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Abstract

Verbs play an important role in the understanding of natural
language text. This paper studies the problem of abstract-
ing the subject and object arguments of a verb into a set of
noun concepts, known as the “argument concepts”. This set
of concepts, whose size is parameterized, represents the fine-
grained semantics of a verb. For example, the object of “en-
joy” can be abstracted into time, hobby and event, etc. We
present a novel framework to automatically infer human read-
able and machine computable action concepts with high ac-
curacy.

1 Introduction

Verb plays the central role in both syntax and semantics
of natural language sentences. The distributional hypothe-
sis (Harris 1954; Miller and Charles 1991) shows that it is
possible to represent the meaning of a word by the distribu-
tional properties of its context, e.g., its surrounding words in
a window. A verb has a unique role in a sentence because it
maintains dependency relation with its syntactic arguments
such as the subject and the object. Therefore, it is possi-
ble to use the distribution of immediate arguments of a verb
to represent its meaning, such as ReVerb (Fader, Soderland,
and Etzioni 2011). Such an approach is a form of “bag-
of-words” (BoW) approach. The common criticisms of the
BoW approach are i) perceived orthorgonality of all words
despite some of them sharing similar or related meanings;
ii) its high dimensionality and high cost of computation; and
iii) poor readibility to humans.

To ameliorate these limitations, a natural solution is to
represent the arguments by their abstract types, rather than
the words themselves. It is reasonable to assume that a
verb represents different meanings, or different senses, if
it’s used with different types of arguments. To that end,
FrameNet (Baker, Fillmore, and Lowe 1998) and Verb-
Net (Kipper et al. 2000) are examples of human-annotated
lexicons that include verbs and their meanings (called
frames) and the different types of their arguments (called
thematic roles or semantic roles). Due to the excessive cost
of constructing such lexicons, as well as their intentional
shallow semantic nature, the abstraction of verb arguments
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is very coarse-grained. For example, in FrameNet, the verb
“eat” has just one frame, namely “Ingestion”, and its direct
object has just one role, “Ingestibles”. Furthermore, the lex-
ical coverage of these resources are very limited. FrameNet,
which is the most popular and best maintained among the
three, consists of just 3000 verbs and 1200 frames.

The BoW approach is too fine-grained while the semantic
role approach is too coarse-grained. In this paper, we seek
to strike a balance between these two extremes. Our goal
is to automatically infer a tunable set of human-readable
and machine-computable abstract concepts for the immedi-
ate arguments ! of each verb from a large text corpus. By
“tunable”, we mean that the granularity of the concepts can
be parameterized by the size of the set to be returned. The
larger the set, the finer-grained the semantics. The vocab-
ulary of the concepts comes from an existing taxonomy of
concepts or terms such as Probase (Wu et al. 2012) or Word-
Net (Miller and Fellbaum 1998). For instance, the direct ob-
ject of verb “eat” may be conceptualized into “food”, “plant”
and “animal”.

One potential solution toward this goal is selectional pref-
erence (SP), originally proposed by Resnik(1996). Class-
based SP computes whether a class of terms is a preferred
argument to a verb. Together with a taxonomy of concepts,
SP can produce a ranked list of classes that are the most
appropriate subjects or objects of a verb. However, for the
purpose of representing verbs, SP has the following draw-
back: it doesn’t allow the granularity of the concepts to be
tuned because it computes a selectional preference score be-
tween the verb and every possible concept in the taxonomy.
The top k concepts do not necessarily cover all the aspects of
that verb because these concepts may semantically overlap
each other. Clustering-based SP and LDA-based SP (Rit-
ter, Etzioni, and others 2010) find tunable classes with low
overlaps, but the classes are either word clusters or proba-
bilistic distributions of words, which are not abstracted into
concepts. Without associating the classes to concepts in tax-
onomies, the model loses the ability of generalization. For
example, if “eat McDonalds” does not appear in the training
data, clustering- and LDA-based SP cannot recognize “Mc-
Donalds” as a valid argument to “eat”, since “McDonalds” is

"We only consider subjects and direct objects in this paper,
though other arguments may be inferred as well.



not a member of any inferred clusters or word distributions.

