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Abstract

Structured knowledge about concepts plays an increasingly
important role in areas such as information retrieval. The
available ontologies and knowledge graphs that encode such
conceptual knowledge, however, are inevitably incomplete.
This observation has led to a number of methods that aim
to automatically complete existing knowledge bases. Unfor-
tunately, most existing approaches rely on black box mod-
els, e.g. formulated as global optimization problems, which
makes it difficult to support the underlying reasoning pro-
cess with intuitive explanations. In this paper, we propose a
new method for knowledge base completion, which uses in-
terpretable conceptual space representations and an explicit
model for inductive inference that is closer to human forms of
commonsense reasoning. Moreover, by separating the task of
representation learning from inductive reasoning, our method
is easier to apply in a wider variety of contexts. Finally, unlike
optimization based approaches, our method can naturally be
applied in settings where various logical constraints between
the extensions of concepts need to be taken into account.

Introduction

Ontologies encode structured knowledge about the con-
cepts and properties of a given domain. They are typi-
cally encoded using description logics, and divided in two
parts: a TBox, which contains information about the se-
mantic relationships between concepts, and an ABox, which
contains information about which entities belong to what
concepts. Similar to ontologies, knowledge graphs encode
information about concepts and entities as a set of sub-
ject/predicate/object triples. The key difference with ontolo-
gies is that knowledge graphs are considerably less expres-
sive (e.g. we cannot express that two concepts are disjoint,
or that the intersection of two concepts is subsumed by an-
other concept). To date, ontologies have mostly been used
in applications where deductive reasoning suffices, whereas
knowledge graphs are often used in combination with forms
of inductive reasoning (Lao, Mitchell, and Cohen 2011;
Bordes et al. 2013).

As most ontologies are incomplete, it is clearly of inter-
est to combine the deductive machinery of description logics
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with some form of induction. This is especially true in appli-
cations such as information retrieval, where getting a plau-
sible answer may be better than not getting an answer at all,
even if the correctness of that answer cannot be guaranteed.
A key requirement in such applications, however, is that an-
swers can be supported by intuitive explanations, as this al-
lows users to determine their plausibility. Another important
requirement is that the inductive reasoning process should be
relatively cautious, as in a deductive setting the impact of ac-
cepting incorrect conclusions could be far-reaching. Finally,
conclusions which are derived inductively should be asso-
ciated with commensurable confidence scores that can be
used to restore consistency when conflicts arise. Clearly, ap-
proaches which rely on solving a global optimization prob-
lem (Bordes et al. 2013) or on aggregating large amounts
of individually weak pieces of evidence (Lao, Mitchell, and
Cohen 2011) do not meet these requirements.

In this paper, we propose a method which is inspired by
cognitive models of category based induction (Osherson et
al. 1990; Tenenbaum and Griffiths 2001). In particular, given
the knowledge that concepts C1, ..., C, all have some prop-
erty P, our aim is to determine the degree to which we can
plausibly conclude that some other concept C' has property
P. To this end, we first rely on the method from (Jameel and
Schockaert 2016) to learn a vector space representation of
the entities of each considered semantic type (e.g. people,
countries, movies), which can be interpreted as a conceptual
space (Girdenfors 2000). From these conceptual spaces, we
subsequently derive a set of representative and interpretable
features for each semantic type. The plausibility that C' has
property P is then obtained using a form of Bayesian in-
ference over the resulting feature values. We argue that this
approach indeed meets the three aforementioned criteria: as
it is similar in spirit to cognitive models for category based
induction, and relies on interpretable representations, sup-
porting explanations can be derived in a natural way, while
the use of Bayesian inference supports cautious forms of in-
terest and yields confidence scores in a principled way. Un-
like most existing methods, our method can be used for both
TBox and ABox reasoning.

The remainder of this paper is structured as follows. In
the next section we give an overview of related work, after
which we recall some basic notions from description logics
and the theory of conceptual spaces. Subsequently we de-



scribe our proposed model. Finally, we discuss experimental
results and present our conclusions.

