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Abstract

There are many successful spectral based unsupervised di-
mensionality reduction methods, including Laplacian Eigen-
map (LE), Locality Preserving Projection (LPP), Spectral
Regression (SR), etc. LPP and SR are two different linear
spectral based methods, however, we discover that LPP and
SR are equivalent, if the symmetric similarity matrix is dou-
bly stochastic, Positive Semi-Definite (PSD) and with rank p,
where p is the reduced dimension. The discovery promotes
us to seek low-rank and doubly stochastic similarity matrix,
we then propose an unsupervised linear dimensionality reduc-
tion method, called Unsupervised Large Graph Embedding
(ULGE). ULGE starts with similar idea as LPP, it adopts an
efficient approach to construct similarity matrix and then per-
forms spectral analysis efficiently, the computational complex-
ity can reduce to O(ndm), which is a significant improvement
compared to conventional spectral based methods which need
O(n2d) at least, where n, d and m are the number of samples,
dimensions and anchors, respectively. Extensive experiments
on several public available data sets demonstrate the efficiency
and effectiveness of the proposed method.

Introduction

As one of the most efficient approach to deal with high-
dimensional data, dimensionality reduction attracts many
researchers’ attentions, and lots of successful methods have
been proposed. However, the excessive amounts of data bring
lots of challenges, and make conventional methods inap-
propriate in real life application. The most popular spectral
based unsupervised dimensionality reduction methods in-
clude Laplacian Eigenmap (LE) (Belkin and Niyogi 2001),
Locality Preserving Projections (LPP) (He and Niyogi 2003),
Spectral Regression (SR) (Cai, He, and Han 2007), etc. Spec-
tral based methods always construct similarity matrix firstly,
and then perform spectral analysis on the obtained matrix.

LPP and SR are two different linear methods, nevertheless,
we discover that if the similarity matrix is symmetric, PSD,
doubly stochastic and with rank p, LPP is equivalent to SR.
As far as we know, this is the first research to discover the
equivalence between these two popular methods, moreover,
the discovery indicates that such specific similarity matrix
has lots of advantages on both performance and efficiency,
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we thus prefer to construct such similarity matrix. However,
conventional spectral methods always construct almost full-
rank similarity matrix by k-nearest neighbor approach, which
makes both graph construction as well as spectral analysis
time consuming, and the time complexity is O(n2d) at least,
it is surely unbearable for the data which contains hundreds
of thousands samples.

To alleviate the problem, inspired by recent progresses on
scalable semi-supervised learning (Liu, He, and Chang 2010),
large scale spectral clustering (Cai and Chen 2015)(Li et al.
2015), and large scale spectral based dimensionality reduc-
tion (Cai 2015), we propose an efficient method, named Un-
supervised Large Graph Embedding (ULGE). ULGE starts
with similar idea as LPP, but benefits a lot from the the anchor-
based graph strategy as well as the specific similarity matrix.
The overall time complexity is O(ndm), which has great
advantage over conventional spectral based methods.

Three main contributions of this paper are listed as follows:

1. We discover that LPP is equivalent to SR under certain
condition, which is of importance in guiding the efficient
spectral based dimensionality reduction method design.

2. We propose a spectral based unsupervised linear dimen-
sionality reduction method ULGE with a time complexity
of O(ndm). ULGE is efficient on both large graph con-
struction and spectral analysis, which makes it suitable for
large scale data sets.

3. Comprehensive experiments on several large scale data
sets demonstrate the efficiency and effectiveness of the
proposed method for dealing with large scale data.

We first introduce some notations that are used throughout
the paper. For matrix M ∈ R

r×t, the (i, j)-th entry of M
is denoted by mij , the transpose of the i-th row of M is
denoted by mi ∈ R

t×1. Identity matrix is denoted by I . The
trace of M is denoted by Tr(M). The transpose of matrix
M is denoted by MT . The inverse of matrix M is denoted
by M−1. The F -norm of M is denoted by ‖M‖F . 1 is the
column vector of all ones.