In this paper, we first introduce the notion of taxonomy
(Section 2) and define the argument conceptualization prob-
lem, which asks for k£ concepts drawn from a taxonomy that
generalize as many possible arguments of a verb as possi-
ble, and with bounded overlap with each other (Section 3).
We present the system to generate tunable argument con-
cepts through a branch-and-bound algorithm (Section 4) and
show in experiments that our system can generate high qual-
ity human-readable and machine-computable argument con-
cepts (Section 5). Some related work will be discussed (Sec-
tion 6) before we draw some concluding remarks (Section
7).

2 Taxonomy

We use a taxonomy as the external classification knowledge
for conceptualizing the arguments of verbs. A taxonomy is
a directed graph (V, E), Here, V is a set of terms, E is a set
of binary “isA” relations

E ={(e,c)lee V,ceV,eisAc},

where e is called an entity, c is called a concept, and c is
said to cover e. Most terms in V' are both concepts and
entities; terms with zero outdegree in the graph are en-
tities only. In this paper, we consider two different tax-
onomies, namely WordNet (Miller and Fellbaum 1998) and
Probase (Wu et al. 2012). WordNet organizes words into
sets of synonyms (called synsets) along with “isA” rela-
tion between two synsets. Each word may belong to mul-
tiple synsets and have multiple hypernyms (concepts) or hy-
ponyms (entities). Probase covers a lot of named entities and
multi-word expressions (e.g., Microsoft, Star Wars) which
may not be covered by WordNet. This feature allows us to
extract more precise arguments.

3 Problem Formulation

We begin with an informal definition of the argument con-
ceptualization problem. Given a collection of argument in-
stances of the same argument type (e.g., object or subject)
of a verb, we want to pick k concepts from the taxonomy
that subsume as many instances as possible. We would also
like these &k concepts to have little overlap with each other.
The intuition is that each of the & selected concepts repre-
sents a unique sense with small semantics overlap and the &k
concepts collectively cover the majority uses of that verb.
We define semantics overlap between two concepts as:

|Ec‘1 n E02|
min{|Ee, |, |Ec, |}’

Overlap(cy,ca) =

where F is the set of all entities covered by concept c in the
taxonomy.

Then, we formulate the argument conceptualization prob-
lem as a problem of finding maximum weighted k-cliques.
Consider a concept graph G = (C, L, W), which has a col-
lection of concepts C' in a taxonomy, and a set of edges L in
which each edge connects two concepts that have an overlap
less than a predefined threshold 7. W stands for weights for
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the concepts in the graph. Each weight intuitively represents
the quality of the concept with respect to the verb.

Figure 1 shows 4 concepts in an illustrative 2-dimensional
entity space (a), as well as their corresponding concept graph
(b). Each circle c; in (a) represents a set of entities covered
by concept c¢;. Because the overlap between ¢y and c3 and
between c; and c3 is high (> 7), (b) is a fully connected
graph (clique) minus only two edges: ., ., and lc, c,.

Co
‘.' C3 C1
O .

(@) (b)
Figure 1: (a) 4 concepts in the entity space (b) corresponding
concept graph

The argument conceptualization problem is then trans-
formed to finding the k-clique with maximum combined
weight.

A straightforward way to define the weight for each con-
cept is counting the number of argument instances it sub-
sumes according to the isA taxonomy (used as baseline
method in Section 5). This assumes that all argument in-
stances of a verb are of equal importance, which is not true
in practice. We thus generalize the importance of an argu-
ment e to a verb v by a quality function @, (e), which we will
discuss in detail in Section 4.1. Consequently, the weight of
concept c for verb v is defined as

> Qule).

e€{ele isA ¢}

6]

wy(c)

The argument conceptualization problem is to find a k-
clique (which forms a concept set as C) in the graph G
which maximizes

FolCr) = > wy(o). )

ceCly

We parameterize the number (k) of argument concepts of
a verb because i) different verbs have different number of
senses; and ii) even for the same verb, there is no agreement
on the exact number of its senses because one meaning can
always be divided into a number of finer-grain meanings.
For example, in Oxford English Dictionary (Oxford Uni-
versity Press 2015), the transitive verb “eat” has 4 senses
(or definitions), while in Cambridge Dictionary (Cambridge
Dictionaries Online 2015) it has just one meaning.

