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Université de Montpellier

CNRS, LIRMM
GrahpIK Team, INRIA

federico.ulliana@lirmm.fr

Abstract

Ontology-Based Data Access has been studied so far for rela-
tional structures and deployed on top of relational databases.
This paradigm enables a uniform access to heterogeneous
data sources, also coping with incomplete information.
Whether OBDA is suitable also for non-relational structures,
like those shared by increasingly popular NOSQL languages,
is still an open question. In this paper, we study the problem
of answering ontology-mediated queries on top of key-value
stores. We formalize the data model and core queries of these
systems, and introduce a rule language to express lightweight
ontologies on top of data. We study the decidability and data
complexity of query answering in this setting.

Introduction

Ontology-based data access (OBDA) is a well-established
paradigm for querying incomplete data sources while tak-
ing into account knowledge provided by a domain ontology
(Poggi et al. 2008). Today, the main applications of OBDA
can be found in data integration as well as in querying the
Semantic Web. The interest of OBDA is to allow the users to
ask queries on high-level ontology vocabularies and to del-
egate to algorithms (1) the reformulation of these high-level
queries into a set of low-level databases queries, (2) the ef-
ficient computation of their answers by native data manage-
ment systems in which data is stored and indexed, and (3)
the combination of these answers in order to obtain the fi-
nal answers to the users’ query. The advantage of OBDA is
that, since the query reformulation step is independent of the
data, ontology-mediated query answering has the same data
complexity as the query engines equipping the underlying
native data storage systems, and can benefit from the many
low-level optimizations making them efficient and scalable.

OBDA has been studied so far for relational structures
and deployed on top of relational databases. The database
queries used in OBDA are (unions of) conjunctive relational
queries, while the ontologies are specified in either a de-
scription logic (e.g., the lightweight DL-Lite (Calvanese et
al. 2007)(Kontchakov et al. 2010), or the expressive Horn-
SHIQ (Eiter et al. 2012)), or, more generally, a suitable
fragment of first-order logic (e.g., Datalog± (Calı̀, Gottlob,
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and Pieris 2012) and existential rules (Baget et al. 2011)).
Within this framework, decidability and complexity results
have been obtained for ontology-mediated query answering,
and many algorithms have been designed and implemented.

Whether this paradigm can be used to query datasources
that are not relational is a still an open question. The naive
way to deal with non relational datasources is to define map-
pings for translating them into relational structures, and then
use the classic OBDA framework as it is. However, this ap-
proach would induce a significant performance degrade as it
would add a step for converting the data using the mappings
and, most importantly, it would make impossible to take ad-
vantage of the low level query optimizations provided by
native systems. This can be particularly acute for NOSQL
systems, like key-value stores, that have been specifically
designed to scale when dealing with very large collections
of data.

In this paper, we study ontology-based data access di-
rectly on top of NOSQL systems. The term NOSQL (No-
tOnly SQL) defines a broad collection of languages. Key-
value stores are NOSQL systems adopting the data model of
key-value records (also called JSON records). These records
are processed on distributed systems, but also increasingly
exchanged on the Web thereby replacing semistructured
XML data and many RDF formats (see JSON-LD (Sporny
et al. 2004)). Key-value records are non-first normal forms
where values are not only atomic (in contrast with rela-
tional databases) and nesting is possible (Abiteboul, Hull,
and Vianu 1995).

Illustrative example

{ department : “Computer Science”,
professor : [

{ name : “Alice”,reachable : “yes”,
boss : “Charles” }

{ name : “Bob”,phone : {office : “5-256”} }]
course : [ [“C123”, “Java”] , [“C310”, “C++”] ]
director : null }

Figure 1: Key-value record
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To illustrate, consider the record in Figure 1. It con-
tains nine different keys among which five (department,
name, reachable, boss, office) are associated with
basic values. The key professor is associated with a se-
quence of two basic records, the key course with a se-
quence of two (nested) sequences, and the key director
with an unspecified value null . Key-value (KV) stores fea-
ture a limited set of low-level operations to query and update
keys and values, namely

get(k) put(k,v) clear(k)
These systems are designed and optimized for this kind
of operations that can be performed in parallel over large
collections of records, and leave other functionalities (such
as joins between records) for the application accessing the
NOSQL database.