Background

In the past decades, many spectral based dimensionality re-
duction methods have been proposed. Most initial attempts
are non-linear methods, e.g. LE (Belkin and Niyogi 2001),
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LLE (T and K 2000), and ISOMAP (Tenenbaum 1997). Soon
after, linear methods, e.g. LPP (He and Niyogi 2003) and SR
(Cai, He, and Han 2007), have been proposed to deal with
out-of-sample problem. There are kinds of linear dimension-
ality reduction methods, to sum these linear methods up , Yan
et al. and Nie et al. propose two different linear dimension-
ality reduction frameworks, called graph embedding (Yan
et al. 2007) and Flexible Manifold Embedding (FME) (Nie
et al. 2010), respectively. Next, we briefly introduce some
unsupervised dimensionality reduction methods which are
most related to this paper.

Given a data matrix X = [x1, . . . , xn]
T ∈ R

n×d, where
xi ∈ R

d denotes the i-th sample, let A ∈ R
n×n be the sim-

ilarity matrix constructed by k-nearest neighbor approach,
and aij is the similarity between xi and xj . We now seek to
find the low dimensional embedding, i.e. Y ∈ R

n×p, where
p is the reduced dimension, LE performs dimensionality re-
duction via solving following problem (Belkin and Niyogi
2001):

min
Y

Tr((Y TDY )
−1

Y TLY ), (1)

where D ∈ R
n×n is a diagonal matrix and the i-th entry is

defined as
∑n

j=1 aij , L = D −A denotes Laplacian matrix
(Chung 1997). To keep things simple, Problem (1) is ratio
trace representation (Wang et al. 2007). Problem (1) can be
tackled by generalized Rayleigh-Ritz theorem and the solu-
tion is formed by the p eigenvectors of D−1L corresponding
to the p smallest eigenvalues. LE is a non-linear method, it
can’t directly deal with new coming data.

He and Niyogi propose LPP to deal with out-of-sample
problem (He and Niyogi 2003). LPP adopts the projection
function W ∈ R

d×p by replacing Y with XW . Then, the
dimensionality reduction is performed as:

min
W

Tr((WTXTDXW )
−1

WTXTLXW ). (2)

To avoid ill-posed problem, LPP can be reformulated as:

min
W

Tr((WT (XTDX + αI)W )
−1

WTXTLXW ), (3)

where α is the regularization parameter. LPP can be seen as
the linearization extension of LE, it is a successful method
and computationally efficient for training data as well as new
data. However, there are also some disadvantages besides
the performance degradation with non-linearly distributed
data, Cai et al. point out that LPP is time consuming when
calculating the generalized eigenvalue problem of the dense
matrices XTLX and XTDX (Cai, He, and Han 2007).

Cai et al. then propose a different linearization extension
method called SR (Cai, He, and Han 2007). SR first obtains
the low dimension embedding Y ∗ by solving problem (1),
then gets the projection matrix via solving a regression prob-
lem:

min
W

‖XW − Y ∗‖2F . (4)

Also, the regularized SR can be reformulated as:

min
W

‖XW − Y ∗‖2F + α‖W‖2F . (5)

Problem (5) can be efficiently solved by some well-studied
algorithms, e.g. LSQR (Paige and Saunders 1982). SR is

believed more efficient since it only needs to calculate gen-
eralized eigenvalue problem of the sparse matrices L and D
(Cai, He, and Han 2007).

Equivalence between SR and LPP

Given similarity matrix which is doubly stochastic, we get
that the degree matrix D is actually I . Substituting L =
D − A and D = I into LPP formulation, i.e., problem (2),
we get:

max
W

Tr((WTXTXW )−1WTXTAXW ). (6)

Suppose that similarity matrix A is PSD with rank p, A can
be decomposed by eigenvalue decomposition as:

A = FΛFT , (7)

where Λ ∈ R
n×n = diag(λ1, . . . , λn), λ1 ≥ · · · ≥ λp >

0 = λp+1 = · · · = λn are the eigenvalues of A, and F ∈
R

n×n is eigenvector matrix. It is easy to know that Eq. (7)
can be rewritten as

A = FpΛpF
T
p , (8)

where Fp ∈ R
n×p is the first p columns of F , and Λp ∈

R
p×p = diag(λ1, . . . , λp). Then, substitute Eq. (8) into prob-

lem (6), we arrive at

max
W

Tr((WTXTXW )−1WTXTFpΛpF
T
p XW ). (9)

Problem (9) is nothing but the formulation of LPP with cer-
tain similarity matrix A.

