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Abstract

Category classifiers trained from a large corpus of an-
notated data are widely accepted as the sources for (hy-
pothesis) transfer learning. Sources generated in this
way are tied to a particular set of categories, limit-
ing their transferability across a wide spectrum of tar-
get categories. In this paper, we address this largely-
overlooked yet fundamental source problem by both in-
troducing a systematic scheme for generating universal
source hypotheses and proposing a principled, scalable
approach to automatically tuning the transfer process.
Our approach is based on the insights that expressive
source hypotheses could be generated without any su-
pervision and that a sparse combination of such hy-
potheses facilitates recognition of novel categories from
few samples. We demonstrate improvements over the
state-of-the-art on object and scene classification in the
small sample size regime.

Introduction

Learning from few samples has now attracted wide inter-
est in large-scale object recognition, given the intrinsic long-
tailed distribution of real-world objects (Zhu, Anguelov, and
Ramanan 2014) and customized categories in personal im-
age collections (Kienzle and Chellapilla 2006; Wang and
Hebert 2015). Such scenarios are typically addressed in
transfer learning (TL), which benefits from transfer of prior
knowledge from related tasks to new ones, in the majority of
cases either on a data or instance level, or on a feature or pa-
rameter level (Pan and Yang 2010). Despite featuring well
established theoretical guarantees, these approaches often
suffer from great practical constraints and limitations (Pan
and Yang 2010; Kuzborskij, Caputo, and Orabona 2015):
they require reusing data originating from the source do-
mains and extensive supervised retraining on the target task,
which is prohibitively expensive for large source data.
Hypothesis transfer learning (HTL) (Kienzle and Chel-
lapilla 2006; Yang, Yan, and Hauptmann 2007a; 2007b;
Yang and Hauptmann 2008; Duan et al. 2009; Chat-
topadhyay et al. 2011; Aytar and Zisserman 2011; 2012;
Kuzborskij and Orabona 2013; Kuzborskij, Orabona, and
Caputo 2013; Tommasi, Orabona, and Caputo 2014;
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Kuzborskij, Caputo, and Orabona 2015; Kuzborskij and
Orabona 2015) has been recently considered an alternative,
which transfers directly on a model level by reusing source
hypotheses — classifiers or models trained from source data.
This framework is practically appealing, since it requires
neither the availability of the source data nor any knowl-
edge on how the source models relate to each other. HTL is
also efficient especially with small target samples, in which
source hypotheses are generated in advance and treated as
black boxes without any consideration of their inner work-
ings at transfer stages.

Much attention in HTL (and also TL) has been focused
on integrating the source information into the target task
in different ways. Unfortunately, very little work has ad-
dressed the generation of useful source models. In most
cases, sources are simply category classifiers well-trained
from large amounts of labeled samples. This however might
be infeasible for real-world applications: we focus on learn-
ing from few samples for target categories, whereas we have
to train good classifiers of related categories as sources from
enough labeled data in advance. For instance, if we are inter-
ested in recognizing Pere David’s deer® from few samples,
following the conventional HTL practice, we might need to
first obtain well-trained source classifiers of camels, cows,
donkeys, and deer for transfer. Furthermore, sources gener-
ated in this way are tied to a specific set of categories due to
its supervised nature, making it difficult to apply them across
a wide spectrum of target categories.

It is thus unsurprising that the current HTL (and TL) al-
gorithms are usually evaluated under well-controlled exper-
imental setups: (1) use small-scale well-trained classifiers
as sources, at most several hundred (Yang, Yan, and Haupt-
mann 2007b; Aytar and Zisserman 2011; 2012); (2) split a
dataset with a portion of categories as sources and the rest as
targets, which implicitly reduces the impact of dataset bias,
e.g., leave-one-class-out (Tommasi, Orabona, and Caputo
2014; Kuzborskij, Caputo, and Orabona 2015); (3) transfer
between visually similar categories with ideal sources (Hoft-
man et al. 2014).