In this work we are interested in querying KV stores
with ontologies and we mainly focus on get() queries.
An example of query retrieving names of professors in
a key-value record is get(professor.name). This ex-
pression returns the values “Alice” and “Bob” once eval-
uated on the record of Figure 1. Another feature sup-
ported by KV stores is the possibility to check struc-
tural properties of a record before selecting some con-
tent. Thus, we further look at queries with a check() con-
struct like check(director).get(professor.name).
The get part of the query is evaluated at the only condi-
tion that the key director also exists in the record. The
check() construct is particularly useful when dealing with
incomplete information (values for which we just know the
existence) which is expressed by null values, like for the key
director in Figure 1.

Our goal is to study how accessing information
on KV stores can be enhanced by ontology reason-
ing. To illustrate the role of ontologies, consider the
query get(professor.contact.office), searching
through the contacts of all professors. Although in the record
of Figure 1 there is a phone record this query yields no result
because key contact is not found. However, by introduc-
ing some general knowledge saying that a phone number
is a contact we could output a result for the query. Here is
where ontology-based data access comes into play. In fact,
we could simply equip the store with a rule saying that
“any value for the key phone is also a value for the key
contact”:

phone(x) −→ contact(x)

thereby retrieving the value associated to the key office in
the subrecord. Furthermore, rules able to assert the existence
of a value can be used to reason on incomplete information.
For example, the following rule says that whenever we find
a value for the key director in a record, there exists a
value for the key assistant (although this could be un-
specified):

director(x) −→ ∃y.assistant(y)
With this knowledge in hand, the evaluation of the

query check(assistant).get(department) on the
record of Figure 1 outputs “Computer Science”, although
there is no explicit value for the key assistant.

From a practical point of view, the interest of implement-
ing OBDA over KV stores is that, like the queries, inference
rules should be parallelizable over all records.

Contributions

This paper makes the following contributions towards the
study of OBDA for NOSQL databases. First, we provide
a formal syntax and semantics for data and core queries
based on homomorphisms, supported by popular key-value
stores like MongoDB - which is missing (Ong, Papakon-
stantinou, and Vernoux 2014). Second, we present a rule
language with clear formal semantics suitable for writing
lightweight ontologies on top of KV records. Finally, we
give a sound and complete reformulation technique, as well
as (un)decidability and data complexity results for ontology-
mediated query answering in this setting.

Formal Background

In this section, we formalize the data model of key-value
stores, and the associated query language.

Key-value Records Let CONST be an infinite set of data
constants and NULLS be an infinite set of nulls used as
placeholders for unknown values. A key-value record r is a
finite and non-empty set of key-value pairs of the form (k,v),
each assigning the value v to key k. Furthermore, any key k
occurs at most once in this set. Values are terms generated
by the following grammar

r ::= { (k,v) . . . (k,v) } v ::= a | null | [v . . . v] | r
with a ∈ CONST, null ∈ NULLS, and where [v . . . v] is a
non-empty sequence. A record r is an unordered set of key-
value pairs. RECS denotes the set of records that can be re-
cursively built in this way. The set of keys at the top level of
a record r = {(k1,v1), . . . , (kn,vn)}, denoted by keys(r),
is defined as keys(r)={k1,... , kn}. Then, value(r, ki) = vi,
if ki ∈ keys(r), and is undefined otherwise. We say that a
value v is terminal when v ∈ CONST, or v is a nested se-
quence, i.e., a sequence within a sequence. Indeed, nested
sequences are never navigated inside by the queries consid-
ered in this paper. A key-value store I is a finite set of key-
value records.

