 0.64 511835 0.57 978190 1.10 Wizard of Wor 563.5 395300 17862.5 4.38 9157.5 2.18 29059.3 7.22 63735 16.00 Yars Revenge 3092.9 15000105 102557 0.66 84231.14 0.54 166292.3 1.09 968090 6.43 Zaxxon 32.5 83700 22209.5 26.51 32935.5 39.33 41118 49.11 216020 200.00 MEAN SABER(%) 0.00 100.00 28.39 29.45 36.78 71.26 MEDIAN SABER(%) 0.00 100.00 4.92 4.31 8.08 50.63 Generalized Data Distribution Iteration Table 19. Score table of SOTA 10B+ model-free algorithms on SABER(%). Games R2D2 SABER NGU SABER AGENT57 SABER GDI-I3 SABER GDI-H3 SABER Scale 10B 35B 100B 200M 200M Alien 109038.4 43.23 248100 98.48 297638.17 118.17 43384 17.15 48735 19.27 Amidar 27751.24 26.64 17800 17.08 29660.08 28.47 1442 1.38 1065 1.02 Assault 90526.44 200.00 34800 200.00 67212.67 200.00 63876 200.00 97155 200.00 Asterix 999080 99.91 950700 95.07 991384.42 99.14 759910 75.99 999999 100.00 Asteroids 265861.2 2.52 230500 2.19 150854.61 1.43 751970 7.15 760005 7.23 Atlantis 1576068 14.76 1653600 15.49 1528841.76 14.31 3803000 35.78 3837300 36.11 Bank Heist 46285.6 56.40 17400 21.19 23071.5 28.10 1401 1.69 1380 1.66 Battle Zone 513360 64.08 691700 86.35 934134.88 116.63 478830 59.77 824360 102.92 Beam Rider 128236.08 12.79 63600 6.33 300509.8 30.03 162100 16.18 422390 42.22 Berzerk 34134.8 3.22 36200 3.41 61507.83 5.80 7607 0.71 14649 1.37 Bowling 196.36 62.57 211.9 68.18 251.18 82.37 201.9 64.57 205.2 65.76 Boxing 99.16 99.16 99.7 99.70 100 100.00 100 100.00 100 100.00 Breakout 795.36 92.04 559.2 64.65 790.4 91.46 864 100.00 864 100 Centipede 532921.84 40.85 577800 44.30 412847.86 31.61 155830 11.83 195630 14.89 Chopper Command 960648 96.06 999900 99.99 999900 99.99 999999 100.00 999999 100.00 Crazy Climber 312768 144.41 313400 144.71 565909.85 200.00 201000 90.96 241170 110.17 Defender 562106 9.31 664100 11.01 677642.78 11.23 893110 14.82 970540 16.11 Demon Attack 143664.6 9.22 143500 9.21 143161.44 9.19 675530 43.10 787985 50.63 Double Dunk 23.12 105.35 -14.1 11.36 23.93 107.40 24 107.58 24 107.58 Enduro 2376.68 25.02 2000 21.05 2367.71 24.92 14330 150.84 14300 150.53 Fishing Derby 81.96 106.74 32 76.03 86.97 109.82 59 95.08 65 96.31 Freeway 34 89.47 28.5 75.00 32.59 85.76 34 89.47 34 89.47 Frostbite 11238.4 2.46 206400 45.37 541280.88 119.01 10485 2.29 11330 2.48 Gopher 122196 34.37 113400 31.89 117777.08 33.12 488830 137.71 473560 133.41 Gravitar 6750 4.04 14200 8.62 19213.96 11.70 5905 3.52 5915 3.53 Hero 37030.4 3.60 69400 6.84 114736.26 11.38 38330 3.73 38225 3.72 Ice Hockey 71.56 175.34 -4.1 15.04 63.64 158.56 44.92 118.94 47.11 123.54 Jamesbond 23266 51.05 26600 58.37 135784.96 200.00 594500 200.00 620780 200.00 Kangaroo 14112 0.99 35100 2.46 24034.16 1.68 14500 1.01 14636 1.02 Krull 145284.8 140.18 127400 122.73 251997.31 200.00 97575 93.63 594540 200.00 Kung Fu Master 200176 20.00 212100 21.19 206845.82 20.66 140440 14.02 1666665 166.68 Montezuma Revenge 2504 0.21 10400 0.85 9352.01 0.77 3000 0.25 2500 0.21 Ms Pacman 29928.2 10.22 40800 13.97 63994.44 21.98 11536 3.87 11573 3.89 Name This Game 45214.8 187.21 23900 94.24 54386.77 200.00 34434 140.19 36296 148.31 Phoenix 811621.6 20.20 959100 23.88 908264.15 22.61 894460 22.27 959580 23.89 Pitfall 0 0.20 7800 7.03 18756.01 16.62 0 0.20 -4.3 0.20 Pong 21 100.00 19.6 96.64 20.67 99.21 21 100.00 21 100.00 Private Eye 300 0.27 100000 98.23 79716.46 78.30 15100 14.81 15100 14.81 Qbert 161000 6.70 451900 18.82 580328.14 