To address this largely-overlooked yet fundamental prob-
lem, we introduce a systematic scheme for generating uni-

* A Pére David’s deer is a species of deer that has the neck of a
camel, the hoofs of a cow, the tail of a donkey, and the antlers of a
deer.



versal and expressive source hypotheses in an unsuper-
vised fashion, which frees the recognition from ties to a
particular set of categories and which generalizes well for
broad novel target classes. Our key insight is that hypothe-
ses that are informative across categories could be gener-
ated without any supervision because of the information
implicit in the density structure of the feature space. More
precisely, each hypothesis now lies in a region of low den-
sity and the combined hypotheses constitute a joint parti-
tion of the feature space. Partitions satisfying such property
are explored in discovery of predictable discriminative bi-
nary codes (PBCs) (Rastegari, Farhadi, and Forsyth 2012),
which focuses on learning binary codes as image representa-
tions for efficient image retrieval — a problem different from
ours. Given that each bit in PBCs can be viewed as a split of
the feature space induced by discrimination and learnability,
our crucial observation is the equivalence between source
hypotheses generation and binary codes discovery. We then
modify the original supervised version of PBCs to be es-
timated in an unsupervised manner, leading to a library of
unsupervised universal sources (UUS) with widespread vi-
sual/attribute coverage.

This unprecedented large-scale source pool, with two or-
ders of magnitude more hypotheses than previous works,
poses additional scalability challenges to the existing HTL
approaches. These algorithms adopt a discriminative SVM
framework (usually with a quadratic loss), in which a new
target classifier is learned through adaptation by imposing
closeness between the target classifier and a linear combi-
nation of the source hypotheses as regularizer. The weight
associated to each source is either predefined for known
transfer relationship (Kienzle and Chellapilla 2006), or de-
termined by designing heuristic meta-level features (Yang,
Yan, and Hauptmann 2007b), or estimated based on the
conditional probability distribution of large amounts of un-
labeled target data (Chattopadhyay et al. 2011). In other
cases, the weight is obtained by minimizing empirical error
with solely ¢ norm (Yang and Hauptmann 2008; Aytar and
Zisserman 2012; Kuzborskij, Orabona, and Caputo 2013)
or sparsity-inducing (¢, ¢1) norm regularization (Tom-
masi, Orabona, and Caputo 2014; Kuzborskij, Caputo, and
Orabona 2015). These frameworks have been tested on prob-
lems with less than a few hundred sources, but have already
showed some difficulty in selecting informative sources due
to severe over-fitting (Tommasi, Orabona, and Caputo 2014;
Kuzborskij, Caputo, and Orabona 2015). To resolve this is-
sue, we propose a scalable model transfer SVM (MT-SVM)
approach by combining an elastic net regularization and bi-
ased SVM with a hinge loss. The relatedness among the
tasks is autonomously evaluated through a principled opti-
mization problem without extra validation, unlabeled sam-
ples, or a predefined ontology.

Our contribution is three-fold. First, we show how a uni-
versal library of source hypotheses, UUS, based on unsuper-
vised PBC classifiers, is generated without bias to a particu-
lar set of categories. Second, we provide a principled, scal-
able HTL algorithm, MT-SVM, that selects a set of source
hypotheses and uses them to infer the target model. Finally,
we show how informative hypotheses are selected and trans-
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ferred on novel classes with few samples.

An Unsupervised Universal Source Library

Source hypotheses are generated as prior knowledge or reg-
ularization for guiding learning on new tasks, while binary
codes are inferred to encode high-dimensional image de-
scriptors as compact binary strings. Although originating
from different applications, each hypothesis and each bit
can be both viewed as a partition of the feature space. To
the best of our knowledge, this paper is the first work that
constructs a bridge between these two. Partitions of our in-
terest are those informative across categories, which satisfy
certain discrimination and learnability properties and which
could be intuitively interpreted as semantic or discrimina-
tive attributes. While largely overlooked in HTL, such parti-
tions could be produced by predictable discriminative binary
codes (PBCs) (Rastegari, Farhadi, and Forsyth 2012). In par-
ticular, we extend the original supervised PBCs to be esti-
mated in an unsupervised manner, by first obtaining pseudo-
labeled data via a series of sampling steps and then using
these (pseudo-)labeled samples to learn PBCs. Learning a li-
brary of unsupervised universal sources (UUS) includes the
following steps:

Pseudo-Classes Generation via Sampling. Given a large
collection of IV unlabeled images with feature vectors x; €
R?, denoted as D = {ax1,...,xn}, we first need to gener-
ate pseudo-labels that are stand-ins for plausible categories.
To be specific, we want samples with the same pseudo-label
to be similar in feature space (constraints within pseudo-
classes), while those with different pseudo-labels should
be very dissimilar (constraints between pseudo-classes). To
achieve this, we first draw an M-subset As from D by ran-
dom subsampling. Within Ag, we create an initial skele-
ton by sampling C' random seed points that are spread out
(Max-step). We then augment each seed point to a pseudo-
class by adding its &' — 1 nearest neighbors (Min-step).
By this Max-Min sampling (Dai and Gool 2013), we have
then generated a prototype set Bpz = {(z:,y:)}/~:“, where
y; € {1,...,C} are the pseudo-labels.

Hypotheses Generation by PBCs Learning. On pseudo-
labeled set Bp ., we generate a set of S-splits, represented
by S weight vectors w® by using the max-margin formula-
tion introduced in (Rastegari, Farhadi, and Forsyth 2012):
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Here for the s-th split, & is the slack variable of «;. For no-
tational simplicity, @; already includes a constant 1 as the
last element and w includes the bias term. [J € {—1,1}

TNotation: we denote column vectors and matrices with small
and capital bold letters, i.e., a=[a1, a2, ..., aN]TG]RN and A=
[Ai;]ERM*N | respectively.



is the training label of x; to be learned to indicate which
side of the s-th split =; should appear. b{ € {0, 1} is the ac-
tual prediction indicating which side of the s-th split (trained
with ) @; actually lies. B; = [b},...,b7] is the stacked
binary code of x; from all the splits, and d is the Ham-
ming distance. Note that our introduction of pseudo-labels
as supervisory information is crucial here, since the max-
margin formulation (1) does not apply in the unsupervised
settings. We then (pseudo-)label G more samples to each
pseudo-class from the unlabeled data pool Cy . as in (Choi
et al. 2013). Based on this augmented dataset D_aug
{(as,y:) Y EF*C where y; € {1,...,C}, we retrain a new
set of S-split PBCs by using Eqn. (1). To ensure diversity,
we repeat the subsampling procedure 7" times and generate
J = S x T source hypotheses in total, which could be po-
tentially large in practice.

Discussions. One crucial issue is why our candidate hy-
potheses generalize well for novel categories and what kind
of information is transferred. In addition to the unsupervised
aspect, we use PBC classifiers to group our pseudo-classes
into a set of abstract classes and obtain attribute-like hy-
potheses. Such sources are more generic, untied to a specific
set of categories. This is related to the observation in the su-
pervised case that meta-classes outperform classemes (Berg-
amo and Torresani 2014). From the principle of Structural
Risk Minimization, our UUS hypotheses provide an alter-
native mechanism to encode prior knowledge and control
model capacity. This is related to the use of Universum (i.e.,
unlabeled examples that do not belong to the concerned
classes, sometimes called “non-examples”) in addition to la-
beled data for capacity control, which proved to be helpful
in various learning tasks (Weston et al. 2006). When facing a
large collection of non-examples, our UUS can be viewed as
compressing the original source data while implicitly mod-
eling a general distribution and preserving relevant informa-
tion for classification.

Our UUS can be also considered as distinctive subdo-
mains automatically discovered in a large source domain.
Conventional discovery of latent domains for domain adap-
tation (Gong, Grauman, and Sha 2013; Hoffman et al. 2012)
is supervised, in which object category labels are used to
constrain feasible subdomain separations on source datasets.
However, our hypotheses are generated in an entirely unsu-
pervised manner without requiring any labeled data. More-
over, (Gong, Grauman, and Sha 2013; Hoffman et al. 2012)
need to explicitly model the distribution on different sub-
domains, and measure the distance between distributions.
However, modeling the distribution of high-dimensional im-
age features on large datasets is typically more difficult than
classifying them. Hence, our approach is more flexible, scal-
able, and broadly applicable in practice.