On the other hand, given such similarity matrix A, the
solution to LE, i.e. problem (1), is actually Fp, therefore, the
formulation of SR, i.e. problem (4), can be rewritten as

min
W

‖XW − Fp‖2F . (10)

Interestingly, although LPP and SR are two different spectral
based dimensionality reduction methods, it can be verified
that the solution space of problem (9) is exact equivalent to
problem (10)’s, in other words, LPP is equivalent to SR if
similarity matrix A is PSD, doubly stochastic and with rank p.
Before presenting further proof, we first show an interesting
observation of LPP as follows:
Lemma 1. If Ŵ is the optimal solution to LPP, i.e. problem
(2), ŴR is still an optimal solution, where R ∈ R

p×p is an
arbitrary invertible matrix.

Proof. We directly substitute ŴR into problem (2) as

Tr(((ŴR)TXTDXŴR)−1(ŴR)TXTLXŴR)

=Tr(R−1(ŴTXTDXŴ )−1ŴTXTLXŴR)

=Tr((ŴTXTDXŴ )−1ŴTXTLXŴ )

(11)

which means ŴR also makes problem (2) achieve optimal
value. Thus, we complete the proof.

Then, as a simple corollary, we can get that LE, i.e. prob-
lem (1), also has same property, we thus get following lemma
for LE and SR as
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Lemma 2. Given Fp and Ŵ , which are the optimal solutions
to LE (i.e. problem (1)) and SR (i.e. problem (4)) respectively,
FpR and ŴR are also the optimal solution to LE and SR,
respectively, where R ∈ R

p×p is an arbitrary invertible
matrix.

Proof. One can easily check that if Fp is the optimal solution
to LE, FpR is still the optimal solution, the proof is similar
to Lemma 1. We then just need to validate that ŴR is the
optimal solution to following problem:

min
W

‖XW − FpR‖2F . (12)

To see this, note that Ŵ is the optimal solution to problem (4),
we get the derivative of problem (4) as XT (XŴ − Fp) = 0,
we then write the derivative of problem (12) and substituting
W = ŴR as

XT (XŴR− FpR) = XT (XŴ − Fp)R = 0, (13)

therefore, ŴR is the optimal solution to problem (12), which
completes the proof.

We then give a simple lemma as follows:
Lemma 3. Given Λ is diagonal and positive definite, the
column space of A−1BΛBT is exact same as that of A−1B.

Proof. On the one hand, it is easy to know that

Span(A−1BΛBT ) ⊆ Span(A−1B), (14)

where Span(M) denotes the space spanned by the column
of the matrix M .

On the other hand, since Λ is positive definite, we can get

rank(A−1BΛBT ) = rank(BΛBT )

= rank(BΛ
1
2 (BΛ

1
2 )T ) = rank(BΛ

1
2 ) = rank(B)

= rank(A−1B),

(15)

where rank(M) denotes the rank of matrix M .
Combine Eq. (14) and Eq. (15), we know that these two

spaces are exact same, thus we complete the proof.

Based on Lemma 1, Lemma 2 and Lemma 3, we come up
with following theorem:
Theorem 1. If the symmetric similarity matrix A is doubly
stochastic, PSD and with rank p, LPP is equivalent to SR.

Proof. As mentioned above, with such specific similarity ma-
trix, problem (9) and problem (10) are actually LPP and SR,
respectively. According to Lemma 1 and Lemma 2, the solu-
tion spaces to problem (9) and problem (10) are the column
space of (XTX)−1XTFpΛpF

T
p X and (XTX)−1XTFp, re-

spectively. Moreover, based on Lemma 3, we know that the
column spaces of these two matrix are same, in other words,
the solution space of LPP is same as that of SR, we then
complete the proof.