Related Work

A natural form of inductive inference consists in using sim-
ilarity based arguments of the form “if the instance(s) most
similar to entity « belong to concept C' then z also belongs
to concept C”. Several variants of this idea, which also un-
derpins nearest neighbor classifiers, have already been ex-
plored. In some cases, similarity is obtained from vector
space representations that have been learned from text col-
lections (Summers-Stay, Voss, and Cassidy 2016; Beltagy
et al. 2013), whereas other approaches derive a notion of
similarity directly from the ontology (d’Amato et al. 2010;
Minervini et al. 2016; Janowicz 2006). A third class of meth-
ods explicitly encodes aspects of similarity as part of the
knowledge base (Sheremet et al. 2007).

While intuitive, similarity based reasoning is often too
heuristic, especially for TBox reasoning. One particular
problem is the context-dependent nature of similarity: it may
not be a priori clear in what features two entities need to be
similar to draw plausible conclusions about a given concept
C. Interestingly, the method in (Minervini et al. 2016) ad-
dresses this by explicitly learning a similarity relation from
the relations encoded in the ontology. In particular, they
identify relations that are predictive of the fact that two en-
tities have the same value for a given property (e.g. peo-
ple linked by a friendship relation tend to live in the same
country), as well as relations that are predictive of the fact
that two entities have a different value (e.g. people linked by
the ‘married to’ relation tend to have different values for the
property ‘gender’). This form of inference, which relies on
the relations between entities, is essentially complementary
to the method we propose in this paper.

A second limitation of similarity based reasoning is that it
cannot be used when the knowledge base lacks entities that
are sufficiently similar to the considered entity x. The use
of analogical proportion based reasoning has been proposed
as a technique for alleviating this issue (Miclet, Bayoudh,
and Delhay 2008; Bounhas, Prade, and Richard 2014). Intu-
itively, for triples of examples (a, b, ¢), a fourth example x is
constructed such that a : b :: ¢ : © makes an analogical pro-
portion (i.e. a relates to b like c relates to x), and similarity
based reasoning is applied on the resulting extended set of
examples (Hug et al. 2016). Another solution is to us inter-
polation; properties that hold for a and b are then assumed to
hold for all entities which are approximately between a and
b (?; Derrac and Schockaert 2015).

The vast majority of existing methods only focus on
ABox reasoning, i.e. the problem of identifying which in-
stances (plausibly) belong to which concepts. This problem
can be cast as a standard classification problem. One pos-
sibility is to make use of kernels for structured data (Bloe-
hdorn and Sure 2007), in combination with classifiers such
as support vector machines (SVMs). Intuitively, the classi-
fier then uses the ontology itself to estimate how similar
any two given entities are. Another possibility, considered in
(Neelakantan and Chang 2015), is to represent entities using
external features derived from resources such as Wikipedia.
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Recently, the use of vector space embeddings has become
a popular approach for completing knowledge graphs (Bor-
des et al. 2011; 2013; Wang et al. 2014). These methods
focus on finding plausible relationships, intuitively based
on statistical correlations with other relationships from the
knowledge graph. Some methods of this kind could in prin-
ciple also be used for inductive ABox reasoning. A num-
ber of embedding models that explicitly represent seman-
tic types have recently been proposed (Hu et al. 2015;
Xie, Liu, and Sun 2016; Jameel and Schockaert 2016).

One of the main limitations of classification and embed-
ding based methods is that they require sufficient amounts
of data to be effective. Moreover, as they are based on black
box models, providing intuitive explanations for inferred
conclusions can be problematic. In this sense, such meth-
ods are complementary to similarity based reasoning and re-
lated cognitively inspired methods. The method we propose
in this paper aims to combine the best of both worlds.

Background

Our method is based on two complementary frameworks for
representing and reasoning about conceptual knowledge: we
use deductive inference in description logics to reason about
structured knowledge, and use conceptual space representa-
tions as the basis for inductive inferences. In this section, we
briefly recall the basic notions from these two frameworks.

Description Logics

Description logics are the logical framework underlying on-
tology languages such as OWL. For simplicity, we will con-
sider ALC (Baader et al. 2003), which is one of the most
basic description logics. However, the results of this paper
can straightforwardly be extended to other description log-
ics, as well as related formalisms such as existential rules
(Baget et al. 2011; Cali, Gottlob, and Pieris 2012).