Model Transfer Support Vector Machine

Once we obtain the J source hypotheses {w$™°};_;, the
original training samples used to build them are no longer
used. We now consider a new target task with a small labeled
training set {(x;, y:)} =1, where z;cR? are the training sam-
ples and y;€{—1, 1} are the corresponding labels. Hypoth-
esis transfer learning (HTL) attempts to infer the target hy-
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pothesis w from both {w$™°}/_; and {(z:,y:)}=, that gen-
eralizes better than the one produced only from {(z;, v:) Y2,
HTL algorithms proposed so far are developed under a dis-
criminative SVM framework modified by regularizing the
distance between w and a linear combination of the sources
w®"°. To identify useful sources, it is recast as a variable
selection problem by constraining the combination weights
with either ¢y, /1, or 5 norm (Aytar and Zisserman 2012;
Tommasi, Orabona, and Caputo 2014; Kuzborskij, Caputo,
and Orabona 2015). However, a single type of norm has its
own pros and cons. Especially, in our scenario with only few
target samples and large-scale generic weak sources, these
existing approaches would be very noisy due to severe over-
fitting and would induce negative transfer.

As a well-known recipe, an elastic net regularization,
combining a weighted mixture of ¢; and squared /5 penal-
ties, offers several desirable benefits: (1) ¢5 regularization
is known to improve the generalization ability of empirical
risk minimization (Kuzborskij, Caputo, and Orabona 2015);
(2) ¢1 norm, as a convex relaxation of ¢, norm, always con-
verges to a good solution in practice, avoiding potential bad
local minima when using a greedy scheme (Kuzborskij, Ca-
puto, and Orabona 2015) to directly solve ¢, problems; (3)
joint ¢ and ¢, enjoys a similar sparsity of representation and
encourages a grouping effect (Zou and Hastie 2005); (4) it is
particularly useful in our case that the number of predictors
is much bigger than the number of observations (Zou and
Hastie 2005).

Formulation

By using the new regularization to rank the prior sources and

introducing them as reference into SVM, we then obtain the

objective function for our model transfer SVM (MT-SVM):
min—

J 2 J J
src (&3
min > w— " Bw; +§Zﬁf+72‘ﬂj| @
’ j=1 Jj=1 j=1

Y1 (we)]

The last term represents the data fit on the L training sam-
ples, measured by the hinge loss; it is the new information
from the target domain. The first term is similar to the max-
margin principle in standard SVMs, with the only difference
being the bias towards the linear combination of the generic
source hypotheses ijl Bjw;" instead of 0, in which ;s
are transfer weights; it is the prior information from the
source domains. In order to automatically select the best
subset of known hypotheses from which to transfer, the sec-
ond and third terms are introduced as an elastic net regular-
ization that favors sparse 3. Here, «, vy, and A\ are the reg-
ularization parameters to control the trade-off between the
error term and regularization terms.

Following the duality derivation analogous to standard
SVMs, the optimal solution to Eqn. (2) satisfies

J L
src
w = E Biw;  + E HiYii,
j=1 i=1

where p;’s are Lagrange multipliers. The final target model
is then conceptually straightforward: it linearly combines the

.1
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contribution from both the pre-trained generic models and
target specific data, i.e., support vectors from both source
and target domains. Combining Eqns. (2) and (3), as « — oo
and v — oo, B;’s will be forced to be zero and we will get
back the standard SVM, i.e., no transfer. As A — 0, w will
be forced to be purely constructed as a weighted combina-
tion of {w;?m}’s, i.e., maximum transfer. As o — 0, it be-
comes LASSO regression while ridge regression as v — 0.
Hence by tweaking «, 7, and A we obtain an intermediate
solution with a decision boundary close to those of the aux-
iliary classifiers while separating the labeled examples well.