We further show that regularized LPP, i.e. problem (3), is
equivalent to regularized SR, i.e. problem (5), by following
theorem:

Theorem 2. If similarity matrix A is symmetric, doubly
stochastic, PSD and with rank p, regularized LPP, i.e. prob-
lem (3), is equivalent to regularized SR, i.e. problem (5).

The proof is similar to Theorem 1, and we omit it here.
We next show some important significances of Theorem

1 as well as Theorem 2 as follows, for simplicity, we take
Theorem 1 as an example:

1. Although LPP and SR are different methods, with certain
similarity matrix, SR does make sense in the framework
of LPP, and vice versa.

2. Theorem 1 gives a new approach to tackle LPP problem
with certain similarity matrix, i.e. through solving SR prob-
lem.

3. Theorem 1 gives a new approach to tackle SR problem
with certain similarity matrix, i.e. through solving LPP
problem.

The second point is particularly valuable, as pointed by Cai
et al. (Cai, He, and Han 2007), LPP suffers from high compu-
tational cost, they then propose a more efficient method, i.e.
SR. According to Theorem 1, instead of directly tackling LPP
problem, we can now efficiently tackle specific SR problem
to get the solution of LPP’s. Moreover, as pointed by (Zass
and Shashua 2006)(Wang, Nie, and Huang 2016), doubly
stochastic similarity matrix always results in promising per-
formance. Therefore, it is reasonably to construct the required
similarity matrix in Theorem 1 to get both high efficiency
and high performance.

Unsupervised Large Graph Embedding

In this section, we show the proposed ULGE. ULGE starts
with similar idea as LPP, however, according to Theorem 1,
it is solved by a SR liked algorithm.

Similarity Matrix Construction with Anchor-based
Strategy

Theorem 1 requires that similarity matrix A must be doubly
stochastic, PSD and with rank p, however, conventional spec-
tral based methods always adopt k-nearest neighbor approach
to construct similarity matrix, which is not only time con-
suming but also results in a almost full-rank and non doubly
stochastic similarity matrix. However, it is difficult to con-
struct doubly stochastic, PSD and rank-p similarity matrix
simultaneously, we thus propose a two-step approach, for de-
tail, we first construct doubly stochastic and PSD similarity
matrix, and then use it to construct rank-p similarity matrix.

Anchor Generation Following recent studies on scalable
semi-supervised learning (Liu, He, and Chang 2010), we
adopt an efficient method to construct such similarity matrix,
i.e. anchor-based strategy. In general, anchor-based strategy
first seeks m anchors, where m � n, and then calculates the
distance between anchors and original samples.

The most important step of anchor-based strategy is anchor
generation, and there are mainly two methods, i.e. random
selection and k-means generation. It is efficient to generate
anchors by simply random sampling, nonetheless, we still
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prefer to use k-means to generate more representative an-
chors for better performance. Note that, k-means may cost
too much time if the data is too large, to the best of our
knowledge, two simple strategies can be adopted to speed up
the procedure, i.e. early stopping the iteration (Chen and Cai
2011) and performing down-sampling as preprocessing, we
adopt down-sampling strategy in this paper.

We would also like to underline that, for k-means anchor
generation, both of these two speed up strategies can not
guarantee the quality of the generated anchors, and one of
our future work is trying to generate representative anchors
with a novel balanced k-means based hierarchical k-means
algorithm, which is expected to have high performance as
well as low computational complexity. For detail, we first
design a balanced k-means algorithm which can separate the
data into two clusters with same number of samples, and
then hierarchically perform the balanced k-means algorithm
on the data to get the representative anchors. Denoting t as
the number of iterations, the computational complexity of
this algorithm is O(nd log(m)t), which has great advantage
over k-means method whose complexity is O(ndmt). Note
that, such anchor generation method can be easily applied to
accelerate other graph based learning methods, e.g. hashing
(Li, Hu, and Nie 2017), clustering (Ng, Jordan, and Weiss
2001), semi-supervised learning (Zhou et al. 2003; Zhu 2008),
dimensionality reduction (Nie et al. 2011), RBF networks
(Schwenker, Kestler, and Palm 2001), etc.

