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Abstract

Multi-View Clustering (MVC) has garnered more attention
recently since many real-world data are comprised of different
representations or views. The key is to explore complementary
information to benefit the clustering problem. In this paper,
we present a deep matrix factorization framework for MVC,
where semi-nonnegative matrix factorization is adopted to
learn the hierarchical semantics of multi-view data in a layer-
wise fashion. To maximize the mutual information from each
view, we enforce the non-negative representation of each view
in the final layer to be the same. Furthermore, to respect the
intrinsic geometric structure in each view data, graph regu-
larizers are introduced to couple the output representation of
deep structures. As a non-trivial contribution, we provide the
solution based on alternating minimization strategy, followed
by a theoretical proof of convergence. The superior experimen-
tal results on three face benchmarks show the effectiveness of
the proposed deep matrix factorization model.

Introduction

Traditional clustering aims to identify groups of “similar
behavior” in single view data (von Luxburg 2007; Liu et
al. 2015; Steinwart 2015; Tao et al. 2016; Liu et al. 2016;
Li, Kong, and Fu 2017). As the real-world data are al-
ways captured from multiple sources or represented by
several distinct feature sets (Cai, Nie, and Huang 2013a;
Ding and Fu 2014; Gao et al. 2015; Zhao and Fu 2015;
Wang, Ding, and Fu 2016), MVC is intensively studied re-
cently by leveraging the heterogeneous data to achieve the
same goal. Different features characterize different infor-
mation from the data set. For example, an image can be
described by different characteristics, e.g., color, texture,
shape and so on. These multiple types of features can pro-
vide useful information from different views. MVC aims
to integrate multiple feature sets together, and uncover the
consistent latent information from different views. Exten-
sive research efforts have been made in developing effective
MVC methods (Cai, Nie, and Huang 2013a; Gao et al. 2015;
Xu, Han, and Nie 2016; Zhao, Liu, and Fu 2016). Along
this line, Kumar et al. developed co-regularized multi-view
spectral clustering to do clustering on different views simulta-
neously with a co-regularization constraint (Kumar, Rai, and
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Figure 1: Framework of our proposed method. Same shape
denotes the same class. For demonstration purposes, we only
show the two-view case, where two deep matrix factorization
structures are proposed to capture rich information behind
each view in a layer-wise fashion. With the deep structure,
samples from the same class but different views gather close
to each other to generate more discriminative representation.

III 2011). Gao et al. proposed to perform clustering on the
subspace representation of each view simultaneously guided
by a common cluster structure for the consistence across dif-
ferent views (Gao et al. 2015). A good survey can be found
in (Xu, Tao, and Xu 2013).

Recently, lots of research activities on MVC have achieved
promising performance based on Non-negative Matrix Fac-
torization (NMF) and its variants, because the non-negativity
constraints allow for better interpretability (Guan et al. 2012;
Trigeorgis et al. 2014). The general idea is to seek a com-
mon latent factor through non-negative matrix factorization
among multi-view data (Liu et al. 2013; Zhang et al. 2014;
2015). Semi Non-negative Matrix Factorization (Semi-NMF),
as one of the most popular variants of NMF, was proposed
to extend NMF by relaxing the factorized basis matrix to
be real values. This practice allows Semi-NMF to have
a wider application in the real world than NMF. Apart
from exploring Semi-NMF in MVC application for the first
time, our method has another distinction from the exist-
ing NMF-based MVC methods: we adopt a deep structure
to conduct Semi-NMF hierarchically as shown in Figure
1. As illustrated, through the deep Semi-NMF structure,
we push data samples from the same class closer layer
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by layer. We borrow the idea from deep learning (Ben-
gio 2009), thus this practice has such a flavor. Note that
the proposed method is different from the existing deep
auto-encoder based MVC approaches (Andrew et al. 2013;
Wang et al. 2015), though all of us are of deep struc-
ture. One major difference is that (Andrew et al. 2013;
Wang et al. 2015) are based on Canonical Correlation Analy-
sis (CCA), which is limited to 2-view case, while our method
has no such limitation.

