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Abstract

How to save labeling efforts for training supervised classi-
fiers is an important research topic in machine learning com-
munity. Active learning (AL) and transfer learning (TL) are
two useful tools to achieve this goal, and their combination,
i.e., transfer active learning (T-AL) has also attracted consid-
erable research interest. However, existing T-AL approaches
consider to transfer knowledge from a source/auxiliary do-
main which has the same class labels as the target domain, but
ignore the relationship among classes. In this paper, we in-
vestigate a more practical setting where the classes in source
domain are related/similar to but different from the target
domain classes. Specifically, we propose a novel cross-class
T-AL approach to simultaneously transfer knowledge from
source domain and actively annotate the most informative
samples in target domain so that we can train satisfactory
classifiers with as few labeled samples as possible. In par-
ticular, based on the class-class similarity and sample-sample
similarity, we adopt a similarity propagation to find the source
domain samples that can well capture the characteristics of
a target class and then transfer the similar samples as the
(pseudo) labeled data for the target class. In turn, the labeled
and transferred samples are used to train classifiers and ac-
tively select new samples for annotation. Extensive experi-
ments on three datasets demonstrate that the proposed ap-
proach outperforms significantly the state-of-the-art related
approaches.

Introduction

When training supervised classifiers, we always expect that
there are sufficient labeled samples available for the target
classes (Bishop and others 2006). However, this requirement
seems too demanding in some real-world applications. For
example, many objects “in the wild” follow a long-tailed
distribution such that they do not occur frequently enough
to collect and label a large set of representative exemplars
to build the corresponding recognizers (Changpinyo et al.
2016). In addition, the labeling effort for many objects can
be very expensive because the expert knowledge is required,
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like in the fine-grained bird recognition (Wah et al. 2011).
Under these circumstances, it is always expected to train ef-
fective classifiers with as few labeled samples as possible.

Therefore, saving efforts for labeling data in a supervised
learning is an important topic in the machine learning com-
munity. Two strategies are widely adopted. The first is active
learning (AL) (Settles 2009) which selects the most informa-
tive samples for expert labeling. In fact, the information in
each sample is different. Therefore, if the most representa-
tive/informative samples are selected and labeled, even a few
labeled samples can provide sufficient knowledge to con-
struct effective classifiers. The second is transfer learning
(TL) (Pan and Yang 2010) which transfers knowledge from
related auxiliary source domains to the target domain. By us-
ing the knowledge from auxiliary domains, we can save the
labeling efforts paid to the target domain. On the top of them,
transfer active learning (T-AL) (Chattopadhyay et al. 2013;
Li et al. 2013), which attempts to simultaneously transfer
knowledge from auxiliary domains and actively selects sam-
ples for expert labeling in the target domain, has gained in-
creasing attention and achieved promising results recently.

The current T-AL approaches mostly focus on the intra-
class transfer where the source domain and the target do-
main share the same class labels but have different marginal
and conditional distributions. However, sometimes it is diffi-
cult to collect a fully labeled source domain that has exactly
the same classes as the target domain, especially when the
target domain contains uncommon or newly defined classes
such as images of the Tesla’s Model S. On the other hand,
collecting labeled samples from some different but related
common classes is much easier in many cases (Zhu et al.
2011). Therefore, if we can extend T-AL into the inter-class
transfer setting where the knowledge is transferred across
classes, T-AL can be applied to more practical situations.

Motivation and Contribution

The reason why existing T-AL approaches fail to transfer
knowledge across classes is because they treat each class in-
dependently without taking the relationship between classes
into account, thus giving rise to the fact that only the same
class can build correspondence. In reality, the classes in
many real-world applications, such as object recognition,
are strongly or weakly related to each other. For example,
class “dolphin” is strongly related to “shark” but weakly to
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“tiger”, while class “lion” is strongly related to “tiger” but
weakly to “shark”. Based on the relationship, it is possible
to transfer knowledge from the labeled samples of “dolphin”
and “lion” to help construct classifier between “shark” and
“tiger” (Lampert, Nickisch, and Harmeling 2014).