Paths and homomorphisms are the basis of query and
rule semantics. A path π in a record r is a word alternating
values and keys of the form π=v0.k1 . . . kn.vn such that (a)
vi is a subrecord of r, for all i < n (b) ki+1∈keys(vi) and
(c) if value(vi, ki+1) is a sequence, then vi+1 is an element
of value(vi, ki+1), otherwise vi+1 = value(vi, ki+1) (0 ≤
i < n). When v0 = r the path is said to be rooted.

A key-path κ is a sequence of keys κ = k1.k2 . . . kn.
A path-atom κ(x) is such that κ is a key-path and
x a variable. We define its expansion as κ̄(x) =
x0.k1.x1.k2.x2 . . . xn−1.kn(x) and vars(κ̄(x)) as the set
{x1, . . . , xn−1, x} of its pairwise distinct variables.

A homomorphism from κ(x) to a record r is a sub-
stitution h of the variables in vars(κ̄(x)) such that

1052



h(κ(x))=h(x0).k1.h(x1).k2.h(x2). . .h(xn−1).kn.h(x) is a
path π in r. If h(x0) = r, then the homomorphism h is said
to be rooted.

A ground path-atom κ(v) is such that κ is a key-path and
v a value. Its associated record, denoted by record(κ(v)), is
defined as follows. If κ(v) = k(v), then record(κ(v)) =
{k : v}, otherwise κ(v) is of the form k.κ′(v) and
record(κ(v)) = {k : record(κ′(v))}.

Record equality In the formal development, we consider
a set-based equality for records, thereby ignoring order in-
side sequences. Two atomic values are identical, denoted
by v1 ∼= v2, if they are the same terminal value or both
null . The sequence v = [v1 . . . vn] is contained in the se-
quence v′ = [v′1 . . . v

′
m], if for each value vi there exists a

v′j such that vi ∼= v′j . This is denoted by v ⊆ v′. We write
v ∼= v′ when v ⊆ v′ and v′ ⊆ v both hold. Finally, two
records are identical, r1 ∼= r2, when keys(r1) = keys(r2)
and value(r1, k) ∼= value(r2, k) for each k ∈ keys(r1).

Record merging We recursively define an associative op-
erator “◦” for merging two values v and v′, which will be
useful to define rule semantics.
• In the basic case where the merge involves null values, we
define v ◦ null = null ◦ v = v.

We now turn to the cases where v, v′ 	= null .
• If v is a constant, we have to consider three subcases.
- When v′ ∼= v , we define v ◦ v′ = v.
- When v′ ∈ CONST ∪ RECS, we define v ◦ v′ = [v, v′].
- When v′ = [v′1, . . . , v

′
n], we define v ◦ v′ = v′ if v ∼= v′i

for some v′i ∈ v′, and v ◦ v′ = [v, v′1, . . . , v
′
n] otherwise. For

instance, 1 ◦ [{name : Alice}]=[1, {name : Alice}]. The
dual cases where v′ is a constant but v is not are obtained by
exchanging the roles of v and v′ respectively.
• When v and v′ are both records the values of their common
keys (denoted by the set C) are merged:
v ◦ v′=⋃

k0∈C {(k0, value(v, k0) ◦ value(v′, k0))} ∪⋃
k∈keys(v)\C {(k, value(v, k))} ∪⋃
k′∈keys(v′)\C {(k′, value(v′, k′))}

For instance, {name : Bob,age : 33} ◦ {name :
Smith,city : Paris}={name : [Bob, Smith],age :
33,city : Paris}.
• When v is the sequence [v1, . . . , vn] and v′ is a record we
have again two subcases to consider.
- When none of the elements in v is a record we define
[v1, . . . , vn] ◦ v′ = [v1, . . . , vn, v

′].
- Otherwise, each record in the sequence v is pairwise
merged with v′. Hence, [v1, . . . , vn]◦v′ = [v′1, . . . , v

′
n] with

v′i = vi if vi /∈RECS and v′i = (vi ◦ v′) if vi∈RECS.