To sum up, in this paper we propose a deep MVC algo-
rithm through graph regularized semi-nonnegative matrix
factorization. The key is to build a deep structure through
semi-nonnegative matrix factorization to seek a common
feature representation with more consistent knowledge to
facilitate clustering. To the best of our knowledge, this is
the first attempt applying semi-nonnegative matrix factoriza-
tion to MVC in a deep structure. We summarize our major
contributions as follows:

• Deep Semi-NMF structure is built to capture the hidden in-
formation by leveraging benefits of strong interpretability
from Semi-NMF and effective feature learning from deep
structure. Through this deep matrix factorization structure,
we dissemble unimportant factors layer by layer and gener-
ate an effective consensus representation in the final layer
for MVC.

• To respect the intrinsic geometric relationship among data
samples, we introduce graph regularizers to guide the
shared representation learning in each view. This prac-
tice makes the consensus representation in the final layer
preserve most shared structures across multiple graphs. It
can be considered as a fusion scheme to boost the final
MVC performance.

Our Method

Overview of Semi-NMF

As a variant of NMF, Ding et al. (Ding, Li, and Jordan
2010) extended the application of traditional NMF from non-
negative input to a mix-sign input, while still preserving the
strong interpretability at the same time. Its objective function
can be expressed as:

min
Z,H≥0

‖X − ZH‖2F, (1)

where X ∈ R
d×n denotes the input data with n samples,

each sample is of d dimensional feature. In the discussion
on equivalence of semi-NMF and K-means clustering (Ding,
Li, and Jordan 2010), Z ∈ R

d×K can be considered as the
cluster centroid matrix1, and H ∈ R

K×n, H ≥ 0 is the
“soft” cluster assignment matrix in latent space2. Similar to
the traditional NMF, the compact representation H uncovers

1For a neat presentation, we do not follow the notation style in
(Ding, Li, and Jordan 2010), and remove the mix-sign notation “±”
on X and Z, which does not affect the rigorousness.

2In some literatures (Ding, Li, and Jordan 2010; Zhao et al.
2015), Semi-NMF is also called the soft version of K-means clus-
tering.

the hidden semantics by simulating the part-based represen-
tation in human brain, i.e., psychological and physiological
interpretation.

While in reality, natural data may contain different modali-
ties (or factors), e.g., expression, illumination, pose in face
datasets (Samaria and Harter 1994; Georghiades, Belhumeur,
and Kriegman 2001). Single NMF is not strong enough to
eliminate the effect of those undesirable factors and extract
the intrinsic class information. To solve this, Trigeorgis et al.
(Trigeorgis et al. 2014) showed that a deep model based on
Semi-NMF has a promising result in data representation. The
multi-layer decomposition process can be expressed as

X ≈ Z1H
+
1

X ≈ Z1Z2H
+
2

...
X ≈ Z1 . . . ZmH+

m

(2)

where Zi denotes the i-th layer basis matrix, H+
i is the i-th

layer representation matrix. (Trigeorgis et al. 2014) proved
that each hidden representations layer is able to identify the
different attributes. Inspired by this work, we propose a MVC
method based on deep matrix factorization technique.

The proposed method

In the MVC setting, let us denote X =
{X(1), . . . , X(v), . . . , X(V )} as the data sample set.
V represents the number of views. X(v) ∈ R

dv×n, where dv
denotes the dimensionality of the v-view data and n is the
number of data samples. Then we formulate our model as:

min
Z

(v)
i , H

(v)
i

Hm, α(v)

V∑
v=1

(α(v))γ
(
‖X(v)−Z

(v)
1 Z

(v)
2 . . . Z(v)

m Hm‖2F

+ βtr(HmL(v)HT
m)