Optimization
The objective in Eqn. (2) can be optimized by alternating
minimization of two subproblems:

e With fixed w, the objective function of finding trans-
fer weights 3 becomes an elastic net regularized least-
squares minimization subproblem:

J 2 J J
src (&7
w— > Bw; +§§ BT+ 18] @
j=1 j=1 j=1

e With fixed 3, the objective function of learning target hy-
pothesis w becomes a bias regularized SVM subproblem:

2
wfi Bijw;"* +/\i [17312- (wTa:Z)] L 5)
j=1 i=1

Source Selection by Modified Feature-Sign Search. We
solve Eqn. (4) by extending the feature-sign search (FS) al-
gorithm (Lee et al. 2006), one of the state-of-the-art tech-
niques for efficient sparse coding (i.e., {1 regularized least-
squares) (Liu et al. 2014), to our case of elastic net reg-
ularization (i.e., joint ¢; and /5 regularized least-squares).
FS searches and maintains an optimal active set of poten-
tially nonzero coefficients and sets other coefficients zero.
Although it was developed in the context of dictionary learn-
ing and sparse coding, FS still fits our scenario, in which
we could view the source hypotheses {w;™}7_; as known
dictionary bases and rearrange them into the matrix form
of dictionary W*". The equivalent optimization problem of
Eqn. (4) is then

§8) = 5llw = wBIE + S8R+ 18 ©

Since the only difference lies in the extra /o regulariza-
tion term that is differentiable, we could easily modify the
key update of 3,,.,, in a series of “feature-sign steps” with

—~srcT —~src -1 .
) in (Lee

18)=3

faw)=3

new
—=srcT ——=src

—|—aI) ! instead of (W

et al. 2006). (- represents the active set.)

Model Transfer via Adaptive SVM. The optimal w
in Egn. (5) can be obtained by the Adaptive SVM algo-
rithm (Yang, Yan, and Hauptmann 2007a; 2007b), which
solves a quadratic program to maximize its Lagrange dual
objective function. With small samples in our case, the
problem can be efficiently solved by (modified) sequen-
tial minimal optimization (Kienzle and Chellapilla 2006;
Yang, Yan, and Hauptmann 2007b). In addition, we initialize
w using the standard SVM without bias on the given target
training set. We then iteratively infer 3 and refine w. Given
the convexity of the problem, this block coordinate descent
algorithm will converge to the global minimum.
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Experimental Evaluation

In this section, we present experimental results evaluat-
ing our unsupervised sources (UUS) as well as our HTL
approach (MT-SVM) on standard recognition benchmarks,
comparing several state-of-the-art methods, and validating
across tasks and categories the generality of our sources.

Implementation Details

For the feature space, consistent with recent work, we use
the convolutional neural network (CNN) features pre-trained
on ILSVRC 2012 (Krizhevsky, Sutskever, and Hinton 2012;
Donahue et al. 2014; Russakovsky et al. 2015) without fine-
tuning. For each resized image, we extract a d = 4,096-D
feature vector fc7, taken from the last hidden layer of the
network. There is no restriction on the corpus of unlabeled
data to generate our pool of hypotheses. Here, for purpose
of reproducibility, we simply use the ILSVRC 2012 training
dataset without access to the label information, leading to
N = 1.2M unlabeled images D.

To generate UUS, at each iteration, we subsample M =
20K data to form Ag. We use the same setup and default
parameters for the Max-Min sampling and PBCs learning
procedures as in (Dai and Gool 2013; Rastegari, Farhadi,
and Forsyth 2012; Choi et al. 2013). Using an augmented
pseudo-labeled dataset D 44 of C'= 30 pseudo-classes with
K+G=6+ 50 samples per pseudo-class, we generate S =10
split PBCs. Repeating T'=2,000 subsampling in parallel, we
have generated .J =20K source hypotheses in total.

In term of MT-SVM, for A\, we use the default value 1
as in Adaptive SVM (Yang, Yan, and Hauptmann 2007a;
2007b). For o and 7, in a preliminary experiment, we tested
the ImageNet categories as targets and our UUSs for trans-
fer. Empirically, we found that keeping the number of se-
lected sources to be around 100~ 200 yields good results.
After searching «v on a small grid (0,0.01,0.1, 1,10, 100) as
suggested in (Zou and Hastie 2005), we found that o = 10
roughly achieved the desired stable solution. For all our ex-
periments, we then fixed a = 10, and tuned ~ to minimize
the leave-one-out-error.