Anchor-based Similarity Matrix Let U〈i〉 denote the set
of k-nearest anchors for the i-th sample, where U ∈ R

m×d

is the set of whole anchors. Conventional methods usually
use kernel based neighbor assignment strategy, e.g. Gaussian
kernel Kt(xi, uj) = exp(−‖xi−uj‖22/τ2), but kernel based
methods always bring extra parameters, e.g. bandwidth τ . To
avoid this, we adopt a parameter-free yet effective neighbor
assignment strategy (Nie et al. 2016). The neighbor assign-
ment for the i-th sample can be seen as solving following
problem (Nie et al. 2016)

min
zT
i 1=1,zi≥0

m∑

j=1

h(xi, uj)zij + γ

m∑

j=1

z2ij , (16)

where Z ∈ R
n×m denotes the similarity between the i-th

sample and the j-th anchor, h(xi, uj) is the distance between
the i-th sample and its j-th nearest anchor, to keep it simple,
we define h(xi, uj) = ‖xi − uj‖22, which is the square of
Euclidean distance. Follow (Nie et al. 2016), γ can be set as
γ = k

2h(i, k + 1)− 1
2

∑k
j=1 h(i, j). The solution to problem

(16) is

zij =
h(xi, uk+1)− h(xi, uj)∑k

j′=1 (h(xi, uk+1)− h(xi, uj′))
. (17)

For detail deviation, see (Nie et al. 2016).
After we obtain the matrix Z, similarity matrix A then can

be obtained by (Liu, He, and Chang 2010):

A = ZΔ−1ZT , (18)

where Δ ∈ R
m×m is a diagonal matrix and the j-th entry is

defined as
∑n

i=1 zij . One can simply check that matrix A is

symmetric, PSD, and doubly stochastic(Liu, He, and Chang
2010).

Low Rank Approximation of Anchor-based Similarity
Matrix However, the rank of A obtained by solving prob-
lem (18) is always larger than p in most cases, we thus seek
a rank-p approximation of A as

min
Ã

‖Ã−A‖F , s.t. rank(Ã) = p, (19)

where Ã ∈ R
n×n. The optimal solution Ã∗ to problem (19) is

Ã∗ = FpΛpF
T
p according to Eckart-Young-Mirsky theorem

(Eckart and Young 1936). The approximated similarity matrix
Ã∗ is obviously PSD, symmetric and with rank p, we now
show that it is still doubly stochastic as follows:

Lemma 4. Given matrix A ∈ R
n×n is symmetric, PSD and

doubly stochastic, the rank-p approximation Ãp is still doubly
stochastic, where 1 ≤ p ≤ n.

Proof. According to Gerschgorin’s disk theorem, since A
is PSD and doubly stochastic, the maximum eigenvalue of
A is 1, and the corresponding eigenvector is 1√

n
. Then, we

perform eigenvalue decomposition of A as

A = λ1f1f
T
1 + λ2f2f

T
2 + . . .+ λnfnf

T
n , (20)

where 0 ≤ λi ≤ 1 is the i-th largest eigenvalue and fi is
the corresponding eigenvector. According to Eckart-Young-
Mirsky theorem (Eckart and Young 1936), rank-p approxi-
mation of A is constructed as

Ãp = λ1f1f
T
1 + λ2f2f

T
2 + . . .+ λpfpf

T
p (21)

Note that A is symmetric, according to the orthogonality of
the eigenvector, we get

Ãp1 = λ1f1f
T
1 1 + λ2f2f

T
2 1 + . . .+ λpfpf

T
p 1

=
1√
n
(
1√
n
)T 1 + 0 + . . .+ 0

= 1

(22)

Similarly, we can get 1T Ãp = 1T . That is, Ãp is obviously
still doubly stochastic, which we complete the proof.