)
s.t. H

(v)
i ≥0, Hm ≥ 0,

V∑
v=1

α(v) = 1, α(v) ≥ 0,

(3)
where X(v) is the given data for v-th view. Z

(v)
i , i ∈

{1, 2, . . . ,m} is the i-th layer mapping for view v. m is the
number of layers. Hm is the consensus latent representation
for all views. α(v) is the weighting coefficient for the v-th
view. γ is the parameter to control the weights distribution.
L(v) is the graph Laplacian of the graph for view v, where
each graph is constructed in k-nearest neighbor (k-NN) fash-
ion. The weight matrix of the graph for view v is A(v) and
L(v) = A(v)−D(v), where D(v)

ii =
∑

j A
(v)
ij (He and Niyogi

2004; Ding and Fu 2016).
Remark 1: Due to the homology of multi-view data, the final
layer representation H

(v)
m for v-th view data should be close

to each other. Here, we use the consensus Hm as a constraint
to enforce multi-view data to share the same representation
after multi-layer factorization.
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Remark 2: Multiple graphs are constructed to constrain the
common representation learning so that the geometric struc-
ture in each view could be well preserved for the final cluster-
ing. Moreover, the novel graph term could fuse the geometric
knowledge from multiple views to make the common repre-
sentation more consistent.

Optimization

To expedite the approximation of the variables in the pro-
posed model, each of the layers is pre-trained to have an
initial approximation of variables Z(v)

i and H
(v)
i for the i-th

layer in v-th view. The effectiveness of pre-training has been
proven before (Hinton and Salakhutdinov 2006) on deep
autoencoder networks. Similar to (Trigeorgis et al. 2014),
we decompose the input data matrix X(v) ≈ Z

(v)
1 H

(v)
1

to perform the pre-training, where Z
(v)
1 ∈ R

dv×p1 and
H

(v)
1 ∈ R

p1×n. Then the v-th view feature matrix H
(v)
1 is de-

composed as H(v)
1 ≈ Z

(v)
2 H

(v)
2 , where Z

(v)
2 ∈ R

p1×p2 and
H

(v)
2 ∈ R

p2×n. p1 and p2 are the dimensionalities for layer 1
and layer 2, respectively.3 Continue to do so until we have pre-
trained all layers. Following this, the weights of each layer
is fine-tuned by alternating minimizations of the proposed
objective function Eq. (3). First, we denote the cost func-

tion as C =
V∑

v=1
(α(v))γ

(
‖X(v) − Z

(v)
1 Z

(v)
2 . . . Z

(v)
m Hm‖2F +

βtr(HmL(v)HT
m)

)
.

Update rule for weight matrix Z
(v)
i . We minimize the

objective value with respect to Z
(v)
i by fixing the rest of vari-

ables in v-th view for the i-th layer. By setting ∂C/∂Z(v)
i = 0,

we give the solutions as

Z
(v)
i = (ΦTΦ)−1ΦTX(v)H̃

(v)
i

T(H̃
(v)
i H̃

(v)
i

T)−1

Z
(v)
i = Φ†X(v)H̃

(v)
i

†,
(4)

where Φ = [Z
(v)
1 . . . Z

(v)
i−1], H̃

(v)
i denotes the reconstruction

(or the learned latent feature) of the i-th layer’s feature matrix
in v-th view, and notation † represents the Moore-Penrose
pseudo-inverse.

Update rule for weight matrix H
(v)
i (i < m). Following

(Ding, Li, and Jordan 2010), the update rule for H(v)
i (i < m)

is formulated as follows:

H
(v)
i = H

(v)
i �

√√√√ [ΦTX(v)]pos + [ΦTΦH
(v)
i ]neg

[ΦTX(v)]neg + [ΦTΦH
(v)
i ]pos

, (5)

where [M ]pos denotes a matrix that all the negative elements
are replaced by 0. Similarly, [M ]neg denotes one that has all
the positive elements replaced by 0. That is,

∀k, j [M ]poskj =
|Mkj |+Mkj

2
, [M ]negkj =

|Mkj | −Mkj

2
.

(6)

3For the ease of presentation, we denote the dimensionalities
(layer size) from layer 1 to layer m as [p1 . . .pm] in the experiments.

Update rule for weight matrix Hm (i.e., H(v)
i (i = m)).

Since Hm involves the graph term, the updating rule and
convergence property have never been investigated before.
We give the updating rule first, followed by the proof of its
convergence property.

