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Abstract

Recently, many variance reduced stochastic alternating di-
rection method of multipliers (ADMM) methods (e.g. SAG-
ADMM, SDCA-ADMM and SVRG-ADMM) have made ex-
citing progress such as linear convergence rates for strongly
convex problems. However, the best known convergence
rate for general convex problems is O(1/T ) as opposed to
O(1/T 2) of accelerated batch algorithms, where T is the
number of iterations. Thus, there still remains a gap in con-
vergence rates between existing stochastic ADMM and batch
algorithms. To bridge this gap, we introduce the momentum
acceleration trick for batch optimization into the stochastic
variance reduced gradient based ADMM (SVRG-ADMM),
which leads to an accelerated (ASVRG-ADMM) method.
Then we design two different momentum term update rules
for strongly convex and general convex cases. We prove
that ASVRG-ADMM converges linearly for strongly convex
problems. Besides having a low per-iteration complexity as
existing stochastic ADMM methods, ASVRG-ADMM im-
proves the convergence rate on general convex problems from
O(1/T ) to O(1/T 2). Our experimental results show the ef-
fectiveness of ASVRG-ADMM.

Introduction

In this paper, we consider a class of composite convex opti-
mization problems

min
x∈Rd1

f(x) + h(Ax), (1)

where A∈R
d2×d1 is a given matrix, f(x) := 1

n

∑n
i=1fi(x),

each fi(x) is a convex function, and h(Ax) is convex but
possibly non-smooth. With regard to h(·), we are inter-
ested in a sparsity-inducing regularizer, e.g. �1-norm, group
Lasso and nuclear norm. When A is an identity matrix,
i.e. A = Id1

, the above formulation (1) arises in many
places in machine learning, statistics, and operations re-
search (Bubeck 2015), such as logistic regression, Lasso
and support vector machine (SVM). We mainly focus on
the large sample regime. In this regime, even first-order
batch methods, e.g. FISTA (Beck and Teboulle 2009), be-
come computationally burdensome due to their per-iteration
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complexity of O(nd1). As a result, stochastic gradient de-
scent (SGD) with per-iteration complexity of O(d1) has
witnessed tremendous progress in the recent years. Espe-
cially, a number of stochastic variance reduced gradient
methods such as SAG (Roux, Schmidt, and Bach 2012),
SDCA (Shalev-Shwartz and Zhang 2013) and SVRG (John-
son and Zhang 2013) have been proposed to successfully ad-
dress the problem of high variance of the gradient estimate
in ordinary SGD, resulting in a linear convergence rate (for
strongly convex problems) as opposed to sub-linear rates
of SGD. More recently, the Nesterov’s acceleration tech-
nique (Nesterov 2004) was introduced in (Allen-Zhu 2016;
Hien et al. 2016) to further speed up the stochastic variance-
reduced algorithms, which results in the best known con-
vergence rates for both strongly convex and general con-
vex problems. This motivates us to integrate the momen-
tum acceleration trick into the stochastic alternating direc-
tion method of multipliers (ADMM) below.

When A is a more general matrix, i.e. A �=Id1
, the formu-

lation (1) becomes many more complicated problems arising
from machine learning, e.g. graph-guided fuzed Lasso (Kim,
Sohn, and Xing 2009) and generalized Lasso (Tibshirani and
Taylor 2011). To solve this class of composite optimization
problems with an auxiliary variable y = Ax, which are the
special case of the general ADMM form,

min
x∈Rd1,y∈Rd2

f(x) + h(y), s.t. Ax+By = c, (2)

the ADMM is an effective optimization tool (Boyd et al.
2011), and has shown attractive performance in a wide
range of real-world problems, such as big data classifica-
tion (Nie et al. 2014). To tackle the issue of high per-
iteration complexity of batch (deterministic) ADMM (as a
popular first-order optimization method), Wang and Baner-
jee (2012), Suzuki (2013) and Ouyang et al. (2013) pro-
posed some online or stochastic ADMM algorithms. How-
ever, all these variants only achieve the convergence rate
of O(1/

√
T ) for general convex problems and O(log T/T )

for strongly convex problems, respectively, as compared
with the O(1/T 2) and linear convergence rates of acceler-
ated batch algorithms (Nesterov 1983), e.g. FISTA, where
T is the number of iterations. By now several accelerated
and faster converging versions of stochastic ADMM, which
are all based on variance reduction techniques, have been
proposed, e.g. SAG-ADMM (Zhong and Kwok 2014b),
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Table 1: Comparison of convergence rates and memory re-
quirements of some stochastic ADMM algorithms.