The optimal solution to problem (19), i.e. Ã∗, can be di-
rectly obtained by the eigenvalue decomposition on A, how-
ever, note that Eq. (18) can be rewritten as

A = BBT , (23)

where B = ZΔ−
1
2 ∈ R

n×m, we then can perform Singular
Value Decomposition (SVD) on B instead of performing
eigenvalue decomposition on A to get the solution, the time
complexity is O(nmk), where k is the number of nearest
neighbors. At last, we obtain the specific similarity matrix
which is required by Theorem 1.
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Spectral Analysis with Anchor-based Graph

As mentioned, ULGE starts with similar idea as LPP. Since
the similarity matrix Â∗ exactly meets the conditions of The-
orem 2, ULGE can then be tackled by a simple regression
problem as

min
W

‖XW − Fp‖2F + α‖W‖2F . (24)

To avoid ill-posed problem, we adopt regularization term. We
summarize the detail algorithm of ULGE in Algorithm 1.

Algorithm 1 Large Graph Embedding Dimensionality Re-
duction
Input: Data matrix X ∈ R

n×d, projection dimension p,
number of anchors m, regularization parameter α
1. Generate m anchors by perform k-means or simply
random sampling.
2. Obtain the similarity matrix A by tackle problem (18)
with anchor-based graph.
3. Obtain Fp by performing SVD on matrix B, where
B = ZΔ−

1
2 .

4. Compute the projection matrix W by solving problem
(24).

Output: Projection matrix W ∈ R
d×p.

Computational Complexity Analysis

Given a data matrix X ∈ R
n×d, the computational complex-

ity of ULGE is divided into 4 parts.
1. We need O(ndmt) to obtain m anchors by k-means, also

we can randomly select anchors which has a time complex-
ity O(1).

2. We need O(ndm + nm log(m)) to construct graph by
anchor-based approach.

3. We need O(nmk) to obtain Fp by solving problem (19),
where k is the number of nearest neighbors.

4. We need O(dnp) to obtain projection matrix W by solving
problem (24).

Considering that m � n and d � n for large scale data,
the overall computational complexity is O(ndm). Compared
to conventional spectral based methods which need at least
O(n2d), ULGE has great computational advantage especially
on large scale data sets.

Table 1: Data Set Description
Data Set Samples Features Classes
USPS 9298 256 10
Protein 24387 357 3
Connect-4 67557 126 3
MNIST 70000 784 10
SensIT 98528 100 3

Experiments
In this section, we experimentally demonstrate the efficiency
and effectiveness of the proposed method on 5 benchmark
large scale data sets, and then show several useful analysis.

Data Sets

We conduct experiments on 5 different public available data
sets downloaded from the LibSVM data sets page1, UCI
machine learning repository 2, and Deng Cai’s page 3. The
data sets includes handwritten digit (e.g. MNIST and USPS),
types of moving vehicles (e.g. SensIT), molecular biology
(e.g. Protein), and connect-4 game (e.g. Connect-4). The
detail of the data sets are summarized in Table 1 .

Comparison Methods

To validate the advantage of ULGE, we compare it with sev-
eral conventional spectral based unsupervised dimensional
reduction methods. e.g. LE, LPP and SR. We also compare
the performance of ULGE with different anchor selection
strategies, i.e. ULGE-K (ULGE with k-means anchor gener-
ation) and ULGE-R (ULGE with random anchor selection).
We perform k-means with original data as Baseline to val-
idate the effectiveness of all the dimensionality reduction
methods.

We use same Gaussian kernel for all LE, LPP and SR, and
the reduced dimension is set as number of class of the data
set. We use 5-nearest neighbor to construct graph for all the
methods. The regularization parameter α is default set as 0.01
in both SR and ULGE. For parameter m, i.e. the number of
anchors, used in ULGE, we empirically set m = 1000. To
speed up ULGE-K, we suggest to perform down sampling to
generate anchors, and in this paper, the decimation factor is
set as 10 for all data sets except USPS which is set as 3.

Evaluation Metric

For all the methods, we run 10 times k-means on the reduced
subspace, then evaluate the clustering result by ACCuracy
(ACC). We record the mean results as well as the running
time of all methods. All the codes in the experiments are im-
plemented in MATLAB R2015b , and run on a Windows 10
machine with 3.20 GHz i5-3470 CPU, 16 GB main memory.