The syntax of ALC is defined over three pairwise disjoint
sets of names N¢, Nr and Ny, which respectively denote
concepts (e.g. Scientist), roles (i.e. relations such as Spe-
cializesIn) and individuals (i.e. entities such as einstein). A
concept expression can be (i) an atomic concept from N¢,
(ii) one of the special concepts L and T, denoting respec-
tively an empty concept and the universe of all individuals,
or (iii) built from other concept expressions using the con-
structs shown in Table 1. The operators L, M and — corre-
spond to the usual notions of union, intersection and com-
plement. The concept expressions IR.C' and VR.C' depend
on a role R and concept C'. They respectively denote the
set of individuals who are related through R with at least
one instance of C, and the set of individuals who are re-
lated through R only with instances from C. For example
dSpecializesIn.ScienceArea intuitively denotes the set of in-
dividuals who have a specialization that is an area of science.

A knowledge base (KB) is a pair K=(T, A) where T is
called the TBox and A is called the ABox. The TBox is
a set of inclusion axioms of the form C T D, where C'
and D are concept expressions. The axiom C T D ex-
presses that every instance of C'is also an instance of D, e.g.
Scientist T SpecializesIn.ScienceArea expresses that every



scientist specializes in some area of science. The ABox con-
tains a set of assertions of the form A(a) and R(a,b), where
A€ N, Re Ny and a,b € Nj.

An interpretation is a pair Z=(AZ, %), where AZ is a non-
empty set called the domain, and .7 is a function that assigns
to each a € Ny an element aZ € AZ, to each A € Ngo
a subset AZ C A7 and to each R € Ng a binary relation
RT C AT x AT, The function .Z is extended in a straightfor-
ward way for concept and role expressions as shown in Table
1. An interpretation Z satisfies a concept inclusion axiom,
written Z = C C D iff T C DT, Similarly, we say that 7
satisfies a concept (resp. role) assertion, written Z = A(a)
(resp. I |= R(a,b)), iff aZ € AT (resp. (aT,b) € RT). An
interpretation Z satisfies KB KC = (T, A) if Z satisfies every
the concept inclusion axiom in 7~ and every assertions in A.
If 7 satisfies K then Z is said to be a model of K.

Syntax | Semantics

T AT

1 0

-C AT\ CT

cnp | ¢fnD*

cubD | ctuD*

JR.C | {zcAT|FycAT st (z,y)eRT and ycCT}
VR.C | {zeAT|if (z,y)€R* then yeC7}

Table 1: ALC Syntax and Semantics.

Conceptual Spaces

Conceptual spaces were proposed by Girdenfors (2000) as
an intermediate representation level between symbolic and
connectionist representations. A conceptual space is defined
as the Cartesian product of a number of so-called quality
dimensions. These can be understood as the (primitive) fea-
tures in the domain being modelled. For example, in a con-
ceptual space of people, the quality dimensions could cor-
respond to features such as height, age, education level, etc.
Each entity of the considered domain is thus represented by
a vector (1, ..., ¥, ), where x; is the value of this entity for
the i"* quality dimension. In general, quality dimensions can
be arbitrary metric spaces in which a notion of betweenness
is defined. However, in this paper, we will make the com-
mon simplifying assumption that each quality dimension is
modelled as the real line.

Inductive Reasoning Using Embeddings

To obtain conceptual space representations, we have used
the method from (Jameel and Schockaert 2016), which uses
textual descriptions from Wikipedia and structured informa-
tion from Wikidata as input. For each semantic type occur-
ring in Wikidata, this method constructs a Euclidean space
in which all entities of that type are represented as points.
The number of dimensions of each space is chosen in an au-
tomated way, depending on how much information is avail-
able about the corresponding semantic type. Moreover, the
words occurring in the textual descriptions of these entities
are represented as vectors in this Euclidean space. The idea
is that each of these vectors could potentially be defining a
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quality dimension. When learning the space, the following
constraint is imposed for each entity ¢ and context word j:

b, (D

where p; is the vector representing entity ¢, v; is the vector
representing the context word j, ¢;; is the number of times
word j occurs in the description of entity ¢, and b;,b; € R
are constants. Since the resulting optimization problem is
over-constrained, (1) will only be (approximately) satisfied
for some words, and these words tend to be those that cor-
respond to salient properties. Therefore, to select quality di-
mensions, we determine those words j for which (1) is max-
imally satisfied. Specifically, for each word j, we define:

= Z(pi’l)j —log Cij + b; + bj)2

i

piv; ~ loge;; —b; —

€j

To allow for some redundancy, for semantic types that are
modelled in R™ we will select 2n quality dimensions. One
possibility would be to select the 2n terms for which e; is
minimal. This choice, however, is likely to be suboptimal if
among these terms we find near-synonyms. Therefore, we
instead select the 5n terms that minimize e; and then clus-
ter the corresponding vectors in 2n clusters, using k-means
clustering with cosine similarity. The mean vector v for
each cluster C is then treated as a quality dimension. The
coordinate of an entity ¢ for that quality dimension is de-
fined as p; - vo. Moreover, note that each quality dimension
is associated with a small set of labels, which enables us to
generate natural language explanations for inductive infer-
ences.

Inductive ABox Reasoning

Let B be a direct subconcept of A, i.e. B C A is in the
TBox of the considered ontology and there is no other con-
cept C' such that B C C and C' C A are both in the TBox.
Suppose that b1, ..., b, are the known instances of B, and
that aq, ..., a,, b1, ..., by, are the known instances of A. The
problem we consider is to determine which elements from
{a1,...,a,} are likely to be instances of B. Note that in
practice, we would typically have a concept hierarchy, where
Bi T By C..C By_1 C B, C T, and first determine in-
stances that are likely to be in Bj; among those instances,
we can then determine the ones that are likely to be in By, _1
(and similar for the other subconcepts of By,), etc.

The first step of our method consists in linking the indi-
viduals a1, ..., ap, b1, ..., b, to Wikidata entities, and thus to
a conceptual space representation. If, for the considered on-
tology, there exists an explicit mapping to Wikidata, or to
a resource that is linked to Wikidata such as WordNet, this
step is trivial. In other cases, we make use of BabelNet (Nav-
igli and Ponzetto 2012) to suggest likely matches. To deal
with ambiguities in the latter case, we first remove candidate
links whose semantic type in Wikidata does not match that
of the majority of the other instances of A. If any ambiguity
remains, we can either disregard that instance for inductive
reasoning, or default to the most common sense (e.g. choos-
ing the Wikidata entity whose associated Wikipedia page is
largest). Let 1, ..., T, be the Wikidata types that have at least



80% of the entities a, ..., ay, b1, ..., b, as instances. Note
that there are typically several such types, because the types
are organised in a directed acyclic graph through the sub-
class relationship, and because entities may have types that
relate to different aspects (e.g. Eiffel Tower is an instance
of both tower and landmark). The following inductive infer-
ence process is repeated for each of the types 7y, ..., Tg, and
the plausible assertion B(a,) is added to the ABox as soon
as the conceptual space associated with one of these types
warrants it, as we describe next.

Let vy, ..., v be the vectors defining the quality dimen-
sions of the conceptual space for some type 7. We denote
the coordinate for the i quality dimension as x]

for the instances a; and as y! = b;v; for the instances b;.
The probability that a; belongs to concept B, given that we
already know that it belongs to concept A and that its coor-

J . can be written as:

dinate is x;,
p(a] | B, A) - p(B| A)
p(z; | A)

A central assumption we make is that for each quality di-
mension ¢ the coordinates of instances of each concept A
follow a Gaussian distribution G'( 4 ;). Recall that the prod-
uct of two Gaussians is another Gaussian (up to renormaliza-
tion), hence we can think of G (p ;) as the product of G4 ;)
and some other Gaussian, which is in line with the view that
the instances of B are those instances of A that satisfy some
particular properties. Given that p(B | A) is unknown, all we
can say is that the probability that a; belongs to B is pro-

p(z! IB A) G, (x})
portional to ], TTA) = =1L Gian@)”
tionally rely on the assumption that all quality dimensions
provide independent evidence. This leads us to use the fol-
lowing log-likelihood ratio as a scoring function:

= a;v;

p(Blal, A) =

where we addi-

@

confla;, B

Zlog Gp.iy(al) -

Since the parameters of the Gaussians G4 ;) and G ;) are

log G(A 7,)( )

unknown, they have to be estimated from the values xf and
y!. To this end we use a normal-inverse-x? prior. In particu-

lar, we estimate G (g ;) as follows (z € R):

G, (z /G z;p, 02) I (p, 0% )dpdo - (3)

where G(.;p,0%) denotes a Gaussian distribution, and
Ix? is an inverse-x? distribution with parameters
,u(B,i),a(QBJ),V(B7i),/£(3,i). In absence of prior knowl-
edge, these parameters can be estimated from the data
points ¥}, ..., ym as follows (Murphy 2007):

Zyz U(B i) — 17 1 Z(yi]

J
mfl

I(B.i) = — I(B.i))

Y(B,i) = K(B,) =M

The use of Bayesian inference in cognitive models of in-
duction has been advocated, among others in (Tenenbaum
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Figure 1: Impact of data sparsity.

and Griffiths 2001). In contrast to the model proposed in
(Tenenbaum and Griffiths 2001), however, we estimate in-
ductive strength using a likelihood ratio. This is important
in our context because we cannot be certain that the avail-
able quality dimensions are sufficient to distinguish between
instances from A and B. If the available representation is in-
deed insufficient, then we would expect G ;) to be similar
to G4, for each i and thus conf(a;, B) ~ 0. In contrast,
if conf(aj, B) > 0 we know that the quality dimensions are
sufficient to conclude that a; is likely to be an instance of B.
Note that if we assume a uniform prior P(B|A) = 0.5, then
conf(aj, B) > 0 is equivalent to p(B | z7, A) > 0.5.

Compared to maximum likelihood estimates, the use of
Bayesian estimates in (3) leads to more cautious predictions
when the number of data points is small, which is important
because we only want assertions to be added to the ontology
if the available evidence is sufficiently strong. Figure 1 illus-
trates this effect: the solid line shows the value of conf(., B)
in a scenario where there is only one quality dimension,
the instances in B have coordinates 7,8 and the remaining
instances of A have coordinates 1,2, 3,4. The dashed line
shows a similar scenario, with the only difference that each
coordinate appears twice, i.e. the instances in B have co-
ordinates 7,7,8,8 and the remaining instances of A have
coordinates 1,1,2,2,3,3,4,4. As can be seen, in the latter
case we, the presence of more data results in more extreme
confidence scores.

Note that the labels for the quality dimensions can be used
to produce intuitive explanations. To this end, we first deter-
mine the quality dimensions ¢ which maximally impact the
confidence degree. For example, if the coordinate z of en-
tity a; is such that G ;) > G (4,;) and the mean of G (B
is higher than the mean of G'(4,i), an explanation could take
the form of “a; is believed to be an instance of B, as it is
more (strongly related to) L; than typical instances of A”,
where L; is the label for the i quality dimension.

Now consider a setting where some concept D has three
direct subconcepts A, B and C. When we use (2) to deter-
mine which instances of D should also be instances of A, B
and C, conflicts may arise. Consider the scenario illustrated
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Figure 2: Determining concept boundaries for disjoint cate-
gories.

in Figure 2, where we again consider a single quality dimen-
sion for simplicity, and the known instances of A have co-
ordinates 1, 2, 3, the known instances of B have coordinates
4,5, 6, the known instances of C have coordinates 7,8, 9,
and we assume that D has no other instances. Figure 2 dis-
plays the values of conf(., A), conf(., B) and conf(.,C). If
we conclude that an entity with coordinate z belongs to A
as soon as conf(., A) > 0, and similar for B and C, some
entities will be added to more than one subconcept. Hence,
if the ontology encodes that these subconcepts are disjoint
(e.g. AN B C 1), a conflict arises. A natural way to re-
pair this conflict consists in removing the conclusions with
the lowest confidence degree (if this contributes to resolving
the conflict). The result is that an entity with coordinate z is
added to A if G(p ;) (2) > max(G(p,i)(2), G(c,i)(2)), and
similar for B and C. In this way, the inductive and deduc-
tive inference process are effectively combined to derive the
most appropriate (hard) concept boundaries.