General convex Strongly-convex Space requirement
SAG-ADMM O(1/T ) unknown O(d1d2+nd1)

SDCA-ADMM unknown linear rate O(d1d2+n)

SCAS-ADMM O(1/T ) O(1/T ) O(d1d2)

SVRG-ADMM O(1/T ) linear rate O(d1d2)

ASVRG-ADMM O(1/T 2) linear rate O(d1d2)

SDCA-ADMM (Suzuki 2014) and SVRG-ADMM (Zheng
and Kwok 2016). With regard to strongly convex problems,
Suzuki (2014) and Zheng and Kwok (2016) proved that lin-
ear convergence can be obtained for the special ADMM
form (i.e. B = −Id2

and c = 0) and the general ADMM
form, respectively. In SAG-ADMM and SVRG-ADMM, an
O(1/T ) convergence rate can be guaranteed for general con-
vex problems, which implies that there still remains a gap in
convergence rates between the stochastic ADMM and accel-
erated batch algorithms.

To bridge this gap, we integrate the momentum accel-
eration trick in (Tseng 2010) for deterministic optimiza-
tion into the stochastic variance reduction gradient (SVRG)
based stochastic ADMM (SVRG-ADMM). Naturally, the
proposed method has low per-iteration time complexity as
existing stochastic ADMM algorithms, and does not re-
quire the storage of all gradients (or dual variables) as
in SCAS-ADMM (Zhao, Li, and Zhou 2015) and SVRG-
ADMM (Zheng and Kwok 2016), as shown in Table 1. We
summarize our main contributions below.

• We propose an accelerated variance reduced stochas-
tic ADMM (ASVRG-ADMM) method, which integrates
both the momentum acceleration trick in (Tseng 2010) for
batch optimization and the variance reduction technique
of SVRG (Johnson and Zhang 2013).

• We prove that ASVRG-ADMM achieves a linear conver-
gence rate for strongly convex problems, which is consis-
tent with the best known result in SDCA-ADMM (Suzuki
2014) and SVRG-ADMM (Zheng and Kwok 2016).

• We also prove that ASVRG-ADMM has a convergence
rate of O(1/T 2) for non-strongly convex problems,
which is a factor of T faster than SAG-ADMM and
SVRG-ADMM, whose convergence rates are O(1/T ).

• Our experimental results further verified that our
ASVRG-ADMM method has much better performance
than the state-of-the-art stochastic ADMM methods.

Related Work

Introducing y = Ax ∈R
d2 , problem (1) becomes

min
x∈Rd1,y∈Rd2

f(x) + h(y), s.t. Ax− y = 0. (3)

Although (3) is only a special case of the general ADMM
form (2), when B = −Id2

and c = 0, the stochastic (or
online) ADMM algorithms and theoretical results in (Wang
and Banerjee 2012; Ouyang et al. 2013; Zhong and Kwok
2014b; Zheng and Kwok 2016) and this paper are all for the

more general problem (2). To minimize (2), together with
the dual variable λ, the update steps of batch ADMM are

yk = argminy h(y) +
β
2 ‖Axk−1+By−c+λk−1‖2, (4)

xk = argminx f(x) +
β
2 ‖Ax+Byk−c+λk−1‖2, (5)