4 Framework
Our framework consists of three main steps: argument ex-
traction, argument weight computation and argument con-
ceptualization. In the argument extraction component, we



extract the arguments of the verb from a dependency parsed
sentence by several dependency relations (“nsubj”, “agent”
for subject extraction and “nsubjpass”, “dobj” for object ex-
traction). In the argument weight computation component,
we pre-compute the weight for each argument instance (see
Section 4.1). In the argument conceptualization, we build
the concept graph and use a branch-and-bound algorithm
(see Section 4.2) to solve the argument conceptualization

problem.

4.1 Argument Weight Computation

Since many of the existing dependency parser systems are
noisy (Manning et al. 2014). Our observations showed that
some errors follow certain patterns. For example, “food”
in “food to eat” is usually incorrectly labeled as the subject
of “eat”, and the same goes for “water to drink”, “game to
play”, etc. Similarly, “time” in “play this time” and “play
next time” is incorrectly labeled as the object of “play”.
We also discovered that if an argument is incorrect due to
parsing, it is often extracted from just a couple of patterns.
Conversely, if an argument is correct for the verb, it proba-
bly appears under many different patterns. Consider “corn”
as an object of verb “eat”. It appears in 142 patterns, e.g.,
“eat corn”, “eat expensive corn”, “eat not only corn”, etc.,
each of which gives a different dependency structure. How-
ever, “habit” only appears in 42 patterns like “eating habit”.
We follow this observation and assume that correct argu-
ments generally are likely to appear in more patterns than
the wrong ones. We define a pattern as a subtree in the de-
pendency tree according to two rules:

e The argument and one of its children form a pattern:
{POSarg; DEParga POSchild7 -DEPchild}a

where PO.S and D E P stand for POS tag and dependency
type, respectively.
e The argument and its siblings form another pattern:
{POS4rg, DEP,4, POSs;,, DEPg; }.

For each argument e of verb v, we collect the set of its
patterns M, ,,, and use the entropy to measure the correct-
ness, where a higher entropy value means that the argument
is more informative w.r.t. the patterns, and hence more likely
to be a valid argument. The entropy is defined as:

- Z P(m)log P(m)

meMe

Entropy, (€) 3)

Moreover, even if an argument is valid under a verb, it
may be less relevant. For example, while “fruit” is highly
relevant to “eat”, “thing” is not because it can be the object
of many other verbs. To this end, we use a binary version of
mutual information to measure the relatedness between two

terms. The mutual information M I, (e) is defined as:

p(v,e)
p(v)p(e)

if p(v,e)log > 0,

MIy(e) = 1
,(e
! —1 otherwise.

“

In essence, the entropy measures the correctness of the
argument, while mutual information measures its correlation
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with the verb. We compute the quality of an argument by
combining these two measures:

Q. (e) = Entropy, (e) x ML, (e).

4.2 A Branch-and-Bound Algorithm

Because the concept space in a general-purpose taxonomy
is large, we propose a branch-and-bound algorithm to effi-
ciently search for the solution. The details of our algorithm
are shown in Algorithm 1. We model each solution as a bi-
nary vector of size |C| (C is the set of all concepts in the tax-
onomy) in which exactly k elements of the vector are set to 1
while others are set to 0. The search space is represented by
a binary decision tree where the nodes at each level indicate
the decision to include a concept in the solution or not. The
complete search space contains 2/°! nodes. Take the con-
cept graph in Figure 1 as an example. The corresponding
search space is shown in Figure 2, in which d; = 1 means to
include ¢; in the solution, and d; = 0 means otherwise. For
k = 3, the concept set {cg, ¢1, c2 } is a valid solution, which
is marked by the path (dg = 1) — (d1 = 1) — (dy = 1).
The key insight in this algorithm is that, even though the
search space is exponential, a subtree can be pruned if its
path from the root already contains a valid solution, or if the
current path doesn’t have the potential to produce a better
solution than the current best.

