
Approximate Conditional Gradient
Descent on Multi-Class Classification

Zhuanghua Liu, Ivor Tsang
Centre for Artifical Intelligence

University of Technology Sydney
liuzhuanghua1991@gmail.com Ivor.Tsang@uts.edu.au

Abstract

Conditional gradient descent, aka the Frank-Wolfe algorithm,
regains popularity in recent years. The key advantage of
Frank-Wolfe is that at each step the expensive projection
is replaced with a much more efficient linear optimization
step. Similar to gradient descent, the loss function of Frank-
Wolfe scales with the data size. Training on big data poses
a challenge for researchers. Recently, stochastic Frank-Wolfe
methods have been proposed to solve the problem, but they
do not perform well in practice. In this work, we study the
problem of approximating the Frank-Wolfe algorithm on the
large-scale multi-class classification problem which is a typ-
ical application of the Frank-Wolfe algorithm. We present a
simple but effective method employing internal structure of
data to approximate Frank-Wolfe on the large-scale multi-
class classification problem. Empirical results verify that our
method outperforms the state-of-the-art stochastic projection-
free methods.

Introduction
The Frank-Wolfe (FW) optimization algorithm (Frank and
Wolfe 1956)(Jaggi 2013) is a popular first-order method to
solve the optimization problem in the form of:

min
w∈M

F (w) =
1

n

n∑
i=1

fi(w) (1)

where F is a continuously differentiable function over the
domain M which is convex and compact. Frank-Wolfe re-
surges in recent years thanks to the cheap linear optimiza-
tion step when applied on the problem with complex struc-
ture(Lacoste-Julien et al. 2013)(Osokin et al. 2016). Multi-
class classification with bounded matrix trace-norm is one
typical application which Frank-Wolfe can be applied on,
detailed discussion can be viewed from (Jaggi 2013).

When faced with large-scale optimization problem, simi-
lar to batch gradient descent, gradient calculation and linear
optimization step of Frank-Wolfe are prohibitively expen-
sive. Recently, stochastic Frank-Wolfe optimization meth-
ods(Hazan and Kale 2012)(Lan and Zhou 2016)(Hazan and
Luo 2016) have been proposed to conquer the big data chal-
lenge. Extensive experiments show that stochastic Frank-
Wolfe optimization methods do not perform as desired.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this work, we propose a novel method of approximating
Frank-Wolfe on multi-class classification problem on large-
scale datasets. The method employs both the advantage of
stochastic Frank-Wolfe and full Frank-Wolfe. We give the
definition of multi-class classification problem below:

Given a set of n training data (xi, yi), here xi ∈ Rd is a
vector of feature and yi ∈ {1, . . . , h} is the label. Previous
work (Dudı́k, Harchaoui, and Malick 2012)(Zhang, Yu, and
Schuurmans 2012) found that the multi-class classification
problem can be cast as minimizing the objective (1) with fi
defined as:

fi(w) = log(1 +
∑
l �=yi

exp(wT
l xi − wT

yi
xi)) (2)

on the constrained convex set M = {w ∈ Rh×m : ‖w‖∗ ≤
τ} where ‖ · ‖∗ is the nuclear norm.

When optimizing a multi-class classification problem on
large-scale datasets, the cost of computation at each step is
proportional to the size of dataset. Thus our method uses a
subset of data points as the surrogates of the whole dataset
at each iteration. Unlike the stochastic optimization methods
using random data points at each step, we pick up surrogate
data points by taking the internal structure of data into con-
sideration. Specifically, inspired by the Locality-Sensitive
Hashing (Indyk and Motwani 1998)(Datar et al. 2004)(Kulis
and Grauman 2012) that close data points collide in the same
bin, we consider using low cost hash method to map training
data from each class into bins, and select one surrogate data
point from each bin as the approximation of data points col-
lide in the same bin. We gradually divide more bins to select
more surrogates to obtain a better approximation as iteration
proceeds.

The convergence rate of our algorithm is proved to be sub-
linear on multi-class classification objective, the same as the
full Frank-Wolfe. Experiments verify that our method con-
verge fast as stochastic Frank-Wolfe methods while better
and more stable objective values are attained.

The rest of the paper is organized as follows: Section 2 in-
troduces the background of Frank-Wolfe and its extensions,
we present our algorithm and analysis in detail in Section 3,
followed by the experiments in Section 4. We conclude our
work in Section 5.