Hm=Hm �

√
[ΦTX(v)]pos+[ΦTΦHm]neg+Gu(Hm, A)

[ΦTX(v)]neg+[ΦTΦHm]pos+Gd(Hm, A)
(7)

where Gu(Hm, A) = β([HmA(v)]pos + [HmD(v)]neg) and
Gd(Hm, A) = β([HmA(v)]neg + [HmD(v)]pos).
Theorem 1. The limited solution of the update rule in Eq.
(7) satisfies the KKT condition.

Proof. We introduce the Lagrangian function

L(Hm) =

V∑
v=1

(α(v))γ
(
‖X(v) − Z

(v)
1 Z

(v)
2 . . . Z(v)

m Hm‖2F

+βtr(HmL(v)HT
m)− ηHm

)
,

(8)
where the Lagrangian multiplier η enforces nonnegative
constraints, Hm ≥ 0. The zero gradient condition gives
∂L(Hm)/∂Hm = 2ΦT(ΦHm − X(v)) + 2Hm(D(v) −
A(v))−η = 0. From the complementary slackness condition,
we obtain(

2ΦT(ΦHm −X(v)) + 2Hm(D(v) −A(v))
)
kl
(Hm)kl

= ηkl(Hm)kl = 0.
(9)

This is a fixed point equation that the solution must satisfy at
convergence.

The limiting solution of Eq. (7) satisfies the fixed point
equation. At convergence, H(∞)

m = H
(t+1)
m = H

(t)
m = Hm,

i.e.,

(Hm)kl = (Hm)kl �√√√√ [ΦTX(v)]poskl + [ΦTΦHm]negkl + [Gu(H
(v)
m , A)]kl

[ΦTX(v)]neg + [ΦTΦHm]pos + [Gd(H
(v)
m , A)]kl

.
(10)

Note that ΦTX(v) = [ΦTX(v)]pos − [ΦTX(v)]neg;
ΦTΦHm = [ΦTΦHm]pos − [ΦTΦHm]neg; HmD(v) =
[HmD(v)]pos − [HmD(v)]neg; HmA(v) = [HmA(v)]pos −
[HmA(v)]neg. Thus Eq. (10) reduces to(

2ΦT(ΦHm−X(v))+2Hm(D(v)−A(v))
)
kl
(Hm)2kl=0.

(11)
Eq. (11) is identical to Eq. (9). Both equations require that
at least one of the two factors is equal to zero. The first
factors in both equations are identical. For the second factor
(Hm)kl or (H2

m)kl, if (Hm)kl = 0 then (H2
m)kl = 0, and

vice versa. Therefore if Eq. (9) holds, Eq. (11) also holds and
vice versa.

Update rule for weight α(v). Similar to (Cai, Nie,
and Huang 2013b), for the ease of representation, let
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us denote R(v) = ‖X(v) − Z
(v)
1 Z

(v)
2 . . . Z

(v)
m Hm‖2F +

βtr(HmL(v)HT
m). The objective in Eq. (3) with respect to

α(v) is written as

min
α(v)

V∑
v=1

(α(v))γR(v), s.t.

V∑
v=1

α(v) = 1, α(v) ≥ 0.

(12)
The Lagrange function of Eq. (12) is written as

min
α(v)

V∑
v=1

(α(v))γR(v) − λ(

V∑
v=1

α(v) − 1), (13)

where λ is the Lagrange multiplier. By taking the derivative
of Eq. (13) with respect to α(v), and setting it to zero, we
obtain

α(v) =

(
λ

γR(v)

) 1
γ−1

. (14)

Then we replace α(v) in Eq. (14) into
V∑

v=1
α(v) = 1, and

obtain

α(v) =

(
γR(v)

) 1
1−γ

V∑
v=1

(
γR(v)

) 1
1−γ

. (15)

It is interesting to see that with only one parameter γ, we
could control the different weights for different views. When
γ approaches ∞, we get equal weights. When γ is close to
1, the weight of the view whose R(v) value is the smallest is
assigned to 1, and the others are assigned to 0.