Motivated by this observation, in this paper we propose
a novel cross-class T-AL approach which simultaneously
transfers knowledge from source domain that includes dif-
ferent but similar/related classes to the target domain and
actively selects informative samples in the target domain for
expert labeling by using the relationship between classes.
Specifically, both class-class similarity and sample-sample
similarity enable us to adopt a similarity propagation strat-
egy to build the similarity between the labeled sample in the
source domain and each class in the target domain. Then,
the source domain samples that are highly similar to a tar-
get class are “borrowed” by the class by assigning pseudo
label to them and treating them as the labeled samples of the
class. Although the borrowed samples are not exactly from
the target class, they can well capture the characteristics of
the target class and regarding them as labeled samples can
help build more effective classifier (Lim, Salakhutdinov, and
Torralba 2011; Choi et al. 2013). In this way, the knowledge
is transferred across classes from the source domain to the
target domain. Subsequently, we can build classifiers with
the labeled target domain samples and the transferred and
pseudo labeled source domain samples. With the classifiers,
the most informative samples can be selected for labeling. In
summary, we make the following contributions in this paper:
• We investigate the T-AL in the challenging cross-class

setting and a novel approach is proposed which can simul-
taneously transfer knowledge from related source domain
classes into target domain classes and actively select the
most informative target domain samples for annotation.

• In view of the relationship between classes, we adopt a
similarity propagation method to build the similarity be-
tween source domain samples and target domain classes.
Then the source domain samples which are the most
similar to the target classes are selected and assigned
by pseudo labels. With the knowledge of the cross-class
transferred samples, more effective classifiers can be build
even with just a few labeled samples in the target domain.

• We conduct extensive empirical analysis on three bench-
mark datasets. The experimental results demonstrate that
the proposed cross-class T-AL approach can achieve
higher accuracy by using much fewer labeled samples
in the target domain than the state-of-the-art related ap-
proaches.

Background

Different from passive learning where the labeled samples
are given in advance, active learning allows the learning
system to select unlabeled samples for expert labeling. The
underlying assumption in active learning is that the sam-
ples have different information and only a small portion of
samples can provide sufficient information for supervised
learning. This idea has been also applied in many applica-
tions, such as hard negative mining (Shrivastava, Gupta, and

Girshick 2016). There are two ways to measure the infor-
mativeness of samples. The first is based on the represen-
tativeness (Yu, Bi, and Tresp 2006) which considers how
the selected samples can capture the distribution of data.
The second is based on uncertainty of samples given the
current model (Joshi, Porikli, and Papanikolopoulos 2012;
Yang et al. 2015). Specifically, it considers how the current
model is uncertain about the sample and selects the most un-
certain samples, which are also the hardest samples for the
current model, for expert labeling. If the model can well han-
dle difficult samples, it is reasonable that it can handle easy
samples as well. The recent researchers mostly focus on the
second strategy because of its superior performance.

If there are auxiliary knowledge/data sources available
that have abundant label information, we can consider to
transfer knowledge from them to further reduce the labeling
cost in the target domain, which is the focus of transfer ac-
tive learning. Shi, Fan, and Ren (2008) proposed to transfer
knowledge from auxiliary sources as often as possible and
labeling target domain samples was triggered only when the
likelihood that the unlabeled samples in target domain can
be correctly classified became too low. Li et al. (2012) pro-
posed to find a shared latent space for auxiliary source do-
main and target domain such that the label information in
source domain could be well exploited. Then the most infor-
mative samples were selected by considering the informa-
tion from the latent space. Chattopadhyay et al. (2013) pro-
posed to re-weight the source domain samples and select the
target domain samples to reduce the distribution difference
between domains such that the knowledge could be trans-
ferred more effectively. Li et al. (2013) proposed a disjoint
framework where individual classifiers for source domain
and target domain were trained independently and the pre-
diction was made from both classifiers. They adopted Query
by Committee strategy to select the most informative sam-
ples. Intuitively, utilizing more information from auxiliary
sources can save the labeling effort in target domain and
result in better performance, which has been demonstrated
empirically by previous works. However, they make a strong
assumption that the source domain and target domain share
the same class labels. But in real world, most of applications
violate this assumption. Therefore, to enhance the general-
ization of T-AL, we further relax the share-class assumption
in this paper and investigate T-AL in the cross-class setting.