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

2301

Preliminaries and Background

Frank Wolfe Algorithm

At iteration t, same as batch gradient descent, Frank-
Wolfe algorithm computes the gradient of F at current
wt as ∇F (wt). Before it updates the weight, Frank-
Wolfe solve a linear minimization subproblem, i.e., ut =
minu∈M ∇F (w)Tu. Then the weight is updated as:

wt+1 = (1− γt)wt + γtut (3)

Without the need of projection onto the constraint set M, γt
is set to be 2

t+1 . In the case the linear minimization subprob-
lem is cheaper than projection, Frank-Wolfe is much faster
than projected gradient descent. For multi-class classifica-
tion objective, the complexity of linear optimization step is
linear to the number of non-zeros in the weight matrix while
projection takes the complexity of O(hdmin(h, d)).

Complexity of training with Frank-Wolfe is proportional
to the data size n. When n is large, each training iteration is
expensive. To conquer the challenge of big data, researchers
employ stochastic optimization methods used in optimizing
batch gradient descent on the Frank-Wolfe algorithm. Oracle
complexity of stochastic gradients of latest work on smooth
objective are summarized in the following table:

Measures SCGS SFW SVRF STORC
Complexity O(1

ε2) O(1
ε3) O(1

ε2) O(1
ε1.5)

Table 1: Oracle Complexity Comparison

For SFW, SVRF and STORC, total complexity of opti-
mizing the objective function consists of three parts: the
complexity of exact gradient, stochastic gradient and lin-
ear optimization. Fortunately, all the three alternatives share
the same complexity of linear optimization. SVRF and
STORC have the same complexity of exact gradient while
no exact gradient is needed to evaluate in SFW. But, as
pointed out in the experiment section of (Hazan and Luo
2016), STORC performs worst compared with SFW and
SVRF while STORC enjoys the best rate of convergence
of O(1

ε1.5). Note that in the work of (Lan and Zhou 2016),
although SCGS needs O(1

ε2) for stochatic gradient evalu-
ations and no full gradient evaluation at all, in practice it
performs inferior to SVRF and STORC.

Locality-Sensitive Hashing

Locality-Sensitive Hashing(LSH) is a popular method
for nearest neighbour search(Indyk and Motwani
1998)(Charikar 2002). It admits a provable sub-linear
query time and sub-quadratic space complexity, and enjoys
good performance on a wide range of applications(Andoni
et al. 2015). Specifically, LSH supports fast retrieval of near
neighbours with low time and space cost.

Assumptions in Our Analysis

For objective fi(w), we assume it is convex and L-smooth,
so fi satisfied the following two assumptions. for any
w,w0 ∈ M , one has:

fi(w)− fi(w0) ≤ ∇fi(w)
T (w − w0) (4)

fi(w)− fi(w0)−∇f(w0)
T (w−w0) ≤ L

2
‖w−w0‖2 (5)

L is the Lipstchiz constant of ∇fi(w). Multi-class classifi-
cation objective (2) satisfies the above two properties.

We assume the convex compact domain M with diameter
of D, i.e., for any w,w0 ∈ M, ‖w−w0‖ ≤ D. In the setting
of multi-class classification, D = 2τ .

Approximate Frank-Wolfe

Limitation of Stochastic Frank-Wolfe Methods

Despite the promising theoretical results of stochastic Frank-
Wolfe methods, these stochastic methods pose two major
limitations when evaluated in practice.

First, the empirical performance does not conform to
their theoretical claim. As pointed out in the previous sec-
tion, STORC performs worse than SVRF and SFW although
STORC has the best rate of convergence.

Another drawback is variance cannot be completely re-
duced for SVRF in practice. Extensive experiments show
that on some datasets, SVRF has large variance when the
objective is close to the optimum. We defer detailed com-
parison in the experiment part.

One possible explanation for such limitations is that
stochastic Frank-Wolfe algorithms not only suffer from the
randomness, the weight update step (3) also leads to large
fluctuation in practice. When objective is near the optimum,
the combination of these two factors make stochastic meth-
ods not converge well.

Motivation and Explanation of AFW

When the objective loss starts to converge, the loss function
should be as close to Equation (1) as possible so that the
weight update step (3) will generate similar result as the loss
function of the full Frank-Wolfe. Sample a random subset of
fi(w) can not have any guarantee on the quality of approx-
imation although the loss converges fast at the beginning of
the training phase. On the other hand, training full Frank-
Wolfe on the whole dataset is extremely slow on large-scale
datasets but it obtain better and more stable optimum.