24.18 27800 1.03 28657 1.19 Riverraid 34076.4 3.28 36700 3.54 63318.67 6.21 28075 2.68 28349 2.70 Road Runner 498660 24.47 128600 6.31 243025.8 11.92 878600 43.11 999999 49.06 Robotank 132.4 176.42 9.1 9.35 127.32 169.54 108 143.63 113.4 150.68 Seaquest 999991.84 100.00 1000000 100.00 999997.63 100.00 943910 94.39 1000000 100.00 Skiing -29970.32 -93.10 -22977.9 -42.53 -4202.6 93.27 -6774 74.67 -6025 86.77 Solaris 4198.4 2.69 4700 3.14 44199.93 38.99 11074 8.93 9105 7.14 Space Invaders 55889 8.97 43400 6.96 48680.86 7.81 140460 22.58 154380 24.82 Star Gunner 521728 200.00 414600 200.00 839573.53 200.00 465750 200.00 677590 200.00 Surround 9.96 101.84 -9.6 2.04 9.5 99.49 -7.8 11.22 2.606 64.32 Tennis 24 106.70 10.2 75.89 23.84 106.34 24 106.70 24 106.70 Time Pilot 348932 200.00 344700 200.00 405425.31 200.00 216770 200.00 450810 200.00 Tutankham 393.64 7.11 191.1 3.34 2354.91 43.62 423.9 7.68 418.2 7.57 Up N Down 542918.8 200.00 620100 200.00 623805.73 200.00 986440 200.00 966590 200.00 Venture 1992 5.12 1700 4.37 2623.71 6.74 2000 5.14 2000 5.14 Video Pinball 483569.72 0.54 965300 1.08 992340.74 1.11 925830 1.04 978190 1.10 Wizard of Wor 133264 33.62 106200 26.76 157306.41 39.71 64439 16.18 63735 16.00 Yars Revenge 918854.32 6.11 986000 6.55 998532.37 6.64 972000 6.46 968090 6.43 Zaxxon 181372 200.00 111100 132.75 249808.9 200.00 109140 130.41 216020 200.00 MEAN SABER(%) 60.43 50.47 76.26 61.66 71.26 MEDIAN SABER(%) 33.62 21.19 43.62 35.78 50.63 Generalized Data Distribution Iteration Table 20. Score table of SOTA model-based algorithms on SABER(%). Sim PLe (Kaiser et al., 2019) and Dreamer V2 (Hafner et al., 2020) haven t evaluated all 57 Atari Games in their paper. For fairness, we set the score on those games as N/A, which will not be considered when calculating the median and mean SABER. Games Mu Zero SABER Dreamer V2 SABER Sim PLe SABER GDI-I3 SABER GDI-H3 SABER(%) Scale 20B 200M 1M 200M 200M Alien 741812.63 200.00 3483 1.29 616.9 0.15 43384 17.15 48735 19.27 Amidar 28634.39 27.49 2028 1.94 74.3 0.07 1442 1.38 1065 1.02 Assault 143972.03 200.00 7679 88.51 527.2 3.62 63876 200.00 97155 200.00 Asterix 998425 99.84 25669 2.55 1128.3 0.09 759910 75.99 999999 100.00 Asteroids 678558.64 6.45 3064 0.02 793.6 0.00 751970 7.15 760005 7.23 Atlantis 1674767.2 15.69 989207 9.22 20992.5 0.08 3803000 35.78 3837300 36.11 Bank Heist 1278.98 1.54 1043 1.25 34.2 0.02 1401 1.69 1380 1.66 Battle Zone 848623 105.95 31225 3.87 4031.2 0.47 478830 59.77 824360 102.92 Beam Rider 454993.53 45.48 12413 1.21 621.6 0.03 162100 16.18 422390 42.22 Berzerk 85932.6 8.11 751 0.06 N/A N/A 7607 0.71 14649 1.37 Bowling 260.13 85.60 48 8.99 30 2.49 202 64.57 205.2 65.76 Boxing 100 100.00 87 86.99 7.8 7.71 100 100.00 100 100.00 Breakout 864 100.00 350 40.39 16.4 1.70 864 100.00 864 100.00 Centipede 1159049.27 89.02 6601 0.35 N/A N/A 155830 11.83 195630 14.89 Chopper Command 991039.7 99.10 2833 0.20 979.4 0.02 999999 100.00 999999 100.00 Crazy Climber 458315.4 200.00 141424 62.47 62583.6 24.77 201000 90.96 241170 110.17 Defender 839642.95 13.93 N/A N/A N/A N/A 893110 14.82 970540 16.11 Demon Attack 143964.26 9.24 2775 0.17 208.1 0.00 675530 43.40 787985 50.63 Double Dunk 23.94 107.42 22 102.53 N/A N/A 24 107.58 24 107.58 Enduro 2382.44 25.08 2112 22.23 N/A N/A 14330 150.84 14300 150.53 Fishing Derby 91.16 112.39 93.24 200.00 -90.7 0.61 59 92.89 65 96.31 Freeway 33.03 