The Proposed Approach

Problem Definition and Notations

In this paper, we consider the cross-class T-AL. Specifically,
the problem is described as follows. In the target domain,
there are a large sample pool Dp = {xp

1, ...,x
p
np
} where

xp
i ∈ R

d is a d-dimensional feature vector, and kt classes
Ct = {ct1, ..., ctkt

}. Each sample belongs to one class in Ct.
Dp consists of two disjoint set, the labeled set L and the un-
labeled set U . There is another test set Dt = {xt

1, ...,x
t
nt
}

which share the same distribution and class set with Dp.
We progressively select some samples from U for expert
labeling (i.e., move them to L), and then train a classi-
fier with the labeled samples. The task of active learning
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is to construct a classifier that yields satisfactory perfor-
mance on Dt with as few labeled samples in Dp as pos-
sible (i.e., the size of L should be small). Furthermore, in
the cross-class transfer setting, we are given another auxil-
iary source domain for knowledge transfer, which contains a
set of labeled samples Ds = {(xs

1,y
s
1), ..., (x

s
ns
,ys

ns
)} and

ks classes Cs = {cs1, ..., csks
}. In the cross-class setting, we

have Cs ∪ Ct = ∅ while previous T-AL approaches require
Cs = Ct. Each source domain sample belongs to one class
in Cs and ys

i ∈ {−1, 1}ks is the label vector where ysij = 1
if sample xs

i belongs to csj or −1 otherwise. In addition, to
connect source domain and target domain, we are given a
class similarity matrix G ∈ R

(ks+kt)×(ks+kt) where gij de-
notes the similarity between two classes. This matrix can be
defined by experts or computed from auxiliary information.
For example, in the object recognition task, we can use the
word hierarchy (Fellbaum 1998) based on object’s name or
the word vector (Huang et al. 2012) to define the similarity.

Cross-class Similarity Transfer

In this paper, we propose a similarity based sample transfer
method to perform cross-class knowledge transfer. Specifi-
cally, we select some samples that can well capture the char-
acteristics of target domain classes and assign pseudo labels
to them so as to expand the small labeled set in the target
domain. In fact, although the classes in source domain and
target domain are different, there may exist some samples
in the source domain that are highly similar to the target
classes. For example, in the shark-tiger task we mentioned
above, although not all the dolphin (lion) images are similar
to shark (tiger), it is reasonable to assume that there are a
portion of dolphin (lion) images that can well describe the
shark (tiger) class. In fact, if there are more classes and sam-
ples in the source domain, it is more likely that there exists
similar samples. Augmenting L by adding those samples in
would improve the classifiers, since more knowledge is ex-
ploited although they have pseudo labels (Choi et al. 2013).

To build the similarity between source domain samples
and target domain classes, we first adopt similarity propa-
gation on the class-class similarity graph. This is motivated
by the graph-based random walk for information propaga-
tion (Lin, Ding, and Hu 2015). The relationship between
classes is given by G, but the relationship between a sample
to all classes is unknown. Denote ri ∈ [0, 1]ks as the relat-
edness scores (similarity) between source domain sample xs