For instance, [{name : Smith}, {name : Jones}]
◦{name : {first : Bob}} yields as result the sequence
[ { name : [Smith, {first : Bob}] }, {name :
[Jones, {first : Bob}]}]. Again, the dual case where v
is a record and v′ is a sequence is obtained by exchanging
their roles.

• Finally, if v and v′ = [v′1 . . . v
′
m] are both sequences, then

v ◦ [v′1 . . . v′m] = (v ◦ v′1) ◦ [v′2 . . . v′m]. For instance, [1, 2] ◦
[1, [1]] = [1, 2] ◦ [[1]] = [1, 2, [1]].

The merge operator enjoys the following property.

Proposition 1 ◦-merge is commutative wrt ∼=-equality, i.e.,
for any pair of values v, v′ it holds that v◦v′∼= v′◦v.

Queries The query language we consider features stan-
dard NOSQL selection and projection on the record struc-
ture that we formalize by means of key-paths.

A get-query is of the form Q = get(κ) where κ is a key-
path specifying a projection expression to retrieve the termi-
nal values of interest within records. Its set of answers over
a record r is defined as
Q(r) = {h(x)|h is a rooted-homomorphism from κ(x)

to r such that h(x) is terminal}
A check-get query Q adds a selection condition of the

form Q′ = check(κ) .get(κ′) with κ and κ′ key-paths.
The set of answers of Q on r is defined as follows. Let
Q′ = get(κ′) then Q(r) = Q′(r) if there exists a rooted ho-
momorphism from κ(y) to r, otherwise Q(r) = ∅. Finally,
the answer set of a (check-)get query Q over a key-value
store I is defined as Q(I) =

⋃
r∈I Q(r).

The NO-RL Rule Language

The language for reasoning on key-value stores, we call NO-
RL, is made of linear rules where a single path-atom in the
body and in the head of rules is allowed. We consider two
kinds of NO-RL rules, namely ∀-rules of the form κ′(x) −→
κ(x) and ∃-rules of the form κ′(x) −→ ∃y.κ(y), whose
semantics is presented next. In the formal development, we
denote a rule by σ a set of rules by Σ. We define three NO-
RL profiles of different expressivity.

NO-RL(1) Rules : Key-Atoms

This basic reasoning language consists of rules of the form:
k′(x) −→ k(x) | ∃y.k(y) where k, k′ are keys (i.e., key-
paths of length one). This language allows one to express
rules at the record level as the following
σ1 : phone(x) −→ contact(x)
σ2 : boss(x) −→ reference(x)
σ3 : reachable(x) −→ ∃y.phone(y)
The application of the rules on the record of Figure 1 yields
the record below.
{ department : “Computer Science”,
professor : [

{name : “Alice”,reachable : “yes”,
boss : “Charles”,reference : “Charles”,
phone : null ,contact : null}

{name : “Bob”,
phone : {office : “5-256”}

contact : {office : “5-256”}} ]

course : [[“C123”, “Java”], [“C310”, “C++”]]
director : null }
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As a main consequence of rule application, the data to
take into account when querying the record are not only the
input records but also all the data that can be derived from
them and the rules.