(&)

Figure 2: A Snapshot of the Binary Decision Tree with k =
3

Suppose the partial solution of the first ¢ levels in the tree
are (do, d1, ..., d;—1) and the current best solution has a score
(computed by Eq. (2)). We use d;,q, and 7,4, to store the
best solution and its score found thus far; and use d and 7,
to represent the current partial solution and its partial score.
Variable ck stands for the number of concepts that have been
set to 1 in the current decision path, i.e.,

i—1
ck=>"d,.
n=0

The main function BB(z) searches through the tree in a
depth-first manner. It returns when it reaches the leaf node
(Line 11-12) or when it has found a solution (Line 13-16).
If the solution is better than the current best, the current best
solution is updated. The function traverses one more level to
include concept ¢; (Line 17-19) if it forms a clique with the
currently chosen concepts (ISCLIQUE function) and if the
maximum possible score with ¢; is better than the current
best score (BOUND function).



Algorithm 1 Argument Conceptualization

1: function AC(W,C, L, k)

{co,...,cj¢|—1} < Sort concepts ¢ € C'in the descending
order of w, (c).
3 Wmaz%(],wce(],ckeo
4 dmaz < {0,...,0},d «~ {0, ...,0}
5. BB(0)
6: if ck = k then
7.
8
9

N

return d,,q .
else
No solution

10: function BB(?)

11: if i > |C| then

12: return

13: if ck = k then

14: if m. > Tmae then

15: TTmaz < Tec, dmaz —d

16: return

17: if ISCLIQUE(L,7) = TRUFE and BOUND(%)> 7Tmaq

then

18: ck < ck+1,mc + me + wsy(ci),di <1
19: BB(: + 1)

20: ck < ck —1,mc + me — wsy(c;),d; < 0
21: if BOUND(: + 1) > Tz then

22: dl +~—0

23: BB+ 1)

24 return

25: function ISCLIQUE(L, 7)

26: for j fromOto: — 1 do

27: if d; = 1 then

28: if (ci,c;) € L and (cj,¢;) € L then
29: return FALSFE

30: return TRUFE

31: function BOUND(7)

32: b+ 7.

33: for j from ¢ to min{i + k — ck — 1,|C| — 1} do
34: b+ b+ wsy(cj)

35: return b

A crucial optimization in this algorithm is that we first sort
all concepts in C' in the descending order of their weighted
scores (Line 2). This allows us to quickly compute the
bound (Line 33-34) in linear time (against k), i.e., simply
compute the total score of the next k — ck concepts down the
decision tree hierarchy, rather than sorting all the remaining
concepts.

5 Experimental Results

In this section, we first show how we prepare the data for
argument conceptualization. Then, we use some example
concepts generated by our algorithm to show the advan-
tage of our algorithm (AC) against selectional preference
(SP), FrameNet (Baker, Fillmore, and Lowe 1998) and Re-
Verb (Fader, Soderland, and Etzioni 2011), as well as our
baseline approach (BL) which considers equal weight for
each argument (see Section 3). We also quantitatively evalu-
ate the accuracies of AC, BL and SP on Probase. Finally, we
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apply our algorithm to an NLP task known as argument iden-
tification (Gildea and Palmer 2002; Abend, Reichart, and
Rappoport 2009; Meza-Ruiz and Riedel 2009) and show that
concepts generated by AC achieve better accuracy against
BL, SP, Reverb and a state-of-the-art semantic role labeling
tool (using FrameNet) on both taxonomies.