Until now, we have all the update rules done. We repeat the
updates iteratively until convergence. The entire algorithm is
outlined in Algorithm 1. After obtaining the optimized Hm,
standard spectral clustering (Ng, Jordan, and Weiss 2001) is
performed on the graph built on Hm via k-NN algorithm.

Time complexity

Our deep matrix factorization model is composed of two
stages, i.e., pre-training and fine-tuning, so we analyze them
separately. To simplify the analysis, we assume the dimen-
sions in all the layers (i.e., layer size) are the same, denoting
p. The original feature dimensions for all the views are the
same, denoting d. V is the number of views. m is the number
of layers.

In pre-training stage, the Semi-NMF process and graph
construction are the time consuming parts. The complex-
ity is of order O

(
V mtp(dnp+ np2 + pd2 + pn2 + dn2)

)
,

where tp is the number of iterations to achieve con-
vergence in Semi-NMF optimization process. Normally,
p < d, thus the computational cost is Tpre. =
O

(
V mtp(dnp+ pd2 + dn2)

)
for the pre-training stage.

Similarly, in the fine-tuning stage, the time complexity is
of order Tfine. = O

(
V mtf (dnp+ pd2 + pn2)

)
, where tf

is the number of iterations in this fine-tuning stage. To sum
up, the overall computational cost is Ttotal = Tpre. + Tfine..

Algorithm 1: Optimization of Problem (3)

Input: Multi-view data X(v), tuning parameters γ, β,
layer size pi, the number of nearest neighbors k.

Initialize:
for all layers in each view do

(Z
(v)
i , H(v)

i ) ← SemiNMF(H
(v)
i−1, di)

α(v) ← 1
V

A(v) ← k-NN graph construction on X(v).
end
while not converged do

for all layers in each view do

H̃
(v)
i ←

{
Hm if i = m

Z
(v)
i+1H̃

(v)
i+1 otherwise

Φ ←
∏i−1

τ=1 Zτ .
Zi ← Φ†X(v)H̃

(v)
i .

H
(v)
i ←

{
Update via Eq. (5) if i < m
Update via Eq. (7) otherwise

α(v) ← Update via Eq. (15).
end

end

Output: Weighted matrices Z(v)
i and feature matrices

H
(v)
i (i < m) and Hm in the final layer.

Experiments

We choose three face image/video benchmarks in our experi-
ments, as face contains good structural information, which is
beneficial to manifesting the strengths of deep NMF structure.
A brief introduction of datasets and preprocessing steps is as
follows.

Yale consists of 165 images of 15 subjects in raw pixel.
Each subject has 11 images, with different conditions, e.g., fa-
cial expressions, illuminations, with/without glasses, lighting
conditions, etc. Extended Yale B consists of 38 subjects of
face images. Each subject has 64 faces images under various
lighting conditions and poses. In this work, the first 10 sub-
jects, 640 images data are used for experiment. Notting-Hill
is a well-known video face benchmark (Zhang et al. 2009),
which is generated from movie “Notting Hill”. There are 5
major casts, including 4660 faces in 76 tracks.

For these datasets, we follow the preprocessing strategy
(Cao et al. 2015). Firstly all the images are resized into 48×48
and then three kinds of features are extracted, i.e., inten-
sity, LBP (Ahonen, Hadid, and Pietikäinen 2006) and Gabor
(Feichtinger and Strohmer 1998). Specifically, LBP is a 59-
dimension histogram over 9×10 pixel patches generated from
cropped images. The scale parameter λ in Gabor wavelets is
fixed as 4 at four orientations θ = {0◦, 45◦, 90◦, 135◦} with
a cropped image of size 25× 30 pixels.