λk = λk−1 +Axk +Byk − c, (6)

where β>0 is a penalty parameter.
To extend the batch ADMM to the online and stochastic

settings, the update steps for yk and λk remain unchanged.
In (Wang and Banerjee 2012; Ouyang et al. 2013), the up-
date step of xk is approximated as follows:

xk = argmin
x

xT∇fik(xk−1) +
1

2ηk
‖x− xk−1‖2G

+
β

2
‖Ax+Byk−c+λk−1‖2,

(7)

where we draw ik uniformly at random from [n] :=

{1, . . . , n}, ηk ∝ 1/
√
k is the step-size, and ‖z‖2G = zTGz

with given positive semi-definite matrix G, e.g. G = Id1

in (Ouyang et al. 2013). Analogous to SGD, the stochas-
tic ADMM variants use an unbiased estimate of the gradient
at each iteration. However, all those algorithms have much
slower convergence rates than their batch counterpart, as
mentioned above. This barrier is mainly due to the variance
introduced by the stochasticity of the gradients. Besides, to
guarantee convergence, they employ a decaying sequence of
step sizes ηk, which in turn impacts the rates.

More recently, a number of variance reduced stochas-
tic ADMM methods (e.g. SAG-ADMM, SDCA-ADMM
and SVRG-ADMM) have been proposed and made exciting
progress such as linear convergence rates. SVRG-ADMM
in (Zheng and Kwok 2016) is particularly attractive here be-
cause of its low storage requirement compared with the al-
gorithms in (Zhong and Kwok 2014b; Suzuki 2014). Within
each epoch of SVRG-ADMM, the full gradient p̃ =∇f(x̃) is
first computed, where x̃ is the average point of the previous
epoch. Then ∇fik(xk−1) and ηk in (7) are replaced by

∇̃fIk(xk−1) =
1

|Ik|
∑
ik∈Ik

(∇fik(xk−1)−∇fik(x̃)) + p̃ (8)

and a constant step-size η, respectively, where Ik ⊂ [n] is a
mini-batch of size b (which is a useful technique to reduce
the variance). In fact, ∇̃fIk(xk−1) is an unbiased estimator of
the gradient ∇f(xk−1), i.e. E[∇̃fIk(xk−1)]=∇f(xk−1).

Accelerated Variance Reduced Stochastic

ADMM

In this section, we design an accelerated variance reduced
stochastic ADMM method for both strongly convex and
general convex problems. We first make the following as-
sumptions: Each convex fi(·) is Li-smooth, i.e. there exists
a constant Li>0 such that ‖∇fi(x)−∇fi(y)‖≤Li‖x−y‖,
∀x, y∈R

d, and L�maxi Li; f(·) is μ-strongly convex, i.e.
there is μ>0 such that f(x)≥f(y)+∇f(y)T(x−y)+μ

2 ‖x−y‖2
for all x, y ∈R

d; The matrix A has full row rank. The first
two assumptions are common in the analysis of first-order
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Algorithm 1 ASVRG-ADMM for strongly-convex case
Input: m, η, β > 0, 1 ≤ b ≤ n.
Initialize: x̃0= z̃0, ỹ0, θ, λ̃0=− 1

β (A
T )†∇f(x̃0).

1: for s = 1, 2, . . . , T do

2: xs
0 = zs0 = x̃s−1, ys0 = ỹs−1, λs

0 = λ̃s−1;
3: p̃ = ∇f(x̃s−1);
4: for k = 1, 2, . . . ,m do
5: Choose Ik⊆ [n]of size b, uniformly at random;
6: ysk=argminy h(y)+

β
2 ‖Azsk−1+By− c+λs

k−1‖2;

7: zsk=zsk−1−
η(˜∇fIk(x

s
k−1)+βAT(Azs

k−1+Bys
k−c+λs

k−1))
γθ ;

8: xs
k=(1− θ)x̃s−1 + θzsk;

9: λs
k=λs

k−1 +Azsk +Bysk − c;
10: end for
11: x̃s= 1

m

∑m
k=1x

s
k, ỹs=(1−θ)ỹs−1+ θ

m

∑m
k=1y

s
k,

12: λ̃s=− 1
β (A

T )†∇f(x̃s);
13: end for
Output: x̃T , ỹT .

optimization methods, while the last one has been used in the
convergence analysis of batch ADMM (Shang et al. 2014;
Nishihara et al. 2015; Deng and Yin 2016) and stochastic
ADMM (Zheng and Kwok 2016).