NO-RL(2): Body Path-Atoms

We now extend the former language by allowing path-atoms
in the rule body (only), so as to obtain rules of the form
κ(x) −→ k(x) | ∃y. k(y), like for instance
σ1 : professor.name(x) −→ ∃y.secretary(y)
σ2 : professor.boss(x) −→ director(x)

Differently from the previous case, the application of these
rules requires some navigation to determine the subrecords
to extend with new keys or new values. The following record
corresponds to the application of rules, again on the record
of Figure 1.
{ department : “Computer Science”,
professor : [

{name : “Alice”,reachable : “yes”,
boss : “Charles” },

{name : “Bob”,phone : {office : “5-256”}} ]

course : [[“C123”, “Java”], [“C310”, “C++”]]
secretary : null , director : “Charles” }

NO-RL(3): Head Path-Atoms

This third language is the dual of NO-RL(2) as path-atoms
are allowed in the head of rules (only), thereby yielding rules
of the form k(x) −→ κ(x) | ∃y. κ(y) like
department(x)−→professor.specialty(x)

saying that the department determines the teaching specialty
of all of its professors. Applying this NO-RL(3) rule on the
record of Figure 1 gives the following result.
{ department : “Computer Science”,
professor : [

{name : “Alice”,reachable : “yes”,boss :
“Charles”, specialty : “Computer Science”},
{name : “Bob”,phone : {office : “5-256”},
specialty : “Computer Science”} ]

course : [[“C123”, “Java”], [“C310”, “C++”]]
director : null }

Definition 1 (NO-RL) NO-RL is obtained as union of NO-
RL(3), NO-RL(2) (and thus NO-RL(1)) languages.
More general rules of the form k′1.k

′
2 . . . k

′
n(x) −→

k1.k2 . . . km(y), with n,m ≥ 2 (and possibly x = y),
can be simulated by a pair of two NO-RL rules, namely
k′1.k

′
2 . . . k

′
n(x)→ k0(x) and k0(x)→ k1.k2 . . . km(y).

NO-RL Rule Semantics
The formal semantics of NO-RL rules defines the effect of
rule application on a KV store. This relies on the merge op-
erator (see Section “Formal Background”), which is used to
enrich a record with either values copied from its subrecords,
or with fresh nulls. We first define the single-step application
of a NO-RL rule on a record, and then the usual inference
operator.

Definition 2 (Rule Semantics) Let σ : Body(x) −→
Head(x) | ∃y.Head(y) be a NO-RL rule and r a record. The
rule σ is said to be applicable on r if there is a homomor-
phism h from Body(x) to r. We denote by ri the subrecord
of r at the root of the path h(Body(x)).
The application of σ (w.r.t. h) to r consists of merging the
subrecord ri with a fresh record rσ defined as

rσ =

{
record(Head(h(x))) if σ is a ∀-rule
record(Head(null)) if σ is an ∃-rule Let r′

be the obtained record. Then, the single step application of
σ on r (wrt h) is denoted by σ, r �1 r′.

The inference operator (denoted by �) consists of suc-
cessive rule application steps. Given a set of rules Σ and
a record r, we write r,Σ � r′ if there are r1, . . . , rn and
σ1, . . . , σn ∈ Σ s.t. σi, ri �1 ri+1 with r ∼= r1 and r′ ∼= rn
(1 ≤ i < n). Finally, we write I,Σ � r′ when there exists
r ∈ I such that r,Σ � r′.

Query semantics under NO-RL rules is now defined. A
value is an answer to a query Q over a set of key-values
records and a set of rules if it can be obtained as a result of
the evaluation of the query Q over one record inferred from
one input record by application of the rules.
Definition 3 (Query Semantics Under NO-RL Rules)
Given Q, I and Σ we define Q(I,Σ) =

⋃
I,Σ�r′ Q(r′).

A desirable property of any inference system is that the
order in which rules are applied is irrelevant. NO-RL rules
enjoy this property, which relies on the commutativity of the
merge operator up to ∼=-equality (Proposition 1) and to the
monotonicity of rule application. This last one ensures that if
r′ is obtained from r in one-step then every rule application
that was possible on r is still possible on r′.
Theorem 1 (Confluence) For any record r, if r,Σ � r1 and
r,Σ � r2 with r1 	∼= r2 then there are r̄1 and r̄2 such that
r1,Σ � r̄1 and r2,Σ � r̄2 with r̄1 ∼= r̄2.