Comparison with Supervised Sources

Naturally, the most critical question to answer is whether
our UUS indeed facilitates generalization to novel categories
with few samples, compared to their supervised counterparts
(i.e., category models, SS). To this end, we evaluate them on
the Office dataset (Saenko et al. 2010), a standard domain
adaptation benchmark for multiclass object recognition.

Datasets. The Office dataset contains 31 classes with a
total of 4,652 images from three distinct domains: Amazon,
DSLR, and Webcam. In our experiment for a fair compari-
son between UUS and SS, we follow a similar experimental
setup as in (Donahue et al. 2014; Hoffman et al. 2014): we
use Webcam as the target domain since it was shown to be
the most challenging shift domain (Hoffman et al. 2014).
We view the ILSVRC 2012 training dataset as the source
domain, on which our UUSs are generated. This scenario ex-
emplifies the transfer from online web images to real-world
images taken in typical office/home environments.



Transfer Scenario Method Acc (%)
SVM (source only) (Hoffman et al. 2014) 59.15+ 1.1
Non-Transfer SVM (target only) (Hoffman et al. 2014) 64.97£1.8
SVM (source and target) (Hoffman et al. 2014) 66.93 + 1.3
GFK (Gong et al. 2012) 6797+ 14
Transfer with Source Data SA (Fernando et al. 2013) 66.08 +1.4
Daumé III (Daumé 111 2007) 71.39+1.5
PMT (Aytar and Zisserman 2011) 69.81 + 1.8
. . MMDT (Hoffman et al. 2013) 67.75+ 1.4
HTL with Supervised Sources Late Fusion (Max) (Hoffman et al. 2014) 68.86 4 1.2
Late Fusion (Lin. Int. Avg) (Hoffman et al. 2014) 66.45 + 1.1
. . Clustering+MT-SVM 67.13£1.2
HTL with Unsupervised Sources UUS+MT-SVM (Ours) 7483 + 1.2
HTL-Upper Bound | Late Fusion (Lin. Int. Oracle) (Hoffman et al. 2014) | 76.76 £ 1.3

Table 1: Performance comparison between HTL with supervised (SS) and unsupervised (USS) source hypotheses generated
from ILSVRC for one-shot learning in the Subset A (16 common classes) on the Webcam domain of the Office dataset. We also
include for completeness the results of transfer learning with source data. Using a large library of unsupervised sources, ours
yields performance superior to other state-of-the-art HTL methods with well-trained source category models, and even close to
the oracle with an ideal source and the optimal transfer weight on the test set (performance upper bound).

Source Hypotheses. We use our generated library of 20 K
UUSs as unsupervised sources. Moreover, for comparison,
we also generate another 20K sources by a naive unsu-
pervised approach denoted as clustering, which creates hy-
potheses by clustering the data and produces classifiers be-
tween clusters. For supervised sources (SSs), we use the
labeled samples from the 1,000 categories on ILSVRC as
source data, with approximately 1,200 examples per cate-
gory. With the same CNN features, we then train source
SVM classifiers in one-vs.-all fashion, leading to 1,000 cat-
egory models on these labeled samples.

Target Tasks. To better understand the transfer process,
we group the 31 target classes into two subsets. Subset A:
we focus on the 16 common classes between Webcam and
ILSVRC as our target categories as in (Hoffman et al. 2014).
1 labeled training and 10 testing images per category are ran-
domly selected on the Webcam domain, i.e., one-shot trans-
fer and a balanced test set across categories. Therefore, each
test split has 160 examples. Subset B: we also test the other
15 non-overlapping classes as our target categories in the
similar one-shot transfer scenario. For each subset, we eval-
uate the two types of sources, independently calculate the
multiclass accuracy, and report the average performance and
standard errors over 20 random train/test splits, as shown in
Table 1 and Table 2.