The Strongly Convex Case

In this part, we consider the case of (2) when each fi(·) is
convex, L-smooth, and f(·) is μ-strongly convex. Recall that
this class of problems include graph-guided Logistic Regres-
sion and SVM as notable examples. To efficiently solve this
class of problems, we incorporate both the momentum ac-
celeration and variance reduction techniques into stochastic
ADMM. Our algorithm is divided into T epochs, and each
epoch consists of m stochastic updates, where m is usually
chosen to be O(n) as in (Johnson and Zhang 2013).

Let z be an important auxiliary variable, its update rule
is given as follows. Similar to (Zhong and Kwok 2014b;
Zheng and Kwok 2016), we also use the inexact Uzawa
method (Zhang, Burger, and Osher 2011) to approximate the
sub-problem (7), which can avoid computing the inverse of
the matrix ( 1η Id1

+βATA). Moreover, the momentum weight
0≤ θs ≤ 1 (the update rule for θs is provided below) is in-
troduced into the proximal term 1

2η‖x−xk−1‖2G similar to
that of (7), and then the sub-problem with respect to z is
formulated as follows:

min
z

(z −zsk−1)
T ∇̃fIk(xs

k−1)+
θs−1
2η

‖z −zsk−1‖2G

+
β

2
‖Az +Bysk − c+ λs

k−1‖2,
(9)

where ∇̃fIk(xs
k−1) is defined in (8), η < 1

2L , and G =

γId1 − ηβ
θs−1

ATA with γ ≥ γmin ≡ ηβ‖ATA‖2

θs−1
+1 to ensure

that G � I similar to (Zheng and Kwok 2016), where ‖·‖2
is the spectral norm, i.e. the largest singular value of the ma-
trix. Furthermore, the update rule for x is given by

xs
k= x̃s−1+θs−1(zsk− x̃s−1)=(1−θs−1)x̃s−1+θs−1zsk, (10)

where θs−1(zsk − x̃s−1) is the key momentum term (simi-
lar to those in accelerated batch methods (Nesterov 2004)),
which helps accelerate our algorithm by using the iterate
of the previous epoch, i.e. x̃s−1. Similar to xs

k, ỹs = (1−
θs−1)ỹs−1+

θs−1
m

∑m
k=1y

s
k. Moreover, θs can be set to a con-

stant θ in all epochs of our algorithm, which must satisfy
0 ≤ θ ≤ 1− δ(b)/(α−1), where α = 1

Lη > 1+ δ(b), and
δ(b) is defined below. The optimal value of θ is provided
in Proposition 1 below. The detailed procedure is shown in
Algorithm 1, where we adopt the same initialization tech-
nique for λ̃s as in (Zheng and Kwok 2016), and (·)† is the
pseudo-inverse. Note that, when θ=1, ASVRG-ADMM de-
generates to SVRG-ADMM in (Zheng and Kwok 2016).

The Non-Strongly Convex Case

In this part, we consider general convex problems of the
form (2) when each fi(·) is convex, L-smooth, and h(·) is
not necessarily strongly convex (but possibly non-smooth).
Different from the strongly convex case, the momentum
weight θs is required to satisfy the following inequalities:

1− θs
θ2s

≤ 1

θ2s−1
and 0 ≤ θs ≤ 1− δ(b)

α− 1
, (11)

where δ(b) := n−b
b(n−1) is a decreasing function with respect

to the mini-batch size b. The condition (11) allows the mo-
mentum weight to decease, but not too fast, similar to the re-
quirement on the step-size ηk in classical SGD and stochas-
tic ADMM (Tseng 1998). Unlike batch acceleration meth-
ods, the weight must satisfy both inequalities in (11).