5.1 Experimental Setup

We use our algorithm to conceptualize subjects and ob-
jects for 1770 common verbs from Google syntactic N-
gram (Goldberg and Orwant 2013; Google 2013) using
Probase and WordNet as isA taxonomies. > From 1770 verb
set, we sample 100 verbs with probability proportional to
the frequency of the verb. This set of 100 verbs (Verb-100)
is used for quantitative experiments including evaluating the
accuracy of argument concepts and the accuracy of argu-
ment identification.

All argument instances we use in this work come from
Verbargs and Triarcs packages of the N-gram data. From
the labeled dependency trees, we extract subject-verb depen-
dency pairs (nsubj, agent) and object-verb dependency pairs
(dobj, nsubjpass). We expand the subject or object, which is
a word, into a phrase recognizable by Probase/WordNet by
sliding a window across the subtree rooted at the argument
word.

For the system parameters, we set the maximum overlap
threshold between two concepts to 0.2, and the number of
concepts k to {5,10, 15} to evaluate argument concepts of
different granularity. In practice, the number k can be set
differently for different verbs, which we view as an advan-
tage of the framework.

5.2 Conceptualization Results

We compare the concepts learned by AC with the concepts
learned by BL, FrameNet elements, Reverb arguments, and
concepts learned by SP. ReVerb is an open information ex-
traction system that discovers binary relations® from the web
without using any predefined lexicon. ReVerb data contains
15 million subject-predicate-object triple instances without
any abstraction or generalization.

Table 1 shows 3 example verbs and their argument con-
cepts (AC & BL), FrameNet semantic roles (FN), ReVerb
argument instances (RV) as well as selectional preference
(SP) concepts for the verbs’ subjects and objects. The num-
ber of concepts k is set to 5 for AC & BL, and the top 5 in-
stances/concepts are showed for RV and SP. We can observe
that the semantic roles in FN are too general, while RV in-
stances are too specific. Both inevitably lose information:
FN is a manually constructed lexicon by experts thus can-
not scale up well, while ReVerb is automatically extracted
from massive English sentences and hence comes with abun-
dant errors (e.g., ive as a subject of “enjoy”). SP does not
consider semantic overlaps between argument concepts. BL
assumes that all argument instances of a verb are of equal

2 All evaluation data sets and results are available at http://adapt.
seiee.sjtu.edu.cn/ac.

3ReVerb extracts general relations instead of verb predicates,
e.g., XXX heavily depends on YYY.



Table 1: Example subject/object concepts from 5 lexicons

Verb AC Concepts BL Concepts FrameNet ReVerb SP Concepts
person, community, topic, name, Recipient, Student, an article, world, group,
Subj | institution, player, group, feature, Speaker, the paper, Web browser, person, term,
accept company product Interlocutor | Applications safe payment method
document, payment, | factor, feature, Theme the program, publication, | topic, concept,
Obj | practice, doctrine, product, activity, i HTTP cookie, the year, matter, issue,
Proposal .
theory person credit card word
group, community, name, topic, . world, stakeholder,
. . people, ive, Guests,
Subj | name, country, group, feature, Experiencer group, person,
. everyone, someone
enjoy sector product actor
. ben.eﬁt, time, hobby, | factor, activity, . life, Blog, Breakfirst, benefit, issue,
Obj | social event, feature, product, | Stimulus . . advantage, factor,
. their weekend, a drink .
attraction person quality
group, community, topic, name, no reviews, Project, large number, number,
Subj | name, term, group, feature, Authority other destinations, stakeholder, position,
submit source product HTML, COMMENTS group
document, format, factor, feature, one, review, document, esi online tool,
Obj | task, procedure, activity, product, | Documents | a profile, text, material, nickname,
law person your visit dates first name

importance, which is not true in practice. It tends to gen-
erate uninformative concepts such as “factor” and “feature”.
Compared to the other methods, AC generates concepts with
tunable granularity and low semantic overlap. These con-
cepts are more comprehensive and more accurate.