86.92 34 89.47 16.7 43.95 34 89.47 34 89.47 Frostbite 631378.53 138.82 15622 3.42 236.9 0.04 10485 2.29 11330 2.48 Gopher 130345.58 36.67 53853 15.11 596.8 0.10 488830 137.71 473560 133.41 Gravitar 6682.7 4.00 3554 2.08 173.4 0.00 5905 3.52 5915 3.53 Hero 49244.11 4.83 30287 2.93 2656.6 0.16 38330 3.73 38225 3.72 Ice Hockey 67.04 165.76 29 85.17 -11.6 -0.85 44.92 118.94 47.11 123.54 Jamesbond 41063.25 90.14 9269 20.30 100.5 0.16 594500 200.00 620780 200.00 Kangaroo 16763.6 1.17 11819 0.83 51.2 0.00 14500 1.01 14636 1.02 Krull 269358.27 200.00 9687 7.89 2204.8 0.59 97575 93.63 594540 200.00 Kung Fu Master 204824 20.46 66410 6.62 14862.5 1.46 140440 14.02 1666665 166.68 Montezuma Revenge 0 0.00 1932 0.16 N/A N/A 3000 0.25 2500 0.21 Ms Pacman 243401.1 83.89 5651 1.84 1480 0.40 11536 3.87 11573 3.89 Name This Game 157177.85 200.00 14472 53.12 2420.7 0.56 34434 140.19 36296 148.31 Phoenix 955137.84 23.78 13342 0.31 N/A N/A 894460 22.27 959580 23.89 Pitfall 0 0.20 -1 0.20 N/A N/A 0 0.20 -4.3 0.20 Pong 21 100.00 19 95.20 12.8 80.34 21 100.00 21 100.00 Private Eye 15299.98 15.01 158 0.13 35 0.01 15100 14.81 15100 14.81 Qbert 72276 3.00 162023 6.74 1288.8 0.05 27800 1.15 28657 1.19 Riverraid 323417.18 32.25 16249 1.49 1957.8 0.06 28075 2.68 28349 2.70 Road Runner 613411.8 30.10 88772 4.36 5640.6 0.28 878600 43.11 999999 49.06 Robotank 131.13 174.70 65 85.09 N/A N/A 108 143.63 113.4 150.68 Seaquest 999976.52 100.00 45898 4.58 683.3 0.06 943910 94.39 1000000 100.00 Skiing -29968.36 -93.09 -8187 64.45 N/A N/A -6774 74.67 -6025 86.77 Solaris 56.62 -1.07 883 -0.32 N/A N/A 11074 8.93 9105 7.14 Space Invaders 74335.3 11.94 2611 0.40 N/A N/A 140460 22.58 154380 24.82 Star Gunner 549271.7 200.00 29219 37.21 N/A N/A 465750 200.00 677590 200.00 Surround 9.99 101.99 N/A N/A N/A N/A -8 11.22 2.606 64.32 Tennis 0 53.13 23 104.46 N/A N/A 24 106.70 24 106.70 Time Pilot 476763.9 200.00 32404 46.71 N/A N/A 216770 200.00 450810 200.00 Tutankham 491.48 8.94 238 4.22 N/A N/A 424 7.68 418.2 7.57 Up N Down 715545.61 200.00 648363 200.00 3350.3 3.42 986440 200.00 966590 200.00 Venture 0.4 0.00 0 0.00 N/A N/A 2000 5.23 2000 5.14 Video Pinball 981791.88 1.10 22218 0.02 N/A N/A 925830 1.04 978190 1.10 Wizard of Wor 197126 49.80 14531 3.54 N/A N/A 64439 16.14 63735 16.00 Yars Revenge 553311.46 3.67 20089 0.11 5664.3 0.02 972000 6.46 968090 6.43 Zaxxon 725853.9 200.00 18295 21.83 N/A N/A 109140 130.41 216020 200.00 MEAN SABER(%) 71.94 27.73 4.80 61.66 71.26 MEDIAN SABER(%) 49.80 4.29 0.13 35.78 50.63 Generalized Data Distribution Iteration Table 21. Score table of other SOTA algorithms on SABER(%). Go-Explore (Ecoffet et al., 2019) and Muesli (Hessel et al., 2021). Games Muesli SABER Go-Explore SABER GDI-I3 SABER GDI-H3 SABER Scale 200M 10B 200M 200M Alien 139409 55.30 959312 200.00 43384 17.15 48735 19.27 Amidar 21653 20.78 19083 18.32 1442 1.38 1065 1.02 Assault 36963 200.00 30773 200.00 63876 200.00 97155 200.00 Asterix 316210 31.61 999500 99.95 759910 75.99 999999 100.00 Asteroids 484609 4.61 112952 1.07 751970 7.15 760005 7.23 Atlantis 1363427 12.75 286460 2.58 3803000 35.78 3837300 36.11 Bank Heist 1213 1.46 3668 4.45 1401 1.69 1380 1.66 Battle Zone 414107 51.68 998800 124.70 478830 59.77 824360 102.92 Beam Rider 288870 28.86 371723 37.15 162100 16.18 422390 42.22 Berzerk 44478 4.19 131417 12.41 7607 0.71 14649 1.37 Bowling 191 60.64 247 80.86 202 64.57 205.2 