i
and all source domain classes where ric is the initial score
between xs

i and class c. Because xs
i is labeled, one simple

way is to assign ric = 1 where c is the class of xs
i and

the other elements to 0, i.e., hard assignment. However, this
strategy ignores 1) the relationship between classes (e.g., an
image with label “horse” may also have label “grass”), and
2) the intra-class diversity (Guo et al. 2015) (e.g., dolphin
images may vary a lot from each other). Therefore, we adopt
a soft assignment strategy. Specifically, because the source
domain samples are fully labeled, we can train ks one-vs-all
probability classifiers (e.g., Logistic regression classifier), in
which each classifier fs

c outputs the probability that the sam-
ple belongs to c. Then we use the outputs of these classifiers

for ri. In this way, both problems above can be addressed.
Now we need to propagate the similarity to target domain

classes. Our goal is to connect source domain samples and
target domain classes. We formulate this goal as a propa-
gation procedure where the sample is the source node, all
target domain classes are the sink nodes, all source domain
classes are the transient nodes, and the transient probability
matrix for these nodes is derived from ri and G as follows:

T =

⎛
⎝ 0x→x

1×1 (r̃i)
x→s
1×ks

0x→t
1×kt

0s→x
ks×1 G̃s→s

ks×ks
G̃s→t

ks×kt

0t→x
kt×1 0t→s

kt×ks
It→t
kt×kt

⎞
⎠ (1)

where the symbols x, s, and t denote sample (source node),
source domain class (transient node), and target domain
class (sink node) respectively, and (·)a→b is the transient ma-
trix between node a and b. Ga→b is a sub-matrix of G that
contains the similarity between classes in a and b. We further
perform �1-norm normalization to each row of T such that it
satisfies the definition of transient probability matrix. Here,
we require that the source node has no input, sink nodes have
no output, and transient nodes have both input and output.
Then, given an object at source node, it can randomly walk
on the similarity graph and the probability that it walks from
node i to j is given by Tij . After enough steps, it will fi-
nally reach a sink node. Intuitively, the probability that the
object reaches target domain class c can be regarded as the
similarity between the sample and c. For example, if xi is
very similar to source domain class csp (rip is large) and csp
is very similar to target domain class ctq (Gpq is large), it is
very likely that the object can walk from xi to csp and then
to ctq . Using similarity-based random walk to build the rela-
tionship between sample and class has been adopted in many
applications, like image annotation (Guillaumin et al. 2009),
as it is able to discover complicated relationships.

Now we need to compute the probability that the random
walk stops at each target domain class c, i.e., the similarity
between xi and c. We first reorganize T into a simpler way:

T =

(
Qx,s→x,s

(ks+1)×(ks+1) Rx,s→t
(ks+1)×kt

0t→x,s
kt×(ks+1) It→t

kt×kt

)
(2)

where

Q =

(
0x→x
1×1 (r̃i)

x→s
1×ks

0s→x
ks×1 G̃s→s

ks×ks

)
,R =

(
0x→t
1×kt

G̃s→t
ks×kt

)
(3)

This is a transient probability matrix for the standard absorb-
ing Markov chain (Grinstead and Snell 1997). Based on its
theory, if the random walk starts at node q ∈ {x, s}, the
probability that it stops at sink node c is computed as below:

pqc = Mq∗R∗c (4)

where Mq∗ is the q-th row and R∗c is the c-th column. The
matrix M is defined as M = (I−Q)−1. Specifically, it can
be computed by the block matrix invention formula as below

M =

(
1 r̃i(I− G̃s→s

ks×ks
)−1

0 (I− G̃s→s
ks×ks

)−1

)
(5)

In our propagation procedure, the random walk starts at the
sample. Therefore, we only care about the first row in M
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based on our definition. By using Eq. (5), the probability
that the random walk stops at each target domain class is

pc
i = r̃i(I− G̃s→s

ks×ks
)−1G̃s→t

ks×kt
(6)

where pcij is the probability for class ctj . Because
G̃s→s

ks×ks
and G̃s→t

ks×kt
is given in advance, the term (I −

G̃s→s
ks×ks

)−1G̃s→t
ks×kt

can be pre-computed. For each sample,
we just need to compute its ri and then apply a simple ma-
trix multiplication operation to obtain pc

i , which is quite ef-
ficient. This score can be regarded as the similarity between
the source domain sample xi and each target domain class.