Can we combine both the advantage of fast convergence
of stochastic methods at the first a few iterations and that of
the stable/low-variance convergence of the full Frank-Wolfe
when near the optimum? It motivates the development of our
approximation method.

We consider the internal structure of data, and use a subset
of data points to represent the whole dataset. Specifically, we
consider that using Locality-Sensitive Hashing techniques to
hash data to different bins. We select one data point from
each bin to represent the other points in the same bin. We
use coarse hash partition of the dataset to select few surro-
gates and we can have fast convergence at the beginning of
training. When the objective starts to converge, more finer
partition is used to guarantee our method will converge to
the optimum achieved by full Frank-Wolfe.

2302

Algorithm 1 Approximate Frank-Wolfe
1: Inputs: {xi, yi}ni=1, ν, δ, k0
2: Generate ρ ∈ Rd whose element is drawn from Gaus-

sian Distribution ∼ N (0, 1)
3: Set hash value hi ← ρTxi

4: Group the data points by yi
5: For each group, sort hi and partition xi into k0 bins ac-

cording to hi

6: for t = 0, 1, 2, . . . , do
7: if Bin partition has been changed then
8: Sample one data point from each bin, compute the

corresponding ∇fi(w
(t)) of the sampled data

9: end if
10: Compute ∇f̃(w(t)) as the weighted sum of

∇fi(w
(t))

11: Set ut = minv∈M ∇f̃(w(t))T v
12: Update w(t+1) ← (1− γt)w

(t) + γtut

13: if t mod ν = 0 then
14: For each bin containing more than δ points, divide

bin into two equal-width bins.
15: end if
16: end for

We present our algorithm as follows:
Our algorithm is stated in Algorithm 1. The key idea of

Algorithm 1 is to obtain f̃(w), which is the weighted sum
of fi(w) from each hash bin from every class and we use
this objective as the approximation of the objective of full
Frank-Wolfe. When bin width is large, some data points in
the same bin have long distance. So the surrogate cannot
represent all the data in the same bin effectively. When ob-
jective starts to converge, we narrow the bin width to refine
the hash partition and take more data points to get a more re-
liable approximation. But having such finer partition at the
beginning of the training phase is undesirable, as the num-
ber of selected surrogates is large, training on this objective
is expensive. At the initial phase of training, we only need a
coarse partition of fi(w).

Initialization: Line 2-3 calculates hash value for each
data point. The generation of random Gaussian variables are
inspired by p-stable distribution, which we will analysis in
depth later. For now, we can imagine 〈ρ, xi〉 for each data
xi as a series of parallel hyperplane passing each data point
from the training set.

Partition: In line 4-5, In every class group in which all
data points share the same yi, we divide the group evenly
to bins according to their hash values. It is like that all the
hyperplanes 〈ρ, xi〉 in the same group can be divided by a
set of parallel equi-distance hyperplanes.

Weight update: Line 7-8 samples data from each bin in
each class group. Each weighted sum term is obtained from
the product of number of data points collided in the hash bin
multiplied by the surrogate data point. Line 10-12 employs
Frank-Wolfe algorithm to do the weight update. γt is set as
2

t+1 , same as the learning rate used in full Frank-Wolfe al-
gorithm.

Partition refinement: The ”coarser to finer” bin partition
scheme is achieved from line 13 to 16. After the algorithm
runs for every ν iterations, it is closer to the optimum. Then
we change the partition of the bin by divide each bin into two
equi-length bins. It can be imagined as a new perpendicular
bisector hyperplane is added between the two neighbour hy-
perplanes.

Our work is related to some prior works (Allen Zhu, Yuan,
and Sridharan 2016)(Zhao and Zhang 2014). These works
consider exploiting internal structure on SGD. Our method
is different from these works in mainly two aspects: (1) we
use hashing instead of clustering as it takes less preprocess-
ing time before training. (2) once hash partition is done, our
method is no longer stochastic while their methods are based
on stochastic after clustering.