For the comparison baselines, we have the following. (1)
BestSV performs standard spectral clustering (Ng, Jordan,
and Weiss 2001) on the features in each view. We report
the best performance. (2) ConcatFea concatenates all the
features, and then performs standard spectral clustering. (3)
ConcatPCA concatenates all the features, then projects the
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Table 1: Results of 6 different metrics (mean ± standard deviation) on dataset Yale.
Method NMI ACC AR F-score Precision Recall
BestSV 0.654± 0.009 0.616± 0.030 0.440± 0.011 0.475± 0.011 0.457± 0.011 0.495± 0.010

ConcatFea 0.641± 0.006 0.544± 0.038 0.392± 0.009 0.431± 0.008 0.415± 0.007 0.448± 0.008
ConcatPCA 0.665± 0.037 0.578± 0.038 0.396± 0.011 0.434± 0.011 0.419± 0.012 0.450± 0.009

Co-Reg 0.648± 0.002 0.564± 0.000 0.436± 0.002 0.466± 0.000 0.455± 0.004 0.491± 0.003
Co-Train 0.672± 0.006 0.630± 0.001 0.452± 0.010 0.487± 0.009 0.470± 0.010 0.505± 0.007
Min-D 0.645± 0.005 0.615± 0.043 0.433± 0.006 0.470± 0.006 0.446± 0.005 0.496± 0.006

MultiNMF 0.690± 0.001 0.673± 0.001 0.495± 0.001 0.527± 0.000 0.512± 0.000 0.543± 0.000
NaMSC 0.671± 0.011 0.636± 0.000 0.475± 0.004 0.508± 0.007 0.492± 0.003 0.524± 0.004
DiMSC 0.727± 0.010 0.709± 0.003 0.535± 0.001 0.564± 0.002 0.543± 0.001 0.586± 0.003

Ours 0.782 ± 0.010 0.745 ± 0.011 0.579 ± 0.002 0.601 ± 0.002 0.598 ± 0.001 0.613 ± 0.002

Table 2: Results of 6 different metrics (mean ± standard deviation) on dataset Extended YaleB.
Method NMI ACC AR F-score Precision Recall
BestSV 0.360± 0.016 0.366± 0.059 0.225± 0.018 0.303± 0.011 0.296± 0.010 0.310± 0.012

ConcatFea 0.147± 0.005 0.224± 0.012 0.064± 0.003 0.159± 0.002 0.155± 0.002 0.162± 0.002
ConcatPCA 0.152± 0.003 0.232± 0.005 0.069± 0.002 0.161± 0.002 0.158± 0.001 0.164± 0.002

Co-Reg 0.151± 0.001 0.224± 0.000 0.066± 0.001 0.160± 0.000 0.157± 0.001 0.162± 0.000
Co-Train 0.302± 0.007 0.186± 0.001 0.043± 0.001 0.140± 0.001 0.137± 0.001 0.143± 0.002
Min-D 0.186± 0.003 0.242± 0.018 0.088± 0.001 0.181± 0.001 0.174± 0.001 0.189± 0.002

MultiNMF 0.377± 0.006 0.428± 0.002 0.231± 0.001 0.329± 0.001 0.298± 0.001 0.372± 0.002
NaMSC 0.594± 0.004 0.581± 0.013 0.380± 0.002 0.446± 0.004 0.411± 0.002 0.486± 0.001
DiMSC 0.635± 0.002 0.615± 0.003 0.453± 0.000 0.504± 0.006 0.481± 0.002 0.534± 0.001

Ours 0.649 ± 0.002 0.763 ± 0.001 0.512 ± 0.002 0.564 ± 0.001 0.525 ± 0.001 0.610 ± 0.001

Table 3: Results of 6 different metrics (mean ± standard deviation) on dataset Notting-Hill.
Method NMI ACC AR F-score Precision Recall
BestSV 0.723± 0.008 0.813± 0.000 0.712± 0.020 0.775± 0.015 0.774± 0.018 0.776± 0.013

ConcatFea 0.628± 0.028 0.673± 0.033 0.612± 0.041 0.696± 0.032 0.699± 0.032 0.693± 0.031
ConcatPCA 0.632± 0.009 0.733± 0.008 0.598± 0.015 0.685± 0.012 0.691± 0.010 0.680± 0.014

Co-Reg 0.660± 0.003 0.758± 0.000 0.616± 0.004 0.699± 0.000 0.705± 0.003 0.694± 0.003
Co-Train 0.766± 0.005 0.689± 0.027 0.589± 0.035 0.677± 0.026 0.688± 0.030 0.667± 0.023
Min-D 0.707± 0.003 0.791± 0.000 0.689± 0.002 0.758± 0.002 0.750± 0.002 0.765± 0.003