Motivated by the momentum acceleration techniques
in (Tseng 2010; Nesterov 2004) for batch optimization, we
give the update rule of the weight θs for the mini-batch case:

θs =

√
θ4s−1+ 4θ2s−1 − θ2s−1

2
and θ0 = 1− δ(b)

α− 1
. (12)

For the special case of b = 1, we have δ(1) = 1 and θ0 =
1− 1

α−1 , while b=n (i.e. batch version), δ(n)=0 and θ0=

1. Since {θs} is decreasing, then θs ≤ 1− δ(b)
α−1 is satisfied.

The detailed procedure is shown in Algorithm 2, which has
many slight differences in the initialization and output of
each epoch from Algorithm 1. In addition, the key difference
between them is the update rule for the momentum weight
θs. That is, θs in Algorithm 1 can be set to a constant, while
that in Algorithm 2 is adaptively adjusted as in (12).

Convergence Analysis

This section provides the convergence analysis of our
ASVRG-ADMM algorithms (i.e. Algorithms 1 and 2) for
strongly convex and general convex problems, respectively.
Following (Zheng and Kwok 2016), we first introduce the
following function P (x, y) := f(x)−f(x∗)−∇f(x∗)T(x−
x∗)+h(y)−h(y∗)−h′(y∗)T(y− y∗) as a convergence cri-
terion, where h′(y) denotes the (sub)gradient of h(·) at y.
Indeed, P (x, y)≥ 0 for all x, y ∈ R

d. In the following, we
give the intermediate key results for our analysis.
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Algorithm 2 ASVRG-ADMM for general convex case
Input: m, η, β > 0, 1 ≤ b ≤ n.
Initialize: x̃0 = z̃0, ỹ0, λ̃0, θ0 = 1− Lηδ(b)

1−Lη .
1: for s = 1, 2, . . . , T do

2: xs
0=(1−θs−1)x̃s−1+θs−1z̃s−1, ys0= ỹs−1, λs

0= λ̃s−1;
3: p̃ = ∇f(x̃s−1), zs0= z̃s−1;
4: for k = 1, 2, . . . ,m do
5: Choose Ik⊆ [n]of size b, uniformly at random;
6: ysk=argminy h(y)+

β
2 ‖Azsk−1+By− c+λs

k−1‖2;

7: zsk=zsk−1−
η(˜∇fIk(x

s
k−1)+βAT(Azs

k−1+Bys
k−c+λs

k−1))
γθs−1

;
8: xs

k=(1− θs−1)x̃s−1 + θs−1zsk;
9: λs

k=λs
k−1 +Azsk +Bysk − c;

10: end for
11: x̃s= 1

m

∑m
k=1x

s
k, ỹs=(1−θs−1)ỹs−1+

θs−1
m

∑m
k=1y

s
k,

12: λ̃s=λs
m, z̃s=zsm, θs=

√
θ4
s−1+4θ2

s−1−θ2
s−1

2 ;
13: end for
Output: x̃T , ỹT .

Lemma 1.

E[‖∇̃fIk(xs
k−1)−∇f(xs

k−1)‖2]
≤2Lδ(b)

[
f(x̃s−1)−f(xs

k−1)+(xs
k−1− x̃s−1)T∇f(xs

k−1)
]
,

where δ(b)= n−b
b(n−1) ≤1 and 1 ≤ b ≤ n.

Lemma 2. Using the same notation as in Lemma 1, let
(x∗, y∗, λ∗) denote an optimal solution of problem (2), and
{(zsk, xs

k, y
s
k, λ

s
k, x̃

s, ỹs)} be the sequence generated by Al-
gorithm 1 or 2 with θs ≤ 1− δ(b)

α−1, where α= 1
Lη . Then the

following holds for all k,

E

[
P (x̃s, ỹs)− θs−1

m

m∑
k=1

(
(x∗−zsk)

TATϕs
k+(y∗−ysk)

TBTϕs
k

)]

≤E

[
P (x̃s−1, ỹs−1)
1/(1−θs−1)

+
θ2s−1

(‖x∗− zs0‖2G−‖x∗− zsm‖2G
)

2mη

]

+
βθs−1
2m

E

[
‖Azs0−Ax∗‖2−‖Azsm−Ax∗‖2+

m∑
k=1

‖λs
k−λs

k−1‖2
]

where ϕs
k = β(λs

k − λ∗).
The detailed proofs of Lemmas 1 and 2 are provided in

the Supplementary Material.