Inductive TBox Reasoning

We now consider a scenario involving three concepts
A, B, C such that B and C' are both direct subconcepts of
A. The problem we consider consists in determining to what
extent we can be confident that C' C B is a valid inclu-
sion axiom. As for ABox reasoning, this inductive inference
step can be applied in a recursive fashion, resulting in a
general method for adding plausible inclusion axioms. Let
b1, ..., b,, be the known instances of B, cy, ..., ¢, the known
instances of C'and aq, ..., ap, b1, ..., by, c1, ..., ¢, the known
instances of A. These instances are linked to Wikidata enti-
ties, as before, and we again determine the Wikidata seman-
tic types that cover (most) of the instances of A. To deter-
mine whether C' C B is likely to be valid, we propose the
following confidence score:

conf(B, C) Zlog/

where G4 (), G (B, (x) and G(Q,;)(a:) are evaluated as
in (3). Similar as for ABox reasoning, we assume that there
are (unknown) Gaussians associated with the concepts A, B

G (@)de  (4)
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Table 2: Results for ABox reasoning.
SR BR
Rec Pr F1 Rec Pr F1
X[<5 | 1.0 10 10 | 10 10 1.0
|X|<10 | 0.909 0.842 0.874 | 0.958 0.904 0.930
|X|<50 | 0.725 0.827 0.773 | 0.821 0.849 0.835
|X|>50 | 0.794 0249 0.379 | 0.706 0.816 0.757

and C. Rather than evaluating the likelihood ratio (2) for a
specific value, in (4) we evaluate what this likelihood ratio
is on average for instances of concept C'.

We also consider a second way to use the conceptual
space representations for TBox reasoning, which relies on
the fact that concepts from the ontology may appear as in-
stances in Wikidata. For example, scientist is regarded as
an instance of the semantic type profession'. As a result, in
some cases we can determine confidence degrees for inclu-
sion axioms using (2). In particular, let By, ..., B,, be the
subconcepts of B (according to the ontology) for which we
have a conceptual space representation (as an instance), and
let Ay, ..., Ay, By, ..., B, be the subconcepts of A for which
this is the case. Then (2) determines the confidence that the
inclusion axiom A; T B is valid, where the coordinates
x] are now obtained from the representation of concept A,
instead of an individual, and similar for the coordinates yf
corresponding to the subconcepts of B.

Evaluation

We have implemented® our method, using Java including
OWLAPI® and Pellet reasoner* for deductive reasoning
tasks (e.g. determining the instances or subconcepts of a
given concept, checking consistency), and using a standard
approach to repairing inconsistencies which uses the confi-
dence scores as a penalty. To evaluate the effectiveness of
the proposed approach, we have used the OWL version of
the SUMO ontology”. This is a relatively large open-domain
ontology, covering a total of 4558 concepts, 86457 individu-
als, 5330 inclusion axioms and 167381 ABox assertions. An
advantage of SUMO is that for several concepts, an explicit
mapping to WordNet is provided (which has, in turn, been
linked to Wikidata).

We have evaluated our method (which is referred to as BR
below) against the following baselines:

Similarity based reasoning (SR) For ABox reasoning, to
decide whether an instance a of A is also an instance of
the subconcept B, we check whether the instance from A
which is most similar to a belongs to B. For TBox rea-
soning, we apply the same method by using the represen-
tations of SUMO concepts as instances in Wikidata.

WordNet (WN) This method is only used for TBox reason-
ing. To decide whether a concept B is subsumed by A, we

"https://www.wikidata.org/wiki/Q901
“http://www.cs.cf.ac.uk/semanticspaces/
3http://owlapi.sourceforge.net
“https://github.com/stardog-union/pellet
Shttp://www.adampease.org/OP/



Table 3: Results for TBox reasoning

Variant 1 Variant 2
WN SR BR BR
Rec Pr F1 Rec Pr F1 Rec Pr F1 Rec Pr F1
[ X]<5 0.79 1.0 0.883 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|X|<10 | 0.632 1.0 0.775 | 0.914 0.847 0.879 | 0.938 0.966 0.952 1.0 1.0 1.0
|X|<50 | 0.214 1.0 0.353 | 0490 0.836 0.618 | 0.806 0.822 0.814 || 0.954 0.916 0.935
|X|>50 | 0.159 1.0 0.274 | 0.399 0.639 0.491 | 0.537 0.714 0.613 || 0.769 0.823 0.795

check whether the WordNet equivalent of B is a hyponym
of the WordNet equivalent of A.