The class-class similarity graph focuses on the general
characteristics of class. On the other hand, in active learn-
ing, some labeled samples of target domain classes are avail-
able. Although its number is quite small, these samples can
also provide some specific information about target domain
classes. Therefore, we also consider the similarity propa-
gation on the sample-sample similarity graph. The sample
based propagation is analogous to the class based one, and
we just need some proper modifications. Specifically, we re-
gard the source domain sample xi as source node, target
domain classes as sink nodes, as in the class based propa-
gation, and we regard the labeled samples in L and some
source domain samples obtained by random sampling as
the transient nodes. The transient probability between sam-
ples (including the source node and transient nodes) is de-
fined by the heat-kernel similarity (Lu, Yuan, and Yan 2014)
hij = exp(−‖xi−xj‖2/σ2) where σ is set to the mean Eu-
clidean distance between feature vectors in the training set.
The transient probability between transient nodes and sink
nodes (target domain classes) is defined as follows. If the
sample is from source domain, then its probabilities to all
sink nodes are 0. On the other hand, if the sample is from
L, because its label is available, its probability to the corre-
sponding class is 1 and the others are 0. Therefore, the tran-
sient probability matrix for all nodes is written as follows,

T =

⎛
⎜⎜⎜⎝

0x→x
1×1 H̃x→s

1×n′
s

H̃x→t
1×nl

0x→c
1×kt

0s→x
n′
s×1 H̃s→s

n′
s×n′

s
H̃s→t

n′
s×nl

0s→c
n′
s×kt

0t→x
nl×1 H̃t→s

nl×n′
s

H̃t→t
nl×nl

(Ỹt
L)

t→c
nl×kt

0c→x
kt×1 0c→s

kt×n′
s

0c→t
kt×nl

Ic→x
kt×kt

⎞
⎟⎟⎟⎠ (7)

where the symbols x, s, t, and c denote the sample xi to be
considered (source node), the picked samples from source
domain (transient node) whose number is n′

s � ns, labeled
samples in the target domain (transient node) whose num-
ber is nl, and the target domain classes (sink node). Also,
we normalize each row such that the summation is 1. Then
we perform random walk for similarity propagation on the
sample-sample similarity graph from source node to sink
nodes and the probability that it stops at each sink node can
be computed analogous to the class-based case as follows:

ps
i = (H̃x→s

1×n′
s
, H̃x→t

1×nl
)(I− H̃s,t→s,t)−1H̃s,t→c (8)

where

H̃s,t→s,t =

(
H̃s→s

n′
s×n′

s
H̃s→t

n′
s×nl

H̃t→s
nl×n′

s
H̃t→t

nl×nl

)

H̃s,t→c =

(
0s→c
n′
s×kt

(Ỹt
L)

t→c
nl×kt

)
(9)

In this way, we obtain the similarity between a source do-
main sample and each target domain class as ps

i from the
sample similarity graph. Now, we can combine the similar-
ity from both perspectives in Eq. (6) and Eq. (8) as follows:

pi = λpc
i + (1− λ)ps

i (10)

where λ is a balance parameter. Now, for each class j in the
target domain, we rank the similarity scores pij(∀i) of all
source domain samples, and the top ranked samples are se-
lected and transferred to class j, i.e., we assign pseudo label
j to them to expand L. Although the transferred samples do
not belong to the target domain classes based on the original
labels, they are highly similar to the target domain classes so
that they can well capture the characteristics of these classes.