MultiNMF 0.752± 0.001 0.831± 0.001 0.762± 0.000 0.815± 0.000 0.804± 0.001 0.824± 0.001
NaMSC 0.730± 0.002 0.752± 0.013 0.666± 0.004 0.738± 0.005 0.746± 0.002 0.730± 0.011
DiMSC 0.799 ± 0.001 0.843± 0.021 0.787± 0.001 0.834± 0.001 0.822± 0.005 0.836± 0.009

Ours 0.797± 0.005 0.871 ± 0.009 0.803 ± 0.002 0.847 ± 0.002 0.826 ± 0.007 0.870 ± 0.001

original features into a low-dimensional subspace via PCA.
Spectral clustering is applied on the projected feature rep-
resentation. (4) Co-Reg (SPC) (Kumar, Rai, and III 2011)
co-regularizes the clustering hypotheses to enforce the mem-
berships from different views admit with each other. (5) Co-
Training (SPC) (Kumar and III 2011) borrows the idea of
co-training strategy to alternatively modify the graph struc-
ture of each view using other views’ information. (6) Min-
D(isagreement) (de Sa 2005) builds a bipartite graph which
derives from the “minimizing-disagreement” idea. (7) Mult-
iNMF (Liu et al. 2013) applies NMF to project each view
data to the common latent subspace. This method can be
roughly considered as one-layer version of our proposed
method. (8) NaMSC (Cao et al. 2015) firstly applies (Hu et
al. 2014) to each view data, then combines the learned rep-
resentations and feeds to the spectral clustering. (9) DiMSC
(Cao et al. 2015) investigates the complementary informa-
tion of representations of multi-view data by introducing
a diversity term. This work is also one of the most re-
cent approaches in MVC. We do not make the comparison
with deep auto-encoder based methods (Andrew et al. 2013;

Wang et al. 2015), because these CCA-based methods can-
not fully utilize more than 2 view data, leading to an unfair
comparison.

To make a comprehensive evaluation, we use six dif-
ferent evaluation metrics including normalized mutual in-
formation (NMI), accuracy (ACC), adjusted rand index
(AR), F-score, Precision and Recall. For details about
the metrics, readers could refer to (Kumar and III 2011;
Cao et al. 2015). For all the metrics, higher value denotes
better performance. Different measurements favor different
properties, thus a comprehensive view can be acquired from
the diverse results. For each experiment, we repeat 10 times
and report the mean values along with standard deviations.

Result

Table 1 and Table 2 tabulate the results on datasets Yale and
Extended YaleB. Our method outperforms all the other com-
petitors. For the dataset Yale, we raise the performance bar by
around 7.57% in NMI, 5.08% in ACC, 8.22% in AR, 6.56%
in F-score, 10.13% in Precision and 4.61% in Recall. On
average, we improve the state-of-the-art DiMSC by more
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Figure 2: Objective function value (red line) and NMI (blue
line) with respect to iteration time on Yale dataset with pa-
rameters β = 0.1, γ = 0.5 and layer size is [100, 50], respec-
tively.
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Figure 3: NMI curves w.r.t parameter γ on Yale dataset
with three different layer size settings, i.e., {[100 50], [500
50], [500 200]}, and β is set as 0.1.
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Figure 4: NMI curves w.r.t parameter β on Yale dataset
with three different layer size settings, i.e., {[100 50], [500
50], [500 200]}, and γ is set as 0.5.

than 7%. The possible reason why our method improves a lot
is that both image data in Yale and Extended YaleB contain
multiple factors, i.e., pose, expression, illumination, etc. The
existing MVC methods only involve one layer of represen-
tation, e.g., one layer factor decomposition in MultiNMF
or the practice of self-representation (i.e., coefficient matrix
Z in NaMSC and DiMSC (Cao et al. 2015)). However, our
proposed approach can extract the meaningful representation
layer by layer. Through the deep representation, we elimi-
nate the influence of undesirable factors, and keep the core
information (i.e., class/id information) in the final layer.

