
Core Dependency Networks

Alejandro Molina
alejandro.molina@tu-dortmund.de

CS Department
TU Dortmund, Germany

Alexander Munteanu
alexander.munteanu@tu-dortmund.de

CS Department
TU Dortmund, Germany

Kristian Kersting
kersting@cs.tu-darmstadt.de

CS Department and
Centre for Cognitive Science

TU Darmstadt, Germany

Abstract

Many applications infer the structure of a probabilistic graph-
ical model from data to elucidate the relationships between
variables. But how can we train graphical models on a mas-
sive data set? In this paper, we show how to construct
coresets—compressed data sets which can be used as proxy
for the original data and have provably bounded worst case
error—for Gaussian dependency networks (DNs), i.e., cyclic
directed graphical models over Gaussians, where the par-
ents of each variable are its Markov blanket. Specifically, we
prove that Gaussian DNs admit coresets of size independent
of the size of the data set. Unfortunately, this does not ex-
tend to DNs over members of the exponential family in gen-
eral. As we will prove, Poisson DNs do not admit small core-
sets. Despite this worst-case result, we will provide an ar-
gument why our coreset construction for DNs can still work
well in practice on count data. To corroborate our theoretical
results, we empirically evaluated the resulting Core DNs on
real data sets. The results demonstrate significant gains over
no or naive sub-sampling, even in the case of count data.

Artificial intelligence and machine learning have achieved
considerable successes in recent years, and an ever-growing
number of disciplines rely on them. Data is now ubiqui-
tous, and there is great value in understanding the data,
e.g., building probabilistic graphical models to elucidate
the relationships between variables. In the big data era,
however, scalability has become crucial for any useful ma-
chine learning approach. In this paper, we consider the
problem of training graphical models, in particular, Depen-
dency Networks (Heckerman et al. 2000), on massive data
sets. They are cyclic directed graphical models, where the
parents of each variable are its Markov blanket and have
been proven successful in various tasks, such as collabo-
rative filtering (Heckerman et al. 2000), phylogenetic anal-
ysis (Carlson et al. 2008), genetic analysis (Dobra 2009;
Phatak et al. 2010), network inference from sequencing
data (Allen and Liu 2013), and traffic as well as topic mod-
eling (Hadiji et al. 2015).

Specifically, we show that Dependency Networks over
Gaussians—arguably one of the most prominent type of dis-
tribution in statistical machine learning—admit coresets of
size independent of the size of the data set. Coresets are

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

weighted subsets of the data, which guarantee that mod-
els fitting them will also provide a good fit for the orig-
inal data set, and have been studied before for clustering
(Badoiu, Har-Peled, and Indyk 2002; Feldman, Faulkner,
and Krause 2011; Feldman, Schmidt, and Sohler 2013;
Lucic, Bachem, and Krause 2016), classification (Har-Peled,
Roth, and Zimak 2007; Har-Peled 2015; Reddi, Póczos, and
Smola 2015), regression (Drineas, Mahoney, and Muthukr-
ishnan 2006; 2008; Dasgupta et al. 2009; Geppert et al.
2017), and the smallest enclosing ball problem (Badoiu and
Clarkson 2003; 2008; Feldman, Munteanu, and Sohler 2014;
Agarwal and Sharathkumar 2015); we refer to (Phillips
2017) for a recent extensive literature overview. Our con-
tribution continues this line of research and generalizes the
use of coresets to probabilistic graphical modeling.

Unfortunately, this coreset result does not extend to De-
pendency Networks over members of the exponential fam-
ily in general. We prove that Dependency Networks over
Poisson random variables (Allen and Liu 2013; Hadiji et al.
2015) do not admit (sublinear size) coresets: every single in-
put point is important for the model and needs to appear in
the coreset.This is unfortunate when modeling count data—
the primary target of Poisson distributions—which is at the
center of many scientific endeavors such as citation counts,
number of web page hits, counts of procedures in medicine,
etc. Therefore, despite our worst-case result, we will provide
an argument why our coreset construction for Dependency
Networks can still work well in practice on count data. To
corroborate our theoretical results, we empirically evaluated
the resulting Core Dependency Networks (CDNs) on sev-
eral real data sets and demonstrate significant gains over no
or naive sub-sampling, even for count data.

We proceed as follows. We review Dependency Networks
(DNs), prove that Gaussian DNs admit sublinear size core-
sets, and discuss the possibility to generalize this result to
count data. Before concluding, we present empirical results.