To illustrate, consider the record r=record(a.b(v)) and
the rules σ1 : a(x)−→c(x) and σ2 : b(x)−→d(x). Apply-
ing σ1 first gives r1 = {a : {b : v},c : {b : v}}. Applying
σ2 first gives r2 = {a : {b : v,d : v}}. Of course these
intermediate records are different, r1 	∼= r2.
However, the fixpoint application of the rules is confluent on
record r̄={a : {b : v,d : v},c : {b : v,d : v}}. Indeed,
r̄ can be obtained (i) from r2 by simply applying σ1 or (ii)
from r1 by applying σ2 first, and then σ1. or (iii) from r1
by applying σ2 two consecutive times.

We refer to saturation as the process of applying a set of
NO-RL rules Σ on a record r, until fixpoint. Notice that, as a
corollary of Theorem 1, when this process is finite, it yields
a unique record modulo ∼=-equality, we note rΣ. In this case,
Q(r,Σ) = Q(rΣ) for any r ∈ I .

Interestingly enough, because queries extract only termi-
nal values from records, ∃-rules do not intervene in the com-
putation of answers to get-queries.
Proposition 2 For any get-query Q(I,Σ) = Q(I,Σ∀)
where Σ∀ is the restriction of Σ to ∀-rules.
This is however not the case for general (check-get) queries
which need both kinds of rules.
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Negative Results

We now study the decidability and complexity of the follow-
ing fundamental Query Answering (QA) decision problem.

Definition 4 (Query Answering Decision Problem)
Given I , Σ, Q, and a value v, does v ∈ Q(I,Σ) ?

Despite the fact that NO-RL rules seem simple, we prove
an undecidability result for general NO-RL rules, which al-
ready holds for get queries.
Theorem 2 QA is undecidable for NO-RL rules.
Proof:(sketch) By reduction from the word problem in a
semi-Thue system, which is known to be undecidable. Given
two words w,wf and a set of rewriting rules Γ, the word
problem asks if there is a derivation of wf from w with
the rules in Γ. The reduction establishes a bijective rela-
tion between the set of symbols in w,wf, and Γ, and the
set of keys employed in a record. We build an instance
I = {r}, where r = record(κw(v)), with κw the key-path
corresponding to w and v a special constant. Then, each
rewriting rule w2 ← w1 ∈ Γ becomes a NO-RL infer-
ence rule w1(x) −→ w2(x) ∈ Σ. Note that Σ may con-
tain both NO-RL(2) and NO-RL(3) rules. Finally, we define
Q = get(κwf), with κwf the key-path associated with wf.
We can then establish a bijective correspondence between
(i) any derivation from w with Γ and (ii) the set of rooted-
paths ending with the terminal value v of a record inferred
from r and Σ. It follows that wf is derivable from w with Γ
iff v ∈ Q(I,Σ). �

We can also see that as soon a single NO-RL(3) rule is
involved, saturation may be infinite, as illustrated by the
following example. On the record {a : v}, the rule σ =
a(x) −→ b.a(x) can be applied indefinitely, thereby yield-
ing an unbounded number of records:

{a : v,b : {a : v}}
{a : v,b : {a : v,b : {a : v}}}
{a : v,b : {a : v,b : {a : v,b : {a : v}}}} . . .

If we consider only NO-RL(2) (and thus NO-RL(1)) rules,
the saturation is always finite because NO-RL(2) rules do
not increase the depth of records. However, already for NO-
RL(1) rules, the size of the saturation can be exponential
in the size of the data. Consider for instance the rule σ :
k(x) −→ k1(x) and the record r = record(k.k . . . k(v)) of
depth d. The exhaustive application of σ gives us a record
representing a complete binary tree of depth d.

These observations suggest that saturating the store may
not be the most suitable approach to query answering. This
leads us to turn towards query reformulation techniques, in
the spirit of the OBDA paradigm, where data access is fully
delegated to the database system.