65.76 Boxing 99 99.00 91 90.99 100 100.00 100 100.00 Breakout 791 91.53 774 89.56 864 100.00 864 100.00 Centipede 869751 66.76 613815 47.07 155830 11.83 195630 14.89 Chopper Command 101289 10.06 996220 99.62 999999 100.00 999999 100.00 Crazy Climber 175322 78.68 235600 107.51 201000 90.96 241170 110.17 Defender 629482 10.43 N/A N/A 893110 14.82 970540 16.11 Demon Attack 129544 8.31 239895 15.41 675530 43.40 787985 50.63 Double Dunk -3 39.39 24 107.58 24 107.58 24 107.58 Enduro 2362 24.86 1031 10.85 14330 150.84 14300 150.53 Fishing Derby 51 87.71 67 97.54 59 92.89 65 96.31 Freeway 33 86.84 34 89.47 34 89.47 34 89.47 Frostbite 301694 66.33 999990 200.00 10485 2.29 11330 2.48 Gopher 104441 29.37 134244 37.77 488830 137.71 473560 133.41 Gravitar 11660 7.06 13385 8.12 5905 3.52 5915 3.53 Hero 37161 3.62 37783 3.68 38330 3.73 38225 3.72 Ice Hockey 25 76.69 33 93.64 44.92 118.94 47.11 123.54 Jamesbond 19319 42.38 200810 200.00 594500 200.00 620780 200.00 Kangaroo 14096 0.99 24300 1.70 14500 1.01 14636 1.02 Krull 34221 31.83 63149 60.05 97575 93.63 594540 200.00 Kung Fu Master 134689 13.45 24320 2.41 140440 14.02 1666665 166.68 Montezuma Revenge 2359 0.19 24758 2.03 3000 0.25 2500 0.21 Ms Pacman 65278 22.42 456123 157.30 11536 3.87 11573 3.89 Name This Game 105043 200.00 212824 200.00 34434 140.19 36296 148.31 Phoenix 805305 20.05 19200 0.46 894460 22.27 959580 23.89 Pitfall 0 0.20 7875 7.09 0 0.2 -4.3 0.20 Pong 20 97.60 21 100.00 21 100 21 100.00 Private Eye 10323 10.12 69976 68.73 15100 14.81 15100 14.81 Qbert 157353 6.55 999975 41.66 27800 1.15 28657 1.19 Riverraid 47323 4.60 35588 3.43 28075 2.68 28349 2.70 Road Runner 327025 16.05 999900 49.06 878600 43.11 999999 49.06 Robotank 59 76.96 143 190.79 108 143.63 113.4 150.68 Seaquest 815970 81.60 539456 53.94 943910 94.39 1000000 100.00 Skiing -18407 -9.47 -4185 93.40 -6774 74.67 -6025 86.77 Solaris 3031 1.63 20306 17.31 11074 8.93 9105 7.14 Space Invaders 59602 9.57 93147 14.97 140460 22.58 154380 24.82 Star Gunner 214383 200.00 609580 200.00 465750 200.00 677590 200.00 Surround 9 96.94 N/A N/A -8 11.22 2.606 64.32 Tennis 12 79.91 24 106.7 24 106.70 24 106.70 Time Pilot 359105 200.00 183620 200.00 216770 200.00 450810 200.00 Tutankham 252 4.48 528 9.62 424 7.68 418.2 7.57 Up N Down 649190 200.00 553718 200.00 986440 11.9785 966590 200.00 Venture 2104 5.41 3074 7.90 2035 5.23 2000 5.14 Video Pinball 685436 0.77 999999 1.12 925830 1.04 978190 1.10 Wizard of Wor 93291 23.49 199900 50.50 64293 16.14 63735 16.00 Yars Revenge 557818 3.70 999998 6.65 972000 6.46 968090 6.43 Zaxxon 65325 78.04 18340 21.88 109140 130.41 216020 200.00 MEAN SABER(%) 48.74 71.80 61.66 71.26 MEDIAN SABER(%) 24.86 50.50 35.78 50.63 Generalized Data Distribution Iteration K.8. Atari Games Learning Curves K.8.1. ATARI GAMES LEARNING CURVES OF GDI-I3 -5e+3 0 5e+3 1e+4 1.5e+4 2e+4 2.5e+4 3e+4 3.5e+4 4e+4 4.5e+4 5e+4 5.5e+4 0k 0 20k 40k 60k 80k 100k 120k 14 1. Alien -200 0 200 400 600 800 1e+3 1.2e+3 1.4e+3 1.6e+3 1.8e+3 0k 0 20k 40k 60k 80k 100k 120k 14 2. Amidar -1e+4 0 1e+4 2e+4 3e+4 4e+4 5e+4 6e+4 7e+4 8e+4 9e+4 0k 0 20k 40k 60k 80k 100k 120k 140k 16 3. Assault -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 4. Asterix -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 5. Asteroids -5e+5 0 5e+5 1e+6 1.5e+6 2e+6 2.5e+6 3e+6 3.5e+6 4e+6 4.5e+6 5e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 6. Atlantis -200 0 200 400 600 800 1e+3 1.2e+3 1.4e+3 1.6e+3 1.8e+3 0k 0 20k 40k 60k 80k 100k 120k 140k 16 7. Bank_Heist 0k 0 20k 40k 60k 80k 100k 120k 140k 16 8. Battle_Zone 0k 0 20k 40k 60k 80k 100k 120k 140k 16 9. Beam_Rider -1e+3 0 1e+3 2e+3 3e+3 4e+3 5e+3 6e+3 7e+3 8e+3 9e+3 1e+4 0k 0 20k 40k 60k 80k 100k 120k 140k 16 10. Berzerk -40 -20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 0k 0 20k 40k 60k 80k 100k 120k 140k 16 11. Bowling -10 0 10 20 30 40 50 60 70 80 90 100 110 120 0k 0 20k 40k 60k 80k 100k 120k 140k 160k 18 12. Boxing Generalized Data Distribution Iteration -100 0 100 200 300 400 500 600 700 800 900 1e+3 1.1e+3 0k 0 20k 40k 60k 80k 100k 120k 140k 16 13. Breakout -2e+4 0 2e+4 4e+4 6e+4 8e+4 1e+5 1.2e+5 1.4e+5 1.6e+5 1.8e+5 2e+5 2.2e+5 0k 0 20k 40k 60k 80k 100k 120k 140k 16 14. Centipede -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 15. Chopper_Command 0k 0 20k 40k 60k 80k 100k 120k 140k 16 16. Crazy_Climber -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 17. Defender -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 0k 0 20k 40k 60k 80k 100k 120k 140k 16 18. Demon_Attack -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 0k 0 20k 40k 60k 80k 100k 120k 140k 16 19. Double_Dunk -2e+3 0 2e+3 4e+3 6e+3 8e+3 1e+4 1.2e+4 1.4e+4 1.6e+4 1.8e+4 0k 0 20k 40k 60k 80k 100k 120k 140k 16 20. Enduro -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 0k 0 20k 40k 60k 80k 100k 120k 140k 16 21. Fishing_Derby 0k 0 20k 40k 60k 80k 100k 120k 140k 16 22. Freeway 0k 0 20k 40k 60k 80k 100k 120k 140k 16 23. Frostbite -5e+4 0 5e+4 1e+5 1.5e+5 2e+5 2.5e+5 3e+5 3.5e+5 4e+5 4.5e+5 5e+5 5.5e+5 6e+5 0k 0 20k 40k 60k 80k 100k 120k 140k 16 24. Gopher 0k 0 20k 40k 60k 80k 100k120k140k160k18 25. Gravitar -5e+3 0 5e+3 1e+4 1.5e+4 2e+4 2.5e+4 3e+4 3.5e+4 4e+4 4.5e+4 5e+4 0k 0 20k 40k 60k 80k 100k 120k 140k 16 26. Hero 0k 0 20k 40k 60k 80k 100k 120k 140k 16 27. Ice_Hockey Generalized Data Distribution Iteration 0k 0 20k 40k 60k 80k 100k 120k 140k 16 28. Jamesbond -2e+3 0 2e+3 4e+3 6e+3 8e+3 1e+4 1.2e+4 1.4e+4 1.6e+4 1.8e+4 0k 0 20k 40k 60k 80k 100k 120k 140k 16 29. Kangaroo 0k 0 20k 40k 60k 80k 100k120k140k160k18 -2e+4 0 2e+4 4e+4 6e+4 8e+4 1e+5 1.2e+5 1.4e+5 1.6e+5 1.8e+5 2e+5 0k 0 20k 40k 60k 80k 100k 120k 140k 16 31. Kung_Fu_Master 0k 0 20k 40k 60k 80k 100k 120k 140k 16 32. Montezuma_Revenge 0k 0 20k 40k 60k 80k 100k 120k 140k 16 33. Ms_Pacman -5e+3 0 5e+3 1e+4 1.5e+4 2e+4 2.5e+4 3e+4 3.5e+4 4e+4 4.5e+4 0k 0 20k 40k 60k 80k 100k 120k 140k 16 34. Name_This_Game -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 35. Phoenix -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 0k 0 20k 40k 60k 80k 100k 120k 140k 16 36. Pitfall -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 0k 0 20k 40k 60k 80k 100k 120k 140k 16 37. Pong -2e+3 0 2e+3 4e+3 6e+3 8e+3 1e+4 1.2e+4 1.4e+4 1.6e+4 1.8e+4 2e+4 0k 0 20k 40k 60k 80k 100k 120k 140k 16 38. Private_Eye 0k 0 20k 40k 60k 80k 100k 120k 140k 16 39. Qbert 0k 0 20k 40k 60k 80k 100k 120k 140k 16 40. Riverraid -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 41. Road_Runner 0k 0 20k 40k 60k 80k 100k 120k 140k 16 42. Robotank Generalized Data Distribution Iteration -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 43. Seaquest -2.8e+4 -2.6e+4 -2.4e+4 -2.2e+4 -2e+4 -1.8e+4 -1.6e+4 -1.4e+4 -1.2e+4 -1e+4 -8e+3 -6e+3 -4e+3 -2e+3 0k 0 20k 40k 60k 80k 100k 120k 140k 16 0k 0 20k 40k 