Linear Convergence

Our first main result is the following theorem which gives
the convergence rate of Algorithm 1.
Theorem 1. Using the same notation as in Lemma 2 with
given θ ≤ 1− δ(b)

α−1 , and suppose f(·) is μ-strongly convex
and Lf -smooth, and m is sufficiently large so that

ρ=
θ‖θG+ηβATA‖2

ηmμ︸ ︷︷ ︸
1

+1−θ︸︷︷︸
2

+
Lfθ

βmσmin(AAT )︸ ︷︷ ︸
3

<1, (13)

where σmin(AAT ) is the smallest eigenvalue of the positive
semi-definite matrix AAT , and G is defined in (9). Then

E
[
P (x̃T, ỹT )

] ≤ ρTP (x̃0, ỹ0).

The proof of Theorem 1 is provided in the Supplemen-
tary Material. From Theorem 1, one can see that ASVRG-
ADMM achieves linear convergence, which is consistent
with that of SVRG-ADMM, while SCAS-ADMM has only
an O(1/T ) convergence rate.
Remark 1. Theorem 1 shows that our result improves
slightly upon the rate ρ in (Zheng and Kwok 2016) with
the same η and β. Specifically, as shown in (13), ρ con-
sists of three components, corresponding to those of Theo-
rem 1 in (Zheng and Kwok 2016). In Algorithm 1, recall that
here θ ≤ 1 and G is defined in (9). Thus, both the first and
third terms in (13) are slightly smaller than those of Theo-
rem 1 in (Zheng and Kwok 2016). In addition, one can set
η=1/8L (i.e. α=8) and θ=1−δ(b)/(α−1)=1−δ(b)/7.
Thus, the second term in (13) equals to δ(b)/7, while that
of SVRG-ADMM is approximately equal to 4Lηδ(b)/(1−
4Lηδ(b))≥ δ(b)/2. In summary, the convergence bound of
SVRG-ADMM can be slightly improved by ASVRG-ADMM.

Selecting Scheme of θ

The rate ρ in (13) of Theorem 1 can be expressed as
the function with respect to the parameters θ and β with
given m, η, Lf , L,A, μ. Similar to (Nishihara et al. 2015;
Zheng and Kwok 2016), one can obtain the optimal param-
eter β∗ =

√
Lfμ/(σmin(AAT )‖ATA‖2), which produces a

smaller rate ρ. In addition, as shown in (13), all the three
terms are with respect to the weight θ. Therefore, we give
the following selecting scheme for θ.
Proposition 1. Given κf = Lf/μ, β

∗, κ = L/μ, b, A, and
let ω= ‖ATA‖2/σmin(AAT ), we set m> 2κ+2

√
κfω and

η=1/(Lα), where α=
m−2

√
κfω

2κ +δ(b)+1. Then the optimal
θ∗ of Algorithm 1 is given by

θ∗ =
m− 2

√
κfω

m− 2
√
κfω + 2κ(δ(b) + 1)

.

The proof of Proposition 1 is provided in the Supplemen-
tary Material.

Convergence Rate of O(1/T 2)

We first assume that z ∈ Z , where Z is a convex compact
set with diameter DZ = supz1,z2∈Z ‖z1−z2‖, and the dual
variable λ is also bounded with Dλ = supλ1,λ2

‖λ1−λ2‖.
For Algorithm 2, we give the following result.
Theorem 2. Using the same notation as in Lemma 2 with
θ0=1− δ(b)

α−1 , then we have

E
[
P (x̃T, ỹT )+ γ‖Ax̃T +BỹT − c‖]

≤ 4(α−1)δ(b)
(
P (x̃0, ỹ0) + γ‖Ax̃0+Bỹ0− c‖)

(α− 1− δ(b))2(T+1)2

+
2Lα‖x∗− x̃0‖2G

m(T + 1)2
+

2β
(‖ATA‖2D2

Z + 4D2
λ

)
m(T+1)

.