Baselines. We compare against three types of baselines.
Type I non-transfer: SVM (source only), SVM (target
only), and SVM (source and target). They are category
SVMs trained on only labeled source, only target, and
both source and target data, respectively. For completeness
we also include Type II transfer learning based on (la-
beled or unlabeled) source data: GFK (Gong et al. 2012),
SA (Fernando et al. 2013), and Daumé III (Daumé III 2007).
For instance, Daumé III retrains SVMs on the augmented
source and target data using tripled augmented feature, re-
sulting in a relatively expensive procedure given the poten-
tially large size of the source data and high feature dimen-
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Transfer Scenario | Method Acc (%)
Non-Transfer SVM (target only) 63.34 £ 2.1
Multi-KT (2014) 65.28 £1.3
HTL with SS DAM (2009) 66.13+1.4
GreedyTL (2015) 68.72 + 1.8
SS+MT-SVM 70.30 £ 1.2
. Clustering+MT-SVM 64.92 +1.2
HTL with USS UUS+M”1%-SVM (Ours) | 74.19+1.3

Table 2: Performance comparison between HTL with SS
and USS for one-shot learning in the Subset B (15 non-
overlapping classes) on the Webcam domain.

sionality (Hoffman et al. 2014). Note that some of these
baselines are only available for Subset A, since they require
that the source comes from the same category as the target.
Type III Baselines of HTL with Supervised Sources.
For Subset A, transfer becomes a domain adaptation prob-
lem: the transfer is largely dominated by the source category
corresponding to the target as the single most relevant one,
making other categories uninvolved in the transfer process.
We then transfer the corresponding learned category models
without a source selection step, including (1) PMT (Aytar
and Zisserman 2011), which regularizes the angle between
the target and source hyperplanes; (2) MMDT (Hoffman et
al. 2013), which jointly optimizes over a feature transfor-
mation mapping target points and classifier weights to the
source feature space; (3) Late Fusion, which independently
trains a source and a target category classifier, and sets the
final score for each example by choosing the maximum
(Max) or linear interpolation (Lin. Int.) of source and tar-
get classifier scores. We report the performance of linear in-
terpolation both averaged across linear combination hyper-
parameter settings (Avg) and with its best possible setting
on the test set per experiment (Oracle). Importantly, the lat-
ter case is the best achievable performance for HTL (upper
bound), which is equivalent to an ideal source (the same cat-
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Figure 1: Performance comparison between our MT-SVM
and state-of-the-art HTL approaches with our UUS gener-
ated on ILSVRC for multiclass scene classification from few
samples on the SUN-397 dataset. We include for complete-
ness the results of other modern features and approaches
reported from (Xiao et al. 2014). We also conduct dataset
sensitivity analysis by providing results with MT-SVM and
UUS generated on PASCAL 2007.

egory as the target and with a large amount of training ex-
amples) transferred with the optimal transfer weight. These
results are reported from (Hoffman et al. 2014). For Sub-
set B, without explicit category correspondence, we use all
1,000 supervised sources and transfer the relevant ones by
state-of-the-art HTL approaches, including Multi-KT (Tom-
masi, Orabona, and Caputo 2014), DAM (Duan et al. 2009),
and GreedyTL (Kuzborskij, Caputo, and Orabona 2015).
Table 1 and Table 2 show that our transfer with unsuper-
vised source hypotheses outperforms non-transfer and other
state-of-the-art techniques of transfer with source data and
transfer with supervised source hypotheses. Notably, in Ta-
ble 1 ours achieves significant performance close to the or-
acle. Moreover, the naive unsupervised clustering approach
works poorly here. This verifies our assumption that infor-
mation across categories is actually intrinsic in the data even
without any supervision and could be effectively identified
by our UUS. With such unsupervised nature, our approach
reduces the effort of collecting large amounts of labeled data
and training accurate relevant source category models, as is
normally the case in previous transfer learning works.

Self-Taught Scene Classification

To show that our UUSs are informative across categories
and tasks, we consider using them for large-scale scene
classification on the SUN-397 dataset (Xiao et al. 2014). It
has 108,754 images of 397 scene categories. This is a very
challenging task given the strong domain shift between the
object-centric source ILSVRC dataset and the scene-centric
target SUN-397 dataset. At a high level, this transfer sce-
nario is close to self-taught learning (Raina et al. 2007);
however, we transfer on a model level while (Raina et al.
2007) transfers on a feature level. We evaluate performance
as a function of the number of training examples per class
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m 0 0.1 0.2 0.3 0.4
Acc (%) | 10.51 | 13.83 | 1447 | 14.72 | 15.01
m 0.5 0.6 0.7 0.8 0.9
Acc (%) | 15.16 | 15.33 | 1554 | 1548 | 15.23