Analysis of the Approximation Error

The hash partition scheme is inspired by p-stable distribu-
tion which is widely used in locality-sensitive hashing. We
give the definition of p-stable distribution as follows:

Definition 1. (Datar et al. 2004) A distribution D over
R is called p-stable, if there exists p ≥ 0 such that for
any n real numbers v1 . . . vn and i.i.d. variables X1 . . . Xn

with distribution D, the random variable
∑

i viXi has the
same distribution as the variable (

∑
i |vi|p)(1/p)X , where

X is a random variable with distribution D. In particular, a
Gaussian distribution DG, defined by the density function
g(x) = 1√

2π
e−x2/2, is 2-stable.

For any p-stable distribution, the probability of any two
data points collide in the same bin enjoys the following prop-
erty:

Lemma 2. For any two data points {xi, yi}, {xj , yj}, let
c = ‖xi−xj‖, fp(t) be the probability distribution function
of the absolute value of the p-stable distribution, and bin
width r ∈ R, then the probability of two data points under
the mapping of the p-stable distribution collide in the same
bin is

Pr[h(i) = h(j)] =

∫ r

0

1

c
fp(

t

c
)(1− t

r
)dt (6)

h(·) is the hash value for the instance. A direct result for
Gaussian distribution following the previous lemma is ex-
pressed as:

Lemma 3. The probability of any two data points under the
mapping of the Gaussian distribution collide in the same bin

is bounded by the Gaussian integral 2√
π

∫ r√
2c

0 e−x2

dx

Proof. Plug fp(x) = 2 ∗ 1√
2π

e−x2/2 into (6):

2303

Pr[h(i) = h(j)] = 2 ∗
∫ r

0

1

c

1√
2π

e−(t
c)

2/2(1− t

r
)dt

=
2√
π
(

∫ r

0

e−
t2

2c2 d
t√
2c

− 1√
2cr

∫ r

0

e−
t2

2c2 t dt)

≤ 2√
π

∫ r

0

e−
t2

2c2 d
t√
2c

=
2√
π

∫ r√
2c

0

e−x2

dx

Remark. When c → 0, the probability of collision is almost
1, which means when two data points are close to each other,
they will collide in the same bin with probability of 1. On
the other hand, when c → +∞, r√

2c
→ 0, the integral ap-

proaches 0. That means, those two data points with distance
c are impossible to collide in the same bin. The Gaussian
integral bound gives us the intuition the farther two points,
they will be hashed into the same with less probability. Fur-
thermore, r is one of the key factor to decide to whether two
data points collide in the same bin. if c � r, the two data
points are unlikely to be hashed into same bin.
Lemma 4. (Bouchard 2007) (Quadratic upper bound for
softmax function) For any x ∈ Rd and for any y ∈ Rd,
one has

log

d∑
i=1

exi ≤
d∑

i=1

(xi − yi)
2 − 1

d
(

d∑
i=1

(xi − yi))
2+

d∑
i=1

(xi − yi)e
yi∑d

i′=1 e
yi′

+ log

d∑
i=1

eyi

(7)

Given two data points with distance d, the difference of
their multi-class loss objective can be bounded as:
Lemma 5. Given two data points within the same class
group with distance q, i.e., yi = yj and ‖xi − xj‖ =
q, then fi(w) − fj(w) ≤ ∑

l �=yi
‖wl − wyi‖2q2 +∑

l �=yi

q‖wl−wyi
‖ exp(wT

l xj−wT
yi

xj)
∑

l�=yi
exp(wT

l xj−wT
yi

xj)

Proof. Thanks to the upper bound of Lemma 4, one has

fi(w)− fj(w) = log(1 +
∑
l �=yi

exp(wT
l xi − wT

yi
xi))−

log(1 +
∑
l �=yj

exp(wT
l xj − wT

yj
xj))

≤
∑
l �=yi

((wl − wyi
)T (xi − xj))

2+

∑
l �=yi

(wl − wyi
)T (xi − xj)exp(w

T
l xj − wT

yi
xj)∑

l �=yi
exp(wT

l xj − wT
yi
xj)

≤
∑
l �=yi

‖wl − wyi‖2‖xi − xj‖2+

∑
l �=yi

‖wl − wyi‖‖xi − xj‖exp(wT
l xj − wT

yi
xj)∑

l �=yi
exp(wT

l xj − wT
yi
xj)

Replace ‖xi−xj‖ with q, we get the desired upper bound.