(14)
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Figure 1: Comparison of different stochastic ADMM methods for graph-guided fuzed Lasso problems on the four data sets.
The x-axis represents the objective value minus the minimum (top) or testing loss (bottom), and the y-axis corresponds to the
running time (seconds).

The proof of Theorem 2 is provided in the Supple-
mentary Material. Theorem 2 shows that the conver-
gence bound consists of the three components, which con-
verge as O(1/T 2), O(1/mT 2) and O(1/mT ), respectively,
while the three components of SVRG-ADMM converge
as O(1/T ), O(1/mT ) and O(1/mT ). Clearly, ASVRG-
ADMM achieves the convergence rate of O(1/T 2) as op-
posed to O(1/T ) of SVRG-ADMM and SAG-ADMM
(m� T ). All the components in the convergence bound of
SCAS-ADMM converge as O(1/T ). Thus, it is clear from
this comparison that ASVRG-ADMM is a factor of T faster
than SAG-ADMM, SVRG-ADMM and SCAS-ADMM.

Connections to Related Work

Our algorithms and convergence results can be extended to
the following settings. When the mini-batch size b= n and
m=1, then δ(n)=0, that is, the first term of (14) vanishes,
and ASVRG-ADMM degenerates to the batch version. Its
convergence rate becomes O(D2

x∗/(T+1)
2
+D2

Z/(T+1)+
D2

λ/(T+1)) (which is consistent with the optimal result for
accelerated deterministic ADMM methods (Goldstein et al.
2014; Lu et al. 2016)), where Dx∗ = ‖x∗ − x̃0‖G. Many
empirical risk minimization problems can be viewed as the
special case of (1) when A = I . Thus, our method can be
extended to solve them, and has an O(1/T 2+1/(mT 2)) rate,
which is consistent with the best known result as in (Allen-
Zhu 2016; Hien et al. 2016).

Experiments

In this section, we use our ASVRG-ADMM method to solve
the general convex graph-guided fuzed Lasso, strongly con-
vex graph-guided logistic regression and graph-guided SVM
problems. We compare ASVRG-ADMM with the follow-
ing state-of-the-art methods: STOC-ADMM (Ouyang et al.

2013), OPG-ADMM (Suzuki 2013), SAG-ADMM (Zhong
and Kwok 2014b), and SCAS-ADMM (Zhao, Li, and Zhou
2015) and SVRG-ADMM (Zheng and Kwok 2016). All
methods were implemented in MATLAB, and the experi-
ments were performed on a PC with an Intel i5-2400 CPU
and 16GB RAM.

Graph-Guided Fused Lasso

We first evaluate the empirical performance of the proposed
method for solving the graph-guided fuzed Lasso problem:

min
x

1

n

n∑
i=1

�i(x) + λ1‖Ax‖1, (15)

where �i is the logistic loss function on the feature-label pair
(ai, bi), i.e., log(1+exp(−bia

T
i x)), and λ1 ≥ 0 is the regu-

larization parameter. Here, we set A = [G; I] as in (Ouyang
et al. 2013; Zhong and Kwok 2014b; Azadi and Sra 2014;
Zheng and Kwok 2016), where G is the sparsity pattern
of the graph obtained by sparse inverse covariance selec-
tion (Banerjee, Ghaoui, and d’Aspremont 2008). We used
four publicly available data sets1 in our experiments, as
listed in Table 2. Note that except STOC-ADMM, all the
other algorithms adopted the linearization of the penalty
term β

2 ‖Ax−y+z‖2 to avoid the inversion of 1
ηk
Id1

+βATA

at each iteration, which can be computationally expensive
for large matrices. The parameters of ASVRG-ADMM are
set as follows: m=2n/b and γ=1 as in (Zhong and Kwok
2014b; Zheng and Kwok 2016), as well as η and β.

Figure 1 shows the training error (i.e. the training objec-
tive value minus the minimum) and testing loss of all the
algorithms for the general convex problem on the four data
sets. SAG-ADMM could not generate experimental results

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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Table 2: Summary of data sets and regularization parameters
used in our experiments.