60k 80k 100k 120k 140k 16 45. Solaris -2e+4 0 2e+4 4e+4 6e+4 8e+4 1e+5 1.2e+5 1.4e+5 1.6e+5 1.8e+5 0k 0 20k 40k 60k 80k 100k 120k 140k 16 46. Space_Invaders -5e+4 0 5e+4 1e+5 1.5e+5 2e+5 2.5e+5 3e+5 3.5e+5 4e+5 4.5e+5 5e+5 5.5e+5 6e+5 0k 0 20k 40k 60k 80k 100k 120k 140k 16 47. Star_Gunner 0k 0 20k 40k 60k 80k 100k 120k 140k 16 48. Surround -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 0k 0 20k 40k 60k 80k 100k 120k 140k 16 49. Tennis 0k 0 20k 40k 60k 80k 100k120k140k160k18 50. Time_Pilot -50 0 50 100 150 200 250 300 350 400 450 500 0k 0 20k 40k 60k 80k 100k 120k 140k 16 51. Tutankham -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 52. Up_N_Down -400 -200 0 200 400 600 800 1e+3 1.2e+3 1.4e+3 1.6e+3 1.8e+3 2e+3 2.2e+3 2.4e+3 0 20k 40k 60k 80k 100k 120k 140k 16 53. Venture -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 54. Video_Pinball 0k 0 20k 40k 60k 80k 100k 120k 140k 16 55. Wizard_of_Wor -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 56. Yars_Revenge 0k 0 20k 40k 60k 80k 100k 120k 140k 16 57. Zaxxon Generalized Data Distribution Iteration K.8.2. ATARI GAMES LEARNING CURVES OF GDI-H3 -1e+4 -5e+3 0 5e+3 1e+4 1.5e+4 2e+4 2.5e+4 3e+4 3.5e+4 4e+4 4.5e+4 5e+4 5.5e+4 6e+4 0k 0 20k 40k 60k 80k 100k120k140k160k18 0k 0 20k 40k 60k 80k 100k120k140k160k18 -1e+4 0 1e+4 2e+4 3e+4 4e+4 5e+4 6e+4 7e+4 8e+4 9e+4 1e+5 1.1e+5 1.2e+5 0k 0 20k 40k 60k 80k 100k 120k 140k 16 -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 5. asteroids -5e+5 0 5e+5 1e+6 1.5e+6 2e+6 2.5e+6 3e+6 3.5e+6 4e+6 4.5e+6 5e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 6. atlantis -200 0 200 400 600 800 1e+3 1.2e+3 1.4e+3 1.6e+3 1.8e+3 0k 0 20k 40k 60k 80k 100k120k140k160k18 7. bank_heist -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 8. battle_zone 0k 0 20k 40k 60k 80k 100k 120k 140k 16 9. beam_rider -2e+3 0 2e+3 4e+3 6e+3 8e+3 1e+4 1.2e+4 1.4e+4 1.6e+4 1.8e+4 2e+4 0k 0 20k 40k 60k 80k 100k120k140k160k18 10. berzerk -40 -20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 0k 0 20k 40k 60k 80k 100k 120k 140k 160k 18 11. bowling -10 0 10 20 30 40 50 60 70 80 90 100 110 120 0k 0 20k 40k 60k 80k 100k120k140k160k180k20 Generalized Data Distribution Iteration -100 0 100 200 300 400 500 600 700 800 900 1e+3 1.1e+3 0k 0 20k 40k 60k 80k 100k 120k 140k 16 13. breakout 0k 0 20k 40k 60k 80k 100k120k140k160k18 14. centipede -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 15. chopper_command 0k 0 20k 40k 60k 80k 100k 120k 140k 16 16. crazy_climber -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 17. defender -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 18. demon_attack -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 0 20k 40k 60k 80k 100k 120k 140k 16 19. double_dunk -2e+3 0 2e+3 4e+3 6e+3 8e+3 1e+4 1.2e+4 1.4e+4 1.6e+4 1.8e+4 0k 0 20k 40k 60k 80k 100k 120k 140k 16 -140 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 0k 0 20k 40k 60k 80k 100k120k140k160k180k20 21. fishing_derby 0k 0 20k 40k 60k 80k 100k 120k 140k 160k 18 22. freeway 0k 0 20k 40k 60k 80k 100k120k140k160k18 23. frostbite -5e+4 0 5e+4 1e+5 1.5e+5 2e+5 2.5e+5 3e+5 3.5e+5 4e+5 4.5e+5 5e+5 5.5e+5 6e+5 0k 0 20k 40k 60k 80k 100k 120k 140k 16 0k 0 20k 40k 60k 80k 100k120k140k160k18 25. gravitar -5e+3 0 5e+3 1e+4 1.5e+4 2e+4 2.5e+4 3e+4 3.5e+4 4e+4 4.5e+4 5e+4 0k 0 20k 40k 60k 80k 100k120k140k160k18 0k 0 20k 40k 60k 80k 100k 120k 140k 160k 18 