Previous lemma shows that right hand side of the upper
bound is proportional to q, the distance of data points. So
when two data point within the same bin is close to each
other, the objective loss of one data point can be approxi-
mated by that of another data point. Put previous lemma and
Lemma 3 together, if the bin width r is small enough, the
loss objective of one data point of the hash bin can approxi-
mate another point in the same bin quite well.

The O(1/t) convergence rate of Frank-Wolfe algorithm
on L-smooth objective is given by the following lemma:
Lemma 6. (Bubeck 2015) Let f be a convex and L-smooth
function, and γt =

2
t+1 for t ≥ 1. Then for any t ≥ 2, one

has

f(wt)− f(w∗) ≤ 2LD2

t+ 1
(8)

For f̃(·) as a weighted sum of fi, Lemma 6 can be applied
on f̃ because it is convex and L-smooth. Similar to w∗ is
the optimum of the f(w), we assume w̃∗ as the optimum of
function f̃(w). For any w ∈ M, one has f̃(w̃∗) ≤ f̃(w).

Given any f̃(·), when f̃(w) runs for t iterations, can we
give the bound between f̃(w) and optimum objective loss of
the full Frank-Wolfe F (w∗)? Our next theorem answers this
question:

Theorem 7. Assume f̃(w) is a weighted sum of fi from
each hash bins. For any hash bin in current partition of data
points, the distance of each surrogate with the other data
points in the same hash bin does not exceed B. Furthermore,
set M satisfy condition that for any weight matrix w defined
on set M, for any i, j ∈ {1, . . . , h}, ‖wi −wj‖ ≤ D′. Then
the following holds true:

f̃(wt)− f(w∗) ≤ 2LD2

t+ 1
+ n(h− 1)D′2B2

+ n(h− 1)D′B
(9)

Proof. Combine the results of Lemma 5 and Lemma 6, one
has

f̃(wt)− f(w∗) = f̃(wt)− f̃(w̃∗) + f̃(w̃∗)− f(w∗)

≤f̃(wt)− f̃(w̃∗) + f̃(w∗)− f(w∗)

≤ 2LD2

t+ 1︸ ︷︷ ︸
εfw

+n(h− 1)D′2B2 + n(h− 1)D′B︸ ︷︷ ︸
εh

The bound for the theorem consists of two parts: εfw and
εh. The εfw conforms to the convergence rate of the Frank-
Wolfe algorithm, while εh is generated by the approximation
in the partitions of the hash bins. εh is proportional to B.
When the bin width r is small, the data points with close
distance are likely to be hashed in the same bin, so B is also
small. f̃(wt) approximates the objective loss of full Frank-
Wolfe f .

2304

Rate of Convergence

Finally, we turn to the analysis of the rate of convergence
our algorithm. Our algorithm optimize a series of f̃(w), each
f̃(w) is produced by the partition refine during the training
process. Each f̃(w) is the weighted sum of training surro-
gates.

Theorem 8. Approximate Frank-Wolfe takes O(1/ε) itera-
tions to achieve the ε-approximation of the optimum of full
Frank-Wolfe.

Proof. For any f̃(w), the rate of convergence is given by
Lemma 6. The oracle complexity for f̃(w) is thus O(1/ε).
Because during the whole training process, there are at most
n weighted sums f̃(w). (At the first iteration, we may use
only one surrogate fi to represent the f . More fi is added
into the set of surrogates loss as iteration proceeds. The num-
ber of surrogates functions is monotonically increasing.) So
the total oracle complexity is no more than O(n/ε). n is a
constant throughout the training progress, so we arrived at
the desired convergence rate of our algorithm.

Experiment

Here we evaluate the convergence of the proposed algorithm
on the multi-class classification task. We compare the objec-
tive and time of the proposed algorithm with other stochastic
Frank-Wolfe methods. In addition, we compare the conver-
gence of AFW with full Frank-Wolfe.

Experiment Setup

Our algorithm and baseline methods are implemented in
Matlab. Our experiments run on a server with 3.1 GHZ
CPU and 132 GB memory. We conducted our experiment on
several large-scale datasets from the libsvm website1. The
datasets are summarized in the following table:

Dataset aloi covtype mnist poker sensIT
data 108,000 581,012 60,000 1,000,000 78,823
features 128 54 780 10 50
classes 1,000 7 10 10 3

Table 2: Summary of the datasets

To evaluate the quality of the solution in optimization, we
use the multi-class classification objective as the measure.
We compare our method with the state-of-the-art stochas-
tic Frank-Wolfe methods, i.e., SVRF, SFW. We also include
the optimum achieved by full Frank-Wolfe in the compari-
son. For fair comparison, we use the default parameter for
SFW and SVRF from (Hazan and Luo 2016), i.e., The size
of mini-batches at round t is t2, t for SFW and SVRF, re-
spectively. In the evaluation of approximate Frank Wolfe,
we set ν = 50, δ = 10 and k0 = 100.