Data sets � training � test � mini-batch λ1 λ2

a9a 16,281 16,280 20 1e-5 1e-2
w8a 32,350 32,350 20 1e-5 1e-2
SUSY 3,500,000 1,500,000 100 1e-5 1e-2
HIGGS 7,700,000 3,300,000 150 1e-5 1e-2
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Figure 2: Comparison of different stochastic ADMM meth-
ods for graph-guided logistic regression problems on the two
data sets: a9a (top) and w8a (bottom).

on the HIGGS data set because it ran out of memory. These
figures clearly indicate that the variance reduced stochas-
tic ADMM algorithms (including SAG-ADMM, SCAS-
ADMM, SVRG-ADMM and ASVRG-ADMM) converge
much faster than those without variance reduction tech-
niques, e.g. STOC-ADMM and OPG-ADMM. Notably,
ASVRG-ADMM consistently outperforms all other algo-
rithms in terms of the convergence rate under all set-
tings, which empirically verifies our theoretical result that
ASVRG-ADMM has a faster convergence rate of O(1/T 2),
as opposed to the best known rate of O(1/T ).

Graph-Guided Logistic Regression

We further discuss the performance of ASVRG-ADMM for
solving the strongly convex graph-guided logistic regression
problem (Ouyang et al. 2013; Zhong and Kwok 2014a):

min
x

1

n

n∑
i=1

(
�i(x) +

λ2

2
‖x‖22

)
+ λ1‖Ax‖1. (16)

Due to limited space and similar experimental phenomena
on the four data sets, we only report the experimental results
on the a9a and w8a data sets in Figure 2, from which we
observe that SVRG-ADMM and ASVRG-ADMM achieve
comparable performance, and they significantly outperform
the other methods in terms of the convergence rate, which is
consistent with their linear (geometric) convergence guaran-
tees. Moreover, ASVRG-ADMM converges slightly faster
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Figure 3: Comparison of accuracies multi-class classifica-
tion on the 20newsgroups data set: accuracy v.s. running
time (left) or number of epochs (right).

than SVRG-ADMM, which shows the effectiveness of the
momentum trick to accelerate variance reduced stochastic
ADMM, as we expected.

Graph-Guided SVM

Finally, we evaluate the performance of ASVRG-ADMM
for solving the graph-guided SVM problem,

min
x

1

n

n∑
i=1

(
[1− bia

T
i x]+ +

λ2

2
‖x‖22

)
+ λ1‖Ax‖1, (17)

where [x]+ = max(0, x) is the non-smooth hinge loss. To
effectively solve problem (17), we used the smooth Huber-
ized hinge loss in (Rosset and Zhu 2007) to approximate
the hinge loss. For the 20newsgroups dataset2, we randomly
divide it into 80% training set and 20% test set. Follow-
ing (Ouyang et al. 2013), we set λ1=λ2=10−5, and use the
one-vs-rest scheme for the multi-class classification.

Figure 3 shows the average prediction accuracies and
standard deviations of testing accuracies over 10 different
runs. Since STOC-ADMM, OPG-ADMM, SAG-ADMM
and SCAS-ADMM consistently perform worse than SVRG-
ADMM and ASVRG-ADMM in all settings, we only re-
port the results of STOC-ADMM. We observe that SVRG-
ADMM and ASVRG-ADMM consistently outperform the
classical SVM and STOC-ADMM. Moreover, ASVRG-
ADMM performs much better than the other methods in
all settings, which again verifies the effectiveness of our
ASVRG-ADMM method.

Conclusions

In this paper, we proposed an accelerated stochastic vari-
ance reduced ADMM (ASVRG-ADMM) method, in which
we combined both the momentum acceleration trick for
batch optimization and the variance reduction technique.
We designed two different momentum term update rules
for strongly convex and general convex cases, respectively.
Moreover, we also theoretically analyzed the convergence
properties of ASVRG-ADMM, from which it is clear that
ASVRG-ADMM achieves linear convergence and O(1/T 2)
rates for both cases. Especially, ASVRG-ADMM is at least
a factor of T faster than existing stochastic ADMM methods
for general convex problems.

2http://www.cs.nyu.edu/∼roweis/data.html
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