Query Answering based on

Reformulation

Query reformulation amounts to finding a set of queries
{Q1, . . . , Qn} which is equivalent to a given query Q wrt
a set of rules Σ over all possible KV store instances. As

already discussed in the introduction, the main advantage
of the approach is that it accesses information leaving un-
touched the original data, avoiding extra storage and main-
tenance costs and reusing database technology.

To see how reformulation works consider the query
Q : get(professor.contact.office) and the rule
σ1 : phone(x) −→ contact(x). A reformulation of
Q with σ1 is Q′ : get(professor.phone.office).
This expression can be evaluated directly on the orig-
inal data (for instance on the record of Figure 1) to-
gether with Q, without requiring any rule application. Con-
sider now an ∃-rule like σ2 : reachable(x) −→
∃y.phone(y). This rule cannot be used for reformulating
the query get(professor.phone), for which the expres-
sion get(professor.reachable) is of course not a re-
formulation. Nevertheless, σ2 is helpful for reformulating
Boolean parts of queries. For example, a Boolean condition
like check(professor.reachable) will be a reformu-
lation of check(professor.phone).

To make reformulation effective we need two kinds of
path-reformulations.

• Given the path-atom κ(x) = κ1.κ2.κ3(x) (with κ1, κ3

possibly empty) and the rule σ : κ0(x0)−→κ2(x0) we
say that κ′ is a value path-reformulation of κ if κ′ =
κ1.κ0.κ3(x)

• Given the path-atom κ(x) = κ1.κ2(x) and σ :
κ0(x0)−→κ2.κ3(y) (where possibly x0 = y and
κ1, κ3 are empty), we say that κ′ is a Boolean path-
reformulation of κ with σ if κ′ = κ1.κ0(x0).

Definition 5 (Query Reformulation) We say that Q′ =
check(κ′2).get(κ′1) is a direct reformulation of Q =
check(κ2).get(κ1) with σ if either κ′1 is a value path-
reformulation of κ1 with σ or κ′2 is a (value or Boolean)
path-reformulation of κ2 with σ.

Furthermore, Q′ is a reformulation of Q wrt Σ if there
exists a finite sequence of queries (Q1, . . . , Qn) such that
Q1 = Q, Qn = Q′ and for each 1 ≤ i < n Qi+1 is a
reformulation of Qi wrt Σ. The set of reformulations of Q
wrt Σ is denoted by REF(Q,Σ). Note that Q ∈ REF(Q,Σ).

We first prove the soundness and completeness of QA
based on query reformulation.

Theorem 3 (Soundness and Completeness) Q(I,Σ) =⋃
Q′∈REF(Q,Σ) Q

′(I)

Proof: (sketch) This follows from the correspondence be-
tween one rule application and one reformulation step of ei-
ther the check or the get path-atom of the query. The corre-
spondence takes into account value and Boolean reformula-
tions in slightly different ways. �

Data Complexity of QA

Having a sound and complete reformulation procedure gives
us directly a query answering algorithm for the case where
REF(Q,Σ) is finite. For NO-RL(3), and thus NO-RL(1),
it is indeed the case. For NO-RL(1), this follows from the
fact that a rule always replaces a key with at most one key
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thereby keeping constant the size of the paths in the refor-
mulations. As the symbols used in the query are also finite,
we have the finiteness of the reformulation. More precisely,
the number of reformulations of a query is in O(|Q||Σ|) as
each symbol in a path of Q can be chosen by at most |Σ|
keys. For strictly NO-RL(3) rules, notice that reformulation
always lowers the size of the paths in the query. Since the
set REF(Q,Σ) is always finite for NO-RL(3) rules, the data-
complexity of QA under NO-RL(3) rules is the same as basic
query answering on KV stores, which we prove to be in the
low complexity class AC0.