Objective of Approximate Frank-Wolfe

Figure 1 depicts the evaluation of AFW and other baselines
with multi-class classification loss residual on the datasets

1https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/

50 100 150 200 250 300

Time(s)

6.2

6.4

6.6

6.8

7

7.2

L
o

s
s

(a) aloi

1 2 3 4 5 6

Time(s)

1

2

3

4

L
o

s
s

(b) covtype

10 20 30 40 50 60

Time(s)

1

2

3

4

L
o

s
s

(c) mnist

10 20 30 40 50 60

Time(s)

1

1.2

1.4

1.6

1.8

2

L
o

s
s

(d) poker

2 4 6 8 10 12

Time(s)

2

4

6

8

10

L
o

s
s

(e) sens

AFW

SVRF

SFW

Optimum

(f) legend

Figure 1: Comparison of AFW and baseline methods

previously mentioned. Note that our evaluation of AFW
counts in the time of hash partition during the training pro-
cess. We do not include full Frank-Wolfe as our baseline
since full Frank-Wolfe, though it has the best rate of conver-
gence O(1/t), it takes too much time to converge because of
the expensive evaluation of gradient using the whole dataset
at each iteration. Thus we only depicts the optimum obtained
by the full Frank-Wolfe in the figure (The optimum is ob-
tained by running full Frank-Wolfe for a very long time).

Observe that AFW converges on every dataset, and AFW
is the fastest method to reach the optimum on almost every
dataset. Since AFW can be divided into multiple epochs.
At every epoch, AFW is trained on f̃(w) which is a fixed
weighted sum of fi(w). So AFW behaves just the same as
the full Frank-Wolfe during each epoch since the objective
is fixed at that epoch. The objective loss of AFW is more
smooth compared with the stochastic Frank-Wolfe methods.

SVRF converges very fast on every dataset at early stage
of training. However, when SVRF converges to some points
close to the optimum, SVRF sometimes becomes diver-
gence. Unlike their counterpart SVRG, variance reduction
on SVRF works not as good as SVRG which has no vari-
ance in later iterations. We believe such oscillation is intro-
duced by the weight update step (3). Even full Frank-Wolfe
is not a monotonically decreasing function, so random sam-
ples of the dataset inevitably introduce variance. The biggest

2305

20 40 60 80 100

Iterations

6.2

6.4

6.6

6.8

7

7.2

L
o

s
s

(a) aloi

20 40 60 80 100

Iterations

1

2

3

4

L
o

s
s

(b) covtype

50 100 150

Iterations

1

2

3

4

L
o

s
s

(c) mnist

50 100 150

Iterations

1

1.2

1.4

1.6

1.8

2
L

o
s
s

(d) poker

50 100 150

Iterations

2

4

6

8

10

L
o

s
s

(e) sens

AFW

FW

(f) legend

Figure 2: Comparison of AFW and FW on Convergence

drawback of SVRF is that it can not achieve the global mini-
mum on some datasets, see Figure 1c, 1d and 1e. It oscillates
wildly at some point far from the global optimum.

For SFW, although it takes the longest time to converge
the optimum, it does not oscillate like SVRF. Thanks in part
to the mini-batch size of t2 at iteration t, its variance is thus
reduced by a factor of t2. So we can see SFW is quite smooth
when it is near the optimum.

Convergence of Approximate Frank-Wolfe

We compare the convergence of Approximate Frank-Wolfe
and full Frank-Wolfe on the same set of datasets. Except
Figure 2d, approximate Frank-Wolfe almost share the same
convergence rate as the full Frank-Wolfe in Figure2b, 2c and
2e. Full Frank-Wolfe converges marginally faster than ap-
proximate Frank-Wolfe in Figure 2a. It validates our claim
that AFW has the same rate of convergence as full FW in the
previous sections.