Dependency Networks

Most of the existing AI and machine learning literature on
graphical models is dedicated to binary, multinomial, or cer-
tain classes of continuous (e.g. Gaussian) random variables.
Undirected models, aka Markov Random Fields (MRFs),
such as Ising (binary random variables) and Potts (multino-
mial random variables) models have found a lot of applica-

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

3820

tions in various fields such as robotics, computer vision, and
statistical physics, among others. Whereas MRFs allow for
cycles in the structures, directed models aka Bayesian Net-
works (BNs) required acyclic directed relationships among
the random variables.

Dependency Networks (DNs)—the focus of the present
paper—combine concepts from directed and undirected
worlds and are due to Heckerman et al. (2000). Specif-
ically, like BNs, DNs have directed arcs, but they allow
for networks with cycles and bi-directional arcs, akin to
MRFs. This makes DNs quite appealing for many applica-
tions because we can build multivariate models from uni-
variate distributions (Allen and Liu 2013; Yang et al. 2015;
Hadiji et al. 2015), while still permitting efficient structure
learning using local estimators or gradient tree boosting. If
the data are fully observed, learning is done locally on the
level of the conditional probability distributions for each
variable mixing directed and undirected as needed. Based
on these local distributions, samples from the joint distri-
bution are obtained via Gibbs sampling. Indeed, the Gibbs
sampling neglects the question of a consistent joint proba-
bility distribution and instead makes only use of local distri-
butions.

Formally, let X = (X(1), . . . , X(d)) denote a random
vector and x its instantiation. A Dependency Network (DN)
on X is a pair (G,Ψ) where G = (V, E) is a directed, possi-
bly cyclic, graph where each node in V = [d] = {1, . . . , d}
corresponds to the random variable X(i). In the set of di-
rected edges E ⊆ V × V \ {(i, i) | i ∈ [d]}, each edge
models a dependency between variables, i.e., if there is no
edge between i and j then the variables X(i) and X(j) are
conditionally independent given the other variables X\i,j in-
dexed by [d] \ {i, j} in the network. We refer to the nodes
that have an edge pointing to X(i) as its parents, denoted
by pai = {X(j) | (j, i) ∈ E}. Ψ = {pi | i ∈ [d]} is a set
of conditional probability distributions associated with each
variable X(i) ∼ pi, where

pi = p(x(i)|pai) = p(x(i)|x\i) .

As example of such a local model, consider Poisson condi-
tional probability distributions as illustrated in Fig. 1 (left):

p(x(i)|pai) =
λi(x

\i)x
(i)

x(i)!
e−λi(x

\i) .

Here, λi(x
\i) highlights the fact that the mean can have

a functional form that is dependent on X(i)’s parents. Of-
ten, we will refer to it simply as λi. The construction of
the local conditional probability distribution is similar to the
(multinomial) Bayesian network case. However, in the case
of DNs, the graph is not necessarily acyclic and p(x(i)|x\i)
typically has an infinite range, and hence cannot be repre-
sented using a finite table of probability values. Finally, the
full joint distribution is simply defined as the product of lo-
cal distributions:

p(x) =
∏

i∈[d]
p(x(i)|x\i) ,

also called pseudo likelihood. For the Poisson case, this

0 2 4 6 8
Number of Goals

0.0

0.1

0.2

0.3

0.4

0.5

R
el

at
iv

e
F

re
qu

en
cy fit

data

data
fit

X(0)

X(1) X(2)

Figure 1: Illustration of Dependency Networks (DNs) using
Poissons. (left) The number of goals scored in soccer games
follows a Poisson distribution. The plot shows the distribu-
tion of home goals in the season 2012/13 of the German
Bundesliga by the home team. The home team scored on av-
erage λ = 1.59 goals per game. (right) Example structure
of a Poisson DN. The conditional distribution of each count
variable given its neighbors is a Poisson distribution. Similar
to a Bayesian network a Poisson DN is directed. However, it
also contains cycles. (Best viewed in color)

reads

p(x) =
∏

i∈[d]

λx(i)

i

x(i)!
e−λi .

Note, however, that doing so does not guarantee the exis-
tence of a consistent joint distribution, i.e., a joint distribu-
tion of which they are the conditionals. Bengio et al. (2014),
however, have recently proven the existence of a consistent
distribution per given evidence, which does not have to be
known in closed form, as long as an unordered Gibbs sam-
pler converges.