Table 3 lists the performance on video data Notting-Hill.
This dataset is more challenging than the previous two image
datasets, since the illumination conditions vary dramatically
and the source of lighting is arbitrary. Moreover, there is no
fixed expression pattern in the Notting-Hill movie, on the
contrary to datasets Yale and Extended YaleB. We observe

from the tables that our method reports the superior results
in five metrics. The only outlier is NMI, but our performance
is slightly worse than DiMSC by only 0.25%. Therefore, we
safely draw the conclusion that our proposed method gener-
ally achieves better clustering performance in the challenging
video dataset Notting-Hill.

Analysis

In this subsection, the robustness and stability of the proposed
model is evaluated. The convergence property is firstly stud-
ied in terms of objective value and NMI performance. Then
the analytical experiments on three key model parameters β,
γ, and layer size are conducted.

Convergence analysis. In Theorem 1, we theoretically
show that the most complex updating for Hm satisfies KKT
conditions. To experimentally show the convergence property
of the whole model, we compute the objective value of Eq.
(3) in each iteration. The corresponding parameters γ, β
and layer size are set as 0.5, 0.1 and [100, 50], respectively.
The objective value curve is plotted in red in Figure 2. We
observe that the objective value decreases steadily, and then
gradually meets the convergence after around 100 iterations.
The average NMI (in blue) has two stages before converging:
from #1 to #14, the NMI increases dramatically; then from
#15 to #30, it slightly bumps and reaches the best at around
the convergence point. For the sake of safety, the maximum
number of iterations is set to 150 for all the experiments.

Parameter analysis. In the proposed method, we have
four sets of parameters i.e., balancing parameters β and γ,
layer size pi and the number of nearest neighbors k when
constructing k-NN graph. Selecting k in the k-NN graph
construction algorithms is an open problem (He and Niyogi
2004). Due to the limited page length, we only include the
first three parameter analysis experiments in this paper. How-
ever, we find that k = 5 usually achieves relatively good
results.

Figure 3 shows the influence of NMI result with respect
to the parameter γ under three different layer size settings,
i.e., {[100 50], [500 50], [500 200]}. Parameter β is set as
0.1. γ is evaluated in the grid of {5 × 10−3, 5 × 10−2, 5 ×
10−1, 5× 100, 5× 101, 5× 102}. Note that to avoid division
by 0, γ cannot be set as 1. We observe that the proposed
method achieves the best when γ = 0.5 under different
layer size settings. In general, when γ is in the magnitude
of 10−1, 10−2, 10−3, the performance is quite stable. We fix
parameter γ = 0.5 as default in our experiments.

Figure 4 explores the parameter sensitivity of our model
in terms of parameter β. Considering the possible am-
plitude variations of two terms in the objective func-
tion Eq. (3), we evaluate β within the following set
{103, 102, 101, 100, 10−1, 10−2, 10−3}. As can be seen, the
average NMI results under three different layer size set-
tings are relatively steady, and slightly better when β =
{10−2, 10−3}. In practice, we choose β = 0.01 as default.

For the layer size analysis, from Figure 3 and Figure 4,
we observe that the setting of [100 50] always performs best.
Empirically, we find that the last layer dimension usually
plays a more important role than other layer size (blue curves
are always close to red ones). In Yale dataset, the ground-
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truth number of cluster is 10. When the last layer size is set
as 200, it might introduce more noise compared with the last
layer size set as 50. This is the possible reason why green
curves (i.e., layer size is [500 200]) perform worst.

Conclusion

In this paper, we proposed a deep matrix factorization ap-
proach for MVC problem. Through the multi-layer Semi-
NMF, our method was capable of eliminating the bad in-
fluences from diverse modalities, while only keeping the
class information in the output layer. With the guidance of
multiple graphs, the learned common representation could
preserve the geometric structure in each view, especially the
common structure information. Extensive experimental re-
sults validated the effectiveness of the proposed deep matrix
factorization structure, by comparing it with nine baselines.
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