Table 3: Parameter sensitivity analysis with varied v (repa-
rameterized by m) for one-shot learning on SUN-397.

following the standard experimental setup (Xiao et al. 2014):
a subset of the dataset with 50 training and 50 testing im-
ages per class is used for evaluation, averaging over 10 fixed
and publicly available partitions. We focus on small-sample
learning scenario by using the first 1, 5, 10, 20 images out of
the 50 training images per class for training, and use all the
same 50 testing images per class for testing. Fig. 1 summa-
rizes the average performance over these 10 splits.

Baselines. We compare our MT-SVM against state-of-
the-art HTL approaches with our UUS, including Non-
Transfer, Multi-KT (Tommasi, Orabona, and Caputo 2014),
Enhanced E-SVM (EE-SVM) (Aytar and Zisserman 2012),
and GreedyTL (Kuzborskij, Caputo, and Orabona 2015).

Again, Fig. 1 shows that our approach performs sig-
nificantly better than the non-transfer baseline for small-
sample learning in large-scale scene classification. This in-
dicates that our UUSs demonstrate expressive and univer-
sal capability for novel categories with considerable domain
shift. More importantly, Fig. 1 shows that ours outperforms
state-of-the-art HTL approaches with the same unsupervised
sources. While they work under well-trained category source
classifiers, EE-SVM and Multi-KT (with solely ¢, or ¢ reg-
ularization to learn transfer weights) perform poorly here
due to generic weak sources and induced negative transfer.
Ours is also superior to GreedyTL (with joint ¢5 and ¢, regu-
larization) by avoiding potential bad local minima compared
to using greedy schemes to solve £y problems. This obser-
vation reveals that our system manages to select informative
candidate sources while discarding irrelevant ones, making
such an approach preferable in ultra-large-scale scenarios.

Parameter Sensitivity Analysis. We also conduct a sen-
sitivity experiment for the case of 1 training example per
class. We fix A = 1, a« = 10, and vary ~. For convenience,
we parameterize v by m = v/(a + ), so that m is always
valued within [0, 1]. As shown in Table 3, there is a fairly
smooth and flat region around Acc = 15.2%.

Dataset Sensitivity Analysis. In the previous experi-
ments, we used UUSs generated on ILSVRC for purpose
of reproducibility without introducing extra data. To test the
robustness of the pool of source hypotheses to the choice of
dataset, we produce another library of 20/ UUSs on PAS-
CAL 2007, denoted as UUS-PASCAL. Given that PASCAL
is 2 orders of magnitude smaller than ILSVRC, we first gen-
erate around 2/ region proposals for each image on PAS-
CAL using selective search (Uijlings et al. 2013), and extract
their CNN features. In the feature space constructed by un-
labeled proposals, we produce UUSs as before. As shown in
Fig. 1, UUS-PASCAL outperforms UUS-ILSVRC. By us-
ing another large-scale dataset, we basically have more data
beyond the original ILSVRC. Similar to the case of training



models on the training dataset and tuning their parameters
on another validation dataset, it would potentially prevent
over-fitting and provide more generalization ability.

Conclusions

We have drawn attention to a largely-overlooked yet funda-
mental problem with respect to sources in hypothesis trans-
fer learning. We addressed a challenging transfer scenario
and introduced a systematic scheme for generating a large
library of source hypotheses in an unsupervised and discrim-
inative way by bridging hypotheses with binary codes, two
previously distinct areas. Without a bias to a particular set
of categories, the produced hypotheses encode the intrin-
sic structure of the visual space. We also proposed a princi-
pled, scalable approach to automatically selecting informa-
tive sources and incorporating them to infer the target model.
Our key technical contribution is the use of max-margin for-
mulations with proper regularizations as a principled way for
both source generation and transfer learning. The resulting
models are accurate in recognition performance and efficient
in transfer process and size of training data. This thus sug-
gests promising future work towards integrating both pre-
trained features and pre-trained models on unlabeled data.
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