Conclusion

We propose the approximate Frank-Wolfe algorithm on
multi-class classification problems. Our method enjoys the
advantages from stochastic Frank-Wolfe methods and full
Frank-Wolfe. It converges fast at the beginning of training,
while it has the same rate of convergence as full Frank-
Wolfe method. It outperforms existing stochastic Frank-

Wolfe methods on most datasets in the experiment. In the
future work, we will extend our approach on more general
tasks and demonstrate its effectiveness on a wider range of
applications.

Acknowledgments

Ivor W. Tsang is supported by the ARC Future Fellowship
FT130100746 and ARC grant LP150100671

References

Allen Zhu, Z.; Yuan, Y.; and Sridharan, K. 2016. Exploiting
the structure: Stochastic gradient methods using raw clus-
ters. CoRR abs/1602.02151.
Andoni, A.; Indyk, P.; Laarhoven, T.; Razenshteyn, I. P.; and
Schmidt, L. 2015. Practical and optimal LSH for angu-
lar distance. In Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal,
Quebec, Canada, 1225–1233.
Bouchard, G. 2007. Efficient bounds for the softmax func-
tion and applications to approximate inference in hybrid
models. In Workshop for Approximate Bayesian Inference
in Continuous/Hybrid Systems. Citeseer.
Bubeck, S. 2015. Convex optimization: Algorithms and
complexity. Foundations and Trends in Machine Learning
8(3-4):231–357.
Charikar, M. 2002. Similarity estimation techniques from
rounding algorithms. In Proceedings on 34th Annual ACM
Symposium on Theory of Computing, May 19-21, 2002,
Montréal, Québec, Canada, 380–388.
Datar, M.; Immorlica, N.; Indyk, P.; and Mirrokni, V. S.
2004. Locality-sensitive hashing scheme based on p-stable
distributions. In Proceedings of the twentieth annual sym-
posium on Computational geometry, 253–262. ACM.
Dudı́k, M.; Harchaoui, Z.; and Malick, J. 2012. Lifted
coordinate descent for learning with trace-norm regulariza-
tion. In Proceedings of the Fifteenth International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2012,
La Palma, Canary Islands, April 21-23, 2012, 327–336.
Frank, M., and Wolfe, P. 1956. An algorithm for quadratic
programming. Naval research logistics quarterly 3(1-2):95–
110.
Hazan, E., and Kale, S. 2012. Projection-free online learn-
ing. In Proceedings of the 29th International Conference on
Machine Learning, ICML 2012, Edinburgh, Scotland, UK,
June 26 - July 1, 2012.
Hazan, E., and Luo, H. 2016. Variance-reduced and
projection-free stochastic optimization. In Proceedings of
the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016,
1263–1271.
Indyk, P., and Motwani, R. 1998. Approximate nearest
neighbors: Towards removing the curse of dimensionality.
In Proceedings of the Thirtieth Annual ACM Symposium on
the Theory of Computing, Dallas, Texas, USA, May 23-26,
1998, 604–613.

2306

Jaggi, M. 2013. Revisiting frank-wolfe: Projection-free
sparse convex optimization. In Proceedings of the 30th In-
ternational Conference on Machine Learning, ICML 2013,
Atlanta, GA, USA, 16-21 June 2013, 427–435.
Kulis, B., and Grauman, K. 2012. Kernelized locality-
sensitive hashing. IEEE Trans. Pattern Anal. Mach. Intell.
34(6):1092–1104.
Lacoste-Julien, S.; Jaggi, M.; Schmidt, M. W.; and Pletscher,
P. 2013. Block-coordinate frank-wolfe optimization for
structural svms. In Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, Atlanta, GA,
USA, 16-21 June 2013, 53–61.
Lan, G., and Zhou, Y. 2016. Conditional gradient slid-
ing for convex optimization. SIAM Journal on Optimization
26(2):1379–1409.
Osokin, A.; Alayrac, J.; Lukasewitz, I.; Dokania, P. K.; and
Lacoste-Julien, S. 2016. Minding the gaps for block frank-
wolfe optimization of structured svms. In Proceedings of the
33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, 593–602.
Zhang, X.; Yu, Y.; and Schuurmans, D. 2012. Acceler-
ated training for matrix-norm regularization: A boosting ap-
proach. In Advances in Neural Information Processing Sys-
tems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States.,
2915–2923.
Zhao, P., and Zhang, T. 2014. Accelerating minibatch
stochastic gradient descent using stratified sampling. CoRR
abs/1405.3080.

2307