We also experimented with the use of Support Vector Ma-
chines, but found them to be uncompetitive in this setting,
due to the small number of instances in most cases and the
lack of true negative examples (i.e. either a one-class set-up
needs to be used, or we have to assume that instances which
are not known to be in B are not in B).

To generate test instances for ABox reasoning, we con-
sider each concept A with direct subconcept B, such that
the there exists some Wikidata type .S such that A contains
at least four instances of S and B contains at least three®
instances of S. For the evaluation of ABox reasoning, we
use three-fold cross validation’ as follows. Let Y be the en-
tities that are asserted to be instances of B in SUMO, and
let X be the entities that are asserted to be instances of A
(where Y C X). We split Y = Y; U Y5 U Y3 in three sets
of (approximately) the same size. Given the information that
X are instances of A and Y5 U Y3 are instances of B, each
method is then applied to determine which among the in-
stances in X \ (Y2 U Y3) are also instances of B. Let Z be
the instances predicted to belong to B. The performance is
evaluated using precision Pr, recall Rec and F1, defined as
(assuming |Z| > 0):

1Z Y|

2]

ZNY|

_ 2 - Pr- Rec
V1]

Pr + Rec

Pr

The whole process is then repeated two times, letting respec-
tively Y> and Y3 play the role of V7.

For TBox reasoning, we consider two variants as in the
previous section. In the first variant, we use the fact that
concepts in SUMO are instances in WikiData, and use the
same process as for ABox reasoning. This method can be
applied in cases where the concepts A, B and C each have
at least three subconcepts. For our method, we then use (2)
to determine confidence. In the second variant, we use our
method based on the instances of the concepts A, B and C,
using (4) to determine confidence. This method can be ap-
plied in cases where the concepts A, B and C each have at
least three instances. Note that both variants are applicable
in different contexts, i.e. variant 1 can be used even if the
ABox is empty, but requires the concept A to have a suffi-
cient number of subconcepts, while variant 2 requires a suf-
ficient number of instances in the ABox. In all cases, when

SThis restriction is needed to apply three-fold cross-validation.
"While 5 or 10 folds are more commonly used, we are espe-
cially interested in concepts with very few instances.
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using our method, we make the inductive inference as soon
as the confidence score is strictly positive.

The results for ABox reasoning are shown in Table 2,
grouped by the number of instances in the set of individuals
X that are known to belong to the concept A. Overall we can
see that our method outperforms similarity based reasoning,
especially in terms of precision for concepts with many in-
stances. In particular, if the majority of instances of A are
not instances of B, there are very limited guarantees that the
most similar instances to the entity being categorized will
be instances of B, which is a result of the context-dependent
nature of similarity. Note that, for our method, by setting the
threshold for the confidence degree higher than 0, we can
increase precision although at the cost of lower recall.

The results for both variants of TBox reasoning are shown
in Table 3. Note that the results for both variants are not
directly comparable, as the set of concepts to which they
were applied differs. For Variant 1, our method outperforms
the other methods in terms of F1 score, although the use
of WordNet naturally leads to higher precision. The results
for Variant 2 are particularly promising, although we are not
aware of any baselines against which this method can be
directly compared. When this method can be applied, i.e.
when sufficient instances are available, it is clear that the
richer concept representation it relies on, compared to meth-
ods that rely on point representations of concepts (i.e. Vari-
ant 1), leads to clear advantages.

Conclusions

We have proposed a new method for inductive reasoning
with ontologies. The method consists in using a form of
Bayesian inference over interpretable feature representa-
tions that are obtained from a learned vector space embed-
ding. Our experimental results show that this method outper-
forms similarity based reasoning for both ABox and TBox
reasoning, while retaining the ability to generate intuitive
explanations.
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