To quantitatively compare our algorithm to BL and SP,
we ask three native English speakers to annotate whether
the concepts generated by AC, BL and SP are the correct
abstraction of the verb’s arguments. The majority votes are
used as the ground truth. We compute the percentage of cor-
rect concepts as accuracy, and report the accuracy of AC,
BL and SP in Table 2. AC generates more accurate concepts
than BL and SP mainly because AC considers the quality of
argument instances extracted from dependency and the se-
mantic overlap between concepts. BL performs worse than
SP because the noise caused by parsing error is not consid-
ered, but SP considers the association between the verb and
arguments which implicitly gives a low rank to the incorrect
arguments.

Table 2: Accuracy of AC, BL and SP concepts

X Subject Object

AC BL SP AC BL SP
5 0.88 | 049 | 058 | 097 | 0.63 | 0.62
10 | 0.86 | 047 | 056 | 094 | 0.61 | 0.65
15 | 0.85 | 043 | 058 | 091 | 0.60 | 0.66

5.3 Argument Identification

In the argument identification task, we use the inferred ar-
gument concepts to examine whether a term is a correct ar-
gument to a verb in a sentence. To evaluate the accuracy
of argument identification, for each verb in Verb-100, we
first extract and randomly select 100 sentences containing
the verb from the Engish Wikipedia corpus. We then ex-
tract (verb, obj) and (verb, subj) pairs from these 10,000
sentences. Apart from parsing errors, most of these pairs
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are correct because Wikipedia articles are of relatively high
quality. We roughly swap the subjects/objects from half of
these pairs with the subject/object of a different verb, ef-
fectively creating incorrect pairs as negative examples. For
example, if we exchange “clothing” in “wear clothing” with
the “piano” in “play piano”, we get two negative examples
“wear piano” and “play clothing”. Finally, we manually la-
bel each of the 20,000 pairs to be correct or not, in the con-
text of the original sentences. As a result, we have a test set
of 10,000 (verb, obj) and (verb, subj) pairs in which roughly
50% are positive and the rest are negative.

We compare AC with BL, SP, ReVerb and Semantic Role
Labeling (SRL) as follows:

e AC & BL & SP: Check if the test term belongs to any of
the & argument concepts (isA relation) of the target verb.

e ReVerb: Check if the test term is contained by the verb’s
list of subjects or objects in ReVerb.

e SRL: SRL aims at identifying the semantic arguments of
a predicate in a sentence, and classifying them into differ-
ent semantic roles. We use “Semafor”’(Chen et al. 2010),
a well-known SRL tool, to label semantic arguments with
FrameNet in the sentences, and check if the test term is
recognized as a semantic argument of the target verb.

Table 3: Accuracy of argument identification

K Probase WordNet v RL
AC BL SP AC BL SP
5 0.81 0.50 | 0.70 | 055 0.54 | 0.54 048
Subj 10 0.78 | 050 | 0.72 | 0.57 0.54 | 055
15 077 | 049 | 0.72 | 0.58 0.54 | 0.56 0.54
5 0.62 | 051 0.58 | 050 | 046 | 0.50 050
Obj 10 0.62 | 0.52 | 0.58 | 0.52 | 047 0.52
15 0.62 | 052 | 0.59 | 0.53 0.47 0.52 047

We set k& = 5,10,15 for AC, BL and SP. The accura-
cies are shown in Table 3. From Table 3, we observe that



the accuracy of AC is higher than that of BL, SP, ReVerb
and SRL. Due to its limited scale, ReVerb cannot recognize
many argument instances in the test data, and thus often la-
bels true arguments as negative. SRL, on the opposite side,
tends to label everything as positive because the SRL classi-
fier is trained based on features extracted from the context,
which remains the same even though we exchange the ar-
guments. Thus, SRL still labels the argument as positive.
Comparing with BL and SP, AC considers the coverage of
verb arguments, the parsing errors and overlap of concepts
to give an optimal solution with different values of k. Con-
sequently, our algorithm generates a set of concepts which
cover more precise and diversed verb argument instances.
The accuracy decreases when we use WordNet as the taxon-
omy because WordNet covers 84.82% arguments in the test
data while Probase covers 91.69%. Since arguments that are
not covered by the taxonomy will be labeled as incorrect by
both methods, the advantage of our algorithm is reduced.