27. ice_hockey Generalized Data Distribution Iteration 0k 0 20k 40k 60k 80k 100k 120k 140k 16 28. jamesbond -2e+3 0 2e+3 4e+3 6e+3 8e+3 1e+4 1.2e+4 1.4e+4 1.6e+4 1.8e+4 0k 0 20k 40k 60k 80k 100k120k140k160k18 29. kangaroo 0k 0 20k 40k 60k 80k 100k 120k 140k 16 30. krull -2e+5 0 2e+5 4e+5 6e+5 8e+5 1e+6 1.2e+6 1.4e+6 1.6e+6 1.8e+6 2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 31. kung_fu_master 0k 0 20k 40k 60k 80k 100k 120k 140k 16 32. montezuma_revenge 0k 0 20k 40k 60k 80k 100k120k140k160k18 33. ms_pacman -5e+3 0 5e+3 1e+4 1.5e+4 2e+4 2.5e+4 3e+4 3.5e+4 4e+4 4.5e+4 0k 0 20k 40k 60k 80k 100k120k140k160k18 34. name_this_game -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 35. phoenix -9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 0 20k 40k 60k 80k 100k 120k 140k 160k 18 36. pitfall -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 0k 0 20k 40k 60k 80k 100k 120k 140k 160k 18 37. pong -2e+3 0 2e+3 4e+3 6e+3 8e+3 1e+4 1.2e+4 1.4e+4 1.6e+4 1.8e+4 2e+4 0k 0 20k 40k 60k 80k 100k120k140k160k18 38. private_eye 0k 0 20k 40k 60k 80k 100k120k140k160k18 0k 0 20k 40k 60k 80k100k120k140k160k180k20 40. riverraid -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 41. road_runner 0k 0 20k 40k 60k 80k 100k 120k 140k 160k 18 42. robotank Generalized Data Distribution Iteration -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 43. seaquest -2.4e+4 -2.2e+4 -2e+4 -1.8e+4 -1.6e+4 -1.4e+4 -1.2e+4 -1e+4 -8e+3 -6e+3 -4e+3 -2e+3 0k 0 20k 40k 60k 80k100k120k140k160k180k20 0k 0 20k 40k 60k 80k 100k120k140k160k18 45. solaris -2e+4 0 2e+4 4e+4 6e+4 8e+4 1e+5 1.2e+5 1.4e+5 1.6e+5 1.8e+5 2e+5 0k 0 20k 40k 60k 80k 100k 120k 140k 16 46. space_invaders -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 0k 0 20k 40k 60k 80k 100k120k140k160k18 47. star_gunner -14 -12 -10 -8 -6 -4 -2 0 2 4 6 0k 0 20k 40k 60k 80k 100k 120k 140k 160k 18 48. surround -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 0k 0 20k 40k 60k 80k 100k 120k 140k 160k 18 49. tennis -5e+4 0 5e+4 1e+5 1.5e+5 2e+5 2.5e+5 3e+5 3.5e+5 4e+5 4.5e+5 5e+5 5.5e+5 6e+5 0k 0 20k 40k 60k 80k 100k 120k 140k 16 50. time_pilot -50 0 50 100 150 200 250 300 350 400 450 500 550 0 20k 40k 60k 80k 100k 120k 140k 16 51. tutankham Generalized Data Distribution Iteration -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k 120k 140k 16 52. up_n_down -400 -200 0 200 400 600 800 1e+3 1.2e+3 1.4e+3 1.6e+3 1.8e+3 2e+3 2.2e+3 2.4e+3 2.6e+3 0k 0 20k 40k 60k 80k 100k 120k 140k 16 53. venture -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0 20k 40k 60k 80k 100k 120k 140k 16 54. video_pinball -1e+4 0 1e+4 2e+4 3e+4 4e+4 5e+4 6e+4 7e+4 8e+4 9e+4 0k 0 20k 40k 60k 80k 100k120k140k160k18 55. wizard_of_wor -1e+5 0 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 9e+5 1e+6 1.1e+6 1.2e+6 0k 0 20k 40k 60k 80k 100k120k140k160k18 56. yars_revenge 0k 0 20k 40k 60k 80k 100k 120k 140k 16 Generalized Data Distribution Iteration L. Ablation Study In this section, we firstly demonstrate the settings of our ablation studies. Then, we offer the t-SNE of three Atari games as a study case to further show the data richness among different capacities of the policy space via t-SNE. Table 22. Summary of Algorithms of Ablation Study. The behavior policies are sampled from the policy space {蟺胃位|位 螞} which is parameterized by the policy network and indexed by the index set 螞 via a sampling distribution