Active Learning

By the cross-class transferred samples, the labeled set L is
expanded into L̃. Now we can utilize L̃ to train a model
for target domain. Specifically, we consider the one-vs-all
SVM classifier for the multi-class problem. With the labels
for samples in L and pseudo labels for transferred samples,
we can rewrite L̃ = {(xi,yi, θi)}, where θi is the weight for
the sample i. In the standard SVM, we set θi = 1 for all sam-
ples. However, because the transferred samples have pseudo
labels which are not true labels, it is necessary to consider
their influence. From Eq. (10), we obtain the similarity be-
tween samples and classes. Obviously, if pij is large, it is
reasonable to trust its pseudo label j. Therefore, suppose a
transferred sample xi is assigned by pseudo label ctj , we di-
rectly set θi = pictj , and we assign θi = 1 for the samples
from L because they have true labels. The one-vs-all SVM
classifier can be trained by the following dual formulation:

min
αc

1,...,α
c
l

∑l

i=1
αc
i −

1

2

∑l

i,j=1
αc
iα

c
jyicyjcK(xi,xj)

s.t.
∑l

i=1
αc
iyic = 0, 0 ≤ αc

i ≤ Cθi (11)

where αc is the classifier parameter for class c ∈ Ct, yic is
the label vector that yic = 1 if the sample is labeled by c
or yic = −1 otherwise, K(xi,xj) is the kernel for SVM
and we adopt linear kernel in this paper, and l is the size
of the expanded training set L̃. For class c, its classifier is
constructed as f t

c(x) =
∑l

i=1 α
c
iyicK(xi,x) and a larger

output indicates that x is more likely to belong to c. This is a
weighted SVM formulation (Yang, Song, and Wang 2007)
which can be easily solved by well-established quadratic
programming solvers, like quadprog function in MATLAB.

By Eq. (11), we can build the one-vs-all classifier for each
target domain class. The multi-class prediction is given by

f t(x) = argmaxc

∑l

i=1
αc
iyicK(xi,x) (12)
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Algorithm 1 AL with Cross-class Similarity Transfer
Input: Source domain samples Ds, target domain pool Dp;

Class-class similarity matrix G;
Output: Classifiers f t

c for the target domain classes
1: Initialize L by random seed, U = Dp\L;
2: Construct probability classifier fs

c for source domain;
3: for iter = 1 : max iter do
4: Initialize ri(i ∈ Ds) using fs

c (c ∈ Cs) ;
5: Compute pc

i on the class similarity graph by Eq. (6);
6: Compute ps

i on the sample similarity graph by Eq.(8);
7: Compute pi for each i ∈ Ds by Eq. (10);
8: Initialize the expanded set L̃ = L;
9: for c ∈ Ct do

10: Select samples Sc with largest pic(∀i) for c;
11: Expand L̃ = L̃ ∪ {(xi, c, θi = pic)}, i ∈ Sc;
12: end for
13: Train classifiers f t

c(c ∈ Ct) by Eq. (11) using L̃;
14: Compute entropy Ei(i ∈ U) using current models f t

c ,
heat-kernel similarity matrices Kuu and Kus;

15: Compute ranking score ri(i ∈ U) by Eq. (13);
16: Select top ranked samples SU for expert labeling;
17: Update L = L ∪ SU , U = U\SU ;
18: end for
19: Return f t

c ;

Then we can select samples from U for expert label-
ing based on the current model by uncertainty sampling.
We adopt the best-vs-second-best strategy in the multi-class
scenario considering its effectiveness (Joshi, Porikli, and
Papanikolopoulos 2012). Specifically, given an unlabeled
sample xu

i ∈ U , the current model can output a value
oci = f t

c(x
u
i ) on each target domain class. Suppose c1

and c2 are the two classes that output the largest values
(xu

i is most likely to belong to them), we can compute the
entropy of the sample as Ei = −∑2