Theorem 4 Query answering on KV-stores (without rules)
is in AC0 for data complexity.

Proof: (sketch) By reduction to the problem of answer-
ing conjunctive queries (actually “paths”) on relational
databases, known to have AC0 data complexity. �
Corollary 1 QA under NO-RL(3) (and thus NO-RL(1))
rules is in AC0 for data complexity.

Proof: This follows from the fact that reformulation is in
constant time for data complexity and Theorem 4. �

We now turn our attention to NO-RL(2). In a dual way
to saturation under NO-RL(3) rules, REF(Q,Σ) can be in-
finite under NO-RL(2) rules. Indeed, consider the rule σ :
a.b(x) −→ a(x) and the query Q = get(a) which has an
infinite reformulation set.

get(a.b) get(a.b.b) get(a.b.b.b) . . .

However, it turns out that not all of these reformulations
are useful for QA when the instance I is fixed. Given any
record r of depth d, every useful reformulation of Q, i.e.,
potentially able to find an answer in r, has length bounded
by d. Since a NO-RL(2)-reformulation of a path κ cannot be
of smaller length than |κ|, completeness is not harmed if we
exclude all reformulations with length greater than d. There
is a finite (although exponential in d) number of useful re-
formulations. Beside, the number of steps needed to produce
a reformulation is bounded by (d + 1) × |Σ|. Indeed, strict
NO-RL(2) rules can be used at most d times to obtain a path
of length bounded by d, interleaved by at most one applica-
tion of each NO-RL(1) rule. This observation lead us to the
following result.

Theorem 5 QA under NO-RL(2) rules is in NP for data
complexity.

Summing up, the QA problem on KV stores with NO-
RL(3) (and thus NO-RL(1)) rules belongs to a low data
complexity class. Since this result is based on reformula-
tion, this technique is likely to be efficiently implementable.
For NO-RL(2) rules reformulation can still be computed in
non-deterministic polynomial time.

Related Work and Conclusion

We presented a rule-based framework for answering
ontology-mediated queries over KV stores. We shown that
despite the apparent simplicity of our language, query an-
swering surprisingly turns out undecidable. We identified

several fragments of rules for which the query answering
problem has a low (data) complexity, motivating the imple-
mentation of our framework on top of NOSQL databases.
Up to our knowledge, this work is the first one that lays the
formal basis of ontolgy-based data access on top of NOSQL
databases and that provides algorithms of query reformula-
tion in this setting.

The NO-RL rule language operates on key-value records
and can be compared to existing languages designed for
reasoning on nested structures. For instance, Frame Logic
(Kifer, Lausen, and Wu 1995; Kifer 2005) provides a logical
foundation for frame-based and object-oriented languages
for data and knowledge representation. Its expressivity cap-
tures the NO-RL language but there are no computational
guarantees. The Elog rule language (Baumgartner et al.
2001) underlying the the Lixto system (Baumgartner et al.
2003) is a fragment of monadic Datalog (Gottlob and Koch
2004) that has been specifically designed for extracting tree
shaped data from HTML pages. These rules are similar to ∀-
rules of the NO-RL(2) fragment. They are used in forward-
chaining manner to generate novel logical structures that are
then exported in XML. Active XML (Abiteboul, Benjelloun,
and Milo 2004) is a formalism to model distributed sys-
tems represented as trees with function calls for tasks such
as sending, receiving and querying data (like web services).
Active XML function calls can be assimilated to NO-RL(3)
rules that are applied in a forward-chaining manner to ex-
pand answers returned by XML queries. However, none of
these existing work follows an OBDA approach, that is, they
do not add a backward-chaining step of query reformulation
on top of data management.

We leave as future work the precise analysis of QA com-
bined complexity, the identification of tractable cases mix-
ing NO-RL(2) and NO-RL(3) rules, as well as the design
and evaluation of QA algorithms that would exploit the par-
allelization features of KV stores.
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