6 Related Work

We first review previous work on selectional preference,
which can be seen as an alternate way of producing abstract
concepts for verb arguments, then discuss some known work
on semantic representation of verbs.

6.1 Selectional Preference

The most related work to our problem (AC) is selectional
preferences (SP), which aims at computing preferences over
the classes of arguments by a verb, given the fact that some
arguments are more suitable for certain verbs than others.
For example, “drink water” is more plausible than “drink
desk”. While our problem defines a controllable level of
abstraction for verb arguments, selectional preference often
outputs the preference scores for all possible classes of argu-
ments. Moreover, SP doesn’t consider the overlap between
classes, which results in highly similar classes/concepts.
There are several approaches to computing SP. The orig-
inal class-based approaches generalize arguments extracted
from corpus to human readable concepts using a taxonomy
such as WordNet. The most representative of such approach
was proposed by Resnik (1996), which is used as a compar-
ison in this paper. Instead of WordNet, Pantel et al.(2003)
proposed a clustering method (named CBC) to automatically
generate semantic classes, which are nonetheless not human
readable. Another recent piece of work about SP from Fei
et al.(2015) doesn’t abstract the arguments, and is thus dif-
ferent from our approach. Other approaches including cut-
based SP (Li and Abe 1998), similarity-based SP (Clark and
Weir 2001; Erk 2007), and generative model-based SP (Rit-
ter, Etzioni, and others 2010) are less relevant to our prob-
lem, because they cannot generate human readable classes.

6.2 Semantic Representation of Verbs

From past literature, the semantics of a word (includ-
ing verbs) can be represented by the context it appears
in (Mikolov et al. 2013a; 2013b; Mikolov, Yih, and Zweig
2013; Levy and Goldberg 2014). There are a number of
ways to define the context. The simpliest is by the words
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from a surrounding window. A slightly different type of
context takes advantage of structural information in the cor-
pus, e.g., Wikipedia. The third type of context comes from a
knowledge base or lexicon, such as WordNet. For a verb, the
gloss, its hypernyms, hyponyms, antonyms and synonyms
can be used as its context (Meyer and Gurevych 2012;
Yang and Powers ). Finally, most recently, the dependency
structure surrounding the verb in a sentence has been used
as its context (Levy and Goldberg 2014). This is also the
approach adopted in this paper.

With different types of context, a common way to rep-
resent a verb is by a vector of distributional properties, ex-
tracted from the contexts within a large corpus. For exam-
ple, LSA (Deerwester et al. 1990) uses the window of words
as context, while ESA (Gabrilovich and Markovitch 2007)
uses the TF-IDF score of the word w.r.t. the article it ap-
pears in to form a vector of Wikipedia concepts. Another
popular approach is to map the word distribution in the con-
text into another high-dimensional space, which is known as
word embedding (Mikolov et al. 2013b). Our approach can
be thought of as mapping the words in the context, in this
case, the subject and object arguments into a hierarchical
concept space.

7 Conclusion

We developed a data-driven approach that automatically in-
fers a set of argument concepts for a verb by abstracting from
a large number of argument instances parsed from raw text.
These argument concepts are human-readable and machine-
computable, and can be used to represent the meaning of the
verb. Our evaluation demonstrates that the concepts inferred
are accurate to the human judges and show good potential
at identifying correct arguments for verbs even though such
arguments have never been seen before. This work can also
be seen as mining predicate relations between abstract noun
concepts from a taxonomy. As future work, one may con-
sider other important NLP tasks such as word sense disam-
biguation or term similarity using the argument concept rep-
resentation of verbs.
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