j=1 p
j
i log p

j
i where

pji = exp(ocji )/(
∑2

m=1 exp(ocmi )) based on the soft-max
operation. One simple method is to select the unlabeled sam-
ples with the largest entropy (uncertainty) for expert label-
ing. However, this method 1) may lead to redundant selec-
tion (Yang et al. 2015) and 2) fails to consider the informa-
tion from source domain. The former can be addressed by
considering the diversity of selected samples. In fact, the lat-
ter is an important issue in the cross-class setting. Because
we are going to transfer source domain samples based on
their similarity to the labeled samples, labeling one sample
in the target domain will affect the transfer procedure in the
next round. If one target domain sample has very few simi-
lar source domain samples and is diverse to the other labeled
samples, labeling it may impose an outlier transient node in
the sample graph defined in Eq. (7) such that it has little in-
fluence on the propagation. Therefore, we hope the selected
sample to have some neighbors in the source domain. For-
mally, we first define a heat-kernel similarity matrix for the
samples in U as Kuu ∈ R

nu×nu , and another similarity ma-
trix between U and a randomly sampled subset (to reduce
the complexity) from Ds as Kus ∈ R

nu×n′
s where n′

s � ns

is the size of the subset. Then we can formulate the sample
selection procedure as the following optimization problem:

min
ri≥0,

∑
i ri=1

− rKuuE′ − τrKus1′
n′
s
+ ηrKuur′ (13)

which can be efficiently solved by the quadratic problem
solvers. ri is the ranking score for xu

i and the samples
with largest ranking scores are selected for expert label-
ing. The formulation covers three aspects. The first term
is −rKuuE′ = −∑i ri(

∑
j K

uu
ij Ej), which considers the

uncertainty. Note that this uncertainty is transferable from
one sample to its related samples. For example, if sample i
and j are similar (Kuu

ij is large), labeling sample i will sig-
nificantly reduce the uncertainty of sample j because it is
common that similar samples have similar labels. The sec-
ond term is −rKus1′

n′
s
= −∑i ri

∑
j K

us
ij . As discussed

above, the samples that have many similar samples in the
source domain are preferred. The third term is rKuur′ =∑

ij K
uu
ij rirj . If sample i and j are similar (Kuu

ij is large),
assigning large values to ri and rj simultaneously will lead
to large penalty. Therefore, minimizing this term can lead to
diverse selection. We summarize the procedure of the pro-
posed cross-class T-AL approach in Algorithm 1.

Experiment

Settings

We select three datasets to demonstrate the effectiveness of
the proposed approach. The first is CIFAR10 (Krizhevsky
2009) which has 10 object classes and each class has 6, 000
images. We select 8 classes as source domain and 2 classes
as target domain which leads to C2

10 = 45 different splits.
We report the average result on the 45 splits. The second
is Animals with Attributes (AwA) (Lampert, Nickisch, and
Harmeling 2014) which has 50 animal classes. Following
the standard split in (Lampert, Nickisch, and Harmeling
2014), 40 classes with 24, 295 images are regarded as source
domain, and the other 10 classes with 6, 180 images as tar-
get domain. The third is aPascal-aYahoo (aPY) (Farhadi et
al. 2009) which has two subsets. The first subset is aPas-
cal from Pascal VOC2008 challenge that has 20 classes and
12, 695 images, which is used as source domain. The sec-
ond subset is aYahoo collected from Yahoo image search
which has 12 classes and 2, 644 images that are similar but
different from aPascal, and it is used as target domain. For
CIFAR10, each class is described by the word vector from
(Huang et al. 2012). For AwA and aPY, each class has an
attribute vector provided by the dataset. To construct the
class similarity matrix G, we adopt the cosine similarity be-
tween the classes’ attribute/word vectors and negative sim-
ilarity is set to 0. To make the matrix more discriminative,
we perform square transformation on each element and then
perform �1-norm normalization. For each image, we adopt
the Caffe tool (Donahue et al. 2014) with the pretrained
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) and use
the 4, 096-dimensional output of fc7 layer as feature vector.