Clustering Results

The performance of dimensionality reduction methods evalu-
ated by ACC is reported in Table 2, and the running time is
reported in Table 3. We present several interesting points as
follows:

Compared to other spectral based methods, the proposed
ULGE-K and ULGE-R achieve competitive performance
for almost all the data sets. As mentioned above, anchor-
based strategy is not only effective but also results in doubly
stochastic similarity matrix, ULGE-K thus exceeds other
non-linear and linear dimensionality reduction methods in
most cases. ULGE-R also achieves pretty good performance
though it selects anchors randomly. As the number of anchors
is set as 1000 in this paper, the performance of both ULGE-K
and ULGE-R are expected to get better performance with
more anchors, we thus suggest increasing the number of
anchors in real life application.

1https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
2http://archive.ics.uci.edu/ml/
3http://www.cad.zju.edu.cn/home/dengcai/Data/data.html
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Table 2: Clustering results on 5 large scale data sets. (Top 2 rank methods are highlighted in bold.)(%)

Data Set Baseline LE LPP SR ULGE-K ULGE-R
USPS 66.9 68.9 67.0 68.1 69.3 63.9
Protein 42.7 43.9 44.0 44.0 44.3 43.7
Connect-4 37.4 44.3 39.6 48.9 47.5 45.9
MNIST 55.6 68.4 51.3 57.9 60.7 54.9
SensIT 68.9 61.7 69.3 65.2 67.0 65.6

Table 3: Running time on 5 large scale data sets. (Top 2 rank methods are highlighted in bold.) (s)

Data Set LE LPP SR ULGE-K ULGE-R
USPS 36.4 32.7 38.7 21.5 7.2
Protein 73.3 64.0 82.8 14.5 10.2
Connect-4 398.7 322.9 400.1 30.2 24.1
MNIST 242.6 159.4 249.5 14.7 8.8
SensIT 1492.1 1489.7 1505.1 91.5 47.6
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Figure 1: ACC and running time with different parameters.

Considering the running time, the proposed ULGE-K and
ULGE-R achieve significant improvements, especially for
large scale data set. For the largest data set SensIT which
contains 98528 samples, ULGE-K and ULGE-R only need
91.5 and 47.6 seconds, respectively, which is 16 and 31 times
faster than the third fastest method LPP. As the growth of
scale of data set, ULGE-K and ULGE-R surely become more
and more superior. The running time of k-means can be
obtained by the difference between ULGE-K and ULGE-R,
we see that ULGE-K is greatly limited by k-means even with
down sampling. Predictably, ULGE-R will be the only choice
in extreme situations if it is too time consuming to perform
k-means for ULGE-K.

Parameters Selection

We only study the most important parameters, i.e. m (number
of anchors) and decimation factor of down sampling (only for
ULGE-K), the experiments are conducted on MNIST data
set.

Figure 1(a) shows that the more anchors we selected,
the better performance we will get. Moreover, the curve of
ULGE-R tends to be closer to ULGE-R’s, which means that
k-means step is meaningless if we select too many anchors.
However, increasing number of anchors also make the time
cost increase, e.g., we need 14.7 seconds for 1000 anchors
and 34.3 seconds for 2500 anchors for ULGE-K. As the dec-
imation factor increasing, the performance as well as time
cost drops much as show in Figure 1(c) and Figure 1(d). To
be specific, we need 72.3 seconds for a decimation factor of
2, and 14.7 seconds for a decimation factor of 10. However,
if we still increase the decimation factor, the time cost drops
little.

Conclusions

In this paper, we propose an interesting theorem about the
relation between LPP and SR, which are two pretty different
linear dimensionality reduction methods. Inspired by the theo-
rem, we then propose an efficient and effective dimensionality
reduction method, called Unsupervised Large Graph Embed-
ding (ULGE). ULGE starts with similar idea as LPP, it adopts
anchor-based strategy to construct PSD and doubly stochastic
similarity matrix, then performs low-rank approximation to
get rank-p similarity matrix. The overall computational com-
plexity is O(ndm), which is a significant improvement com-
pared to conventional methods which need O(n2d) at least.
Extensive experiments conducted on 5 large scale data sets
demonstrate the efficiency and effectiveness of ULGE. One
of our future work is designing an effective anchor generation
algorithm with extremely low computational complexity to
replace the time consuming k-means method for ULGE-K.
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