P螞. Wherein the sampling distribution is iteratively optimized via a data distribution optimization E. Name Category 蟺胃位 螞 P (0) 螞 E GDI-I3 GDI-I3 系 Softmax A胃 (1 系) Softmax A胃 {位|位 = (系, 蟿1, 蟿2)} Uniform MAB GDI-H3 GDI-H3 系 Softmax A胃1 (1 系) Softmax A胃2 {位|位 = (系, 蟿1, 蟿2)} Uniform MAB GDI-I0 w/o E GDI-I0 系 Softmax A胃 (1 系) Softmax A胃 {位|位 = (系, 蟿1, 蟿2)} One Point Identical Mapping GDI-I1 GDI-I1 Softmax A胃 {位|位 = (蟿)} Uniform MAB Table 23. Summary of the ablation groups in the Ablation Study. The corresponding algorithms can see Tab. L. We investigate the effects of several properties of GDI via ablating the Ablation Variables (e.g., removing the meta-controller from GDI-I3, and explore the impact of the meta-controller) and keeping the Control Variables (e.g., Hyperparameters) remains the same. Ablation Variable Control Variable Corresponding Algorithm Corresponding Problem Corresponding Results GDI-I3 N/A 蟺胃, 螞 , E GDI-I3 Baseline Group N/A w/o E E 螞, 蟺胃 GDI-I0 w/o E Exploration-Exploitation Trade-off Fig. 3 GDI-I1 螞 蟺胃, E GDI-I1 Data Richness Fig. 3 Fig. 20 Fig. 21 Fig. 22 Fig. 23 GDI-H3 蟺胃 螞 , E GDI-H3 Data Richness Fig. 3 Fig. 22 Fig. 23 L.1. Ablation Study Design To prove the effectiveness of capacity and diversity control and the data distribution optimization operator E. All the implemented algorithms in the ablation study have been summarized in Tab. L. We have summarized all the ablation experimental groups of the ablation study in Tab. L. The operator E is achieved with MAB (see App. E).The operator T is achieved with Vtrace, Retrace and policy gradient. Except for the Control Variable listed in the Tab. L, other settings and the shared hyperparameters remain the same in all ablation groups. The hyperparameters can see App. G. In all the t-SNE, we mark the state generated by GDI-I3 as Ai and mark the state generated by GDI-I1 as Bi, where i = 1, 2, 3 represents three stages of the training process. Generalized Data Distribution Iteration 1. Early stage of GDI-I3 2. Early stage of GDI-I1 3. Middle stage of GDI-I3 4. Middle stage of GDI-I1 5. Later stage of GDI-I3 6. Later stage of GDI-I1 Figure 20. t-SNE of Seaquest. t-SNE is drawn from 6k states. We sample 1k states from each stage of GDI-I3 and GDI-I1. We highlight 1k states of each stage of GDI-I3 and GDI-I1. Generalized Data Distribution Iteration 1. Early stage of GDI-I3 2. Early stage of GDI-I1 3. Middle stage of GDI-I3 4. Middle stage of GDI-I1 5. Later stage of GDI-I3 6. Later stage of GDI-I1 Figure 21. t-SNE of Chopper Command. t-SNE is drawn from 6k states. We sample 1k states from each stage of GDI-I3 and GDI-I1. We highlight 1k states of each stage of GDI-I3 and GDI-I1. Generalized Data Distribution Iteration 1. Early stage of GDI-H3 2. Early stage of GDI-I1 3. Middle stage of GDI-H3 4. Middle stage of GDI-I1 5. Later stage of GDI-H3 6. Later stage of GDI-I1 Figure 22. t-SNE of Krull. t-SNE is drawn from 6k states. We sample 1k states from each stage of GDI-H3 and GDI-I1. We highlight 1k states of each stage of GDI-H3 and GDI-I1. Generalized Data Distribution Iteration 1. GDI-I3 on Seaquest 2. GDI-I1 on Seaquest 3. GDI-I3 on Chopper Command 4. GDI-I1 on Chopper Command 5. GDI-H3 on Krull 6. GDI-I1 on Krull Figure 23. Overview of t-SNE in Atari games. Each t-SNE figure is drawn from 6k states. We highlight 3k states of GDI-I3, GDI-H3 and GDI-I1, respectively.