We use two state-of-the-art AL approaches (Joshi, Porikli,
and Papanikolopoulos 2012; Yang et al. 2015) as baselines.
Because the traditional T-AL approaches cannot perform
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Figure 1: Benchmark comparison.
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Figure 2: Effect of parameters.

cross-class transfer, it is not possible to make comparison.
In addition, a cross-class approach (Guo et al. 2016) is also
included in the baselines even though it requires the class
attributes for knowledge transfer which is more difficult to
obtain than the class similarity. Following (Yang et al. 2015),
to evaluate each approach, we split the target domain sam-
ples equally into Dp and Dt. For each round, we select 2,
10, and 12 samples from Dp for CIFAR10, AwA, and aPY
respectively for labeling and training, and we use the classi-
fication accuracy on Dt as the evaluation metric.

When implementing our approach, we use the following
settings. The parameter λ in Eq. (10) is set to 0.5 in all ex-
periments. The values of τ and η in Eq. (13) are chosen by
class-wise cross validation (Guo et al. 2016) which splits
the source domain by class and uses some classes as source
domain and the other classes as validation domain to sim-
ulate the cross-class setting and uses the label information
for parameter selection. These parameters are chosen from
{0.1, 1, 10}. In line 10 of Algorithm 1, we select and transfer
Q = |Sc| = 200, 100, 100 samples for each target domain
class for three datasets. To construct sample similarity graph
in Eq. (7), we randomly choose 500 samples from Ds. For
the matrix Kus in Eq. (13), we randomly choose 1, 000 sam-
ples from Ds. For the baselines, we also utilize the cross-
validation on source domain to find the optimal parameters.
In addition, we show the result that uses a fully labeled Dp to
train classifiers. We report the average results over 20 runs.

Results

The performance curves on three datasets are plotted in Fig-
ure 1. It can be observed that our approach significantly
outperforms the baselines, which verifies its effectiveness.
Specifically, the accuracy of our approach at 10-th iteration
on three datasets are 88.98%, 90.98% and 91.01%, which
improves upon the best baselines with 5.62%, 5.33%,
and 4.27%, indicating relative error reductions of 33.7%,
37.1%, and 32.2%. In addition, after only 20 iterations, our
approach reaches and even surpasses the accuracy of using
fully labeled Dp for classifier training (ALL), which vali-
dates that our approach indeed selects the most informative
samples for labeling and the samples transferred from source
domain can well capture the characteristics of target domain
classes and provide valuable knowledge. To achieve 90% ac-
curacy, our approach needs 12, 7, and 7 iterations (24, 70,
and 84 labeled samples), while the best baseline needs 24,
18, and 14 iterations (48, 180, 168 samples), which means
our approach saves 50%, 55.6%, 50% labeling efforts.

The effect of λ in Eq. (10) is shown in Figure 2(a). We
can see that when we ignore the class graph (λ = 0) or sam-
ple graph (λ = 1), the performance drops significantly, im-
plying that both graphs are important for building similarity
between source domain samples and target domain classes.
Moreover, the results show that class graph (λ = 1) per-
forms better than sample graph (λ = 0). This is because the
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class similarity can provide more comprehensive informa-
tion about the class. But there are only a few labeled samples
such that the sample graph may miss important information.

The effect of the number of transferred samples for each
target domain class (Q) is shown in Figure 2(b). When Q is
small, increasing it can improve performance because more
useful information is transferred. However, when it is too
large (e.g., 400), many dissimilar samples will be transferred
such that they may decrease the performance dramatically.

The effect of τ and η in Eq. (13) is shown in Figure 2(c).
We can see that the diversity and information from source
domain are both necessary for choosing valuable samples.

Conclusion

In this paper, we propose a novel cross-class T-AL approach
which simultaneously transfers samples from source domain
that are very similar to target domain classes based on the
class-class similarity and sample-sample similarity propaga-
tion, and selects the most informative samples in the target
domain for expert labeling. Comprehensive experiments on
three datasets demonstrate the superiority of the proposed
approach over several state-of-the-art related approaches.
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