Core Dependency Networks

As argued, learning Dependency Networks (DNs) amounts
to determining the conditional probability distributions from
a given set of n training instances xi ∈ R

d representing the
rows of the data matrix X ∈ R

n×d over d variables. Assum-
ing that p(x(i)|pai) is parameterized as a generalized linear
model (GLM) (McCullagh and Nelder 1989), this amounts
to estimating the parameters γ(i) of the GLM associated
with each variable X(i), since this completely determines
the local distributions, but p(x(i)|pai) will possibly depend
on all other variables in the network, and these dependen-
cies define the structure of the network. This view of train-
ing DNs as fitting d GLMs to the data allows us to develop
Core Dependency Networks (CDNs): Sample a coreset and
train a DN over certain members of the GLM family on the
sampled coreset.

A coreset is a (possibly) weighted and usually consider-
ably smaller subset of the input data that approximates a
given objective function for all candidate solutions (Badoiu,
Har-Peled, and Indyk 2002):

Definition 1 (ε-coreset). Let X be a set of points from a
universe U and let Γ be a set of candidate solutions. Let
f : U × Γ → R

≥0 be a non-negative measurable function.
Then a set C ⊂ X is an ε-coreset of X for f , if

∀γ ∈ Γ : |f(X, γ)− f(C, γ)| ≤ ε · f(X, γ).

3821

We now introduce the formal framework that we need
towards the design of coresets for learning dependency
networks. A very useful structural property for �2 based
objective (or loss) functions is the concept of an ε-
subspace embedding (Drineas, Mahoney, and Muthukrish-
nan 2006),2008.
Definition 2 (ε-subspace embedding). An ε-subspace em-
bedding for the columnspace of X is a matrix S such that

∀γ ∈ R
d : (1− ε)‖Xγ‖2 ≤ ‖SXγ‖2 ≤ (1 + ε)‖Xγ‖2

We can construct a sampling matrix S which forms an ε-
subspace embedding with constant probabilty in the fol-
lowing way: Let U be any orthonormal basis for the
columnspace of X . This basis can be obtained from the
singular value decomposition (SVD) X = UΣV T of the
data matrix. Now let ρ = rank(U) = rank(X) and de-
fine the leverage scores li = ‖Ui‖2/‖U‖2F = ‖Ui‖2/ρ
for i ∈ [n]. Now we fix a sampling size parameter k =
O(ρ log(ρ/ε)/ε2), sample the input points one-by-one with
probability qi = min{1, k · li} and reweight their contribu-
tion to the loss function by wi = 1/qi. Note that, for the
sum of squares loss, this corresponds to defining a diago-
nal (sampling) matrix S by Sii = 1/

√
qi with probability qi

and Sii = 0 otherwise. Also note, that the expected num-
ber of samples is k = O(ρ log(ρ/ε)/ε2), which also holds
with constant probability by Markov’s inequality. Moreover,
to give an intuition why this works, note that for any fixed
γ ∈ R

d, we have

E
[‖SXγ‖2] = ∑(

xiγ√
qi

)2

qi =
∑

(xiγ)
2 = ‖Xγ‖2.

The significantly stronger property of forming an ε-subspace
embedding, according to Definition 2, follows from a ma-
trix approximation bound given in (Rudelson and Vershynin
2007; Drineas, Mahoney, and Muthukrishnan 2008).
Lemma 3. Let X be an input matrix with rank(X) = ρ.
Let S be a sampling matrix constructed as stated above with
sampling size parameter k = O(ρ log(ρ/ε)/ε2). Then S
forms an ε-subspace embedding for the columnspace of X
with constant probability.

Proof. Let X = UΣV T be the SVD of X . By Theorem 7 in
(Drineas, Mahoney, and Muthukrishnan 2008) there exists
an absolute constant C > 1 such that

E
[‖UTSTSU − UTU‖] ≤ C

√
log k

k
‖U‖F ‖U‖

≤ C

√
log k

k

√
ρ ≤ ε,

where we used the fact that ‖U‖F =
√
ρ and ‖U‖ = 1 by

orthonormality of U . The last inequality holds by choice of
k = Dρ log(ρ/ε)/ε2 for a large enough absolute constant
D > 1 such that 1+logD

D < 1
4C2 , since

log k

k
=

log(Dρ log(ρ/ε)/ε2)

Dρ log(ρ/ε)/ε2
≤ 2ε2 log(Dρ log(ρ/ε)/ε)

Dρ log(ρ/ε)

≤ 4ε2(log(ρ/ε) + logD)

Dρ log(ρ/ε)
≤ 4ε2

ρ

(
1 + logD

D

)
<

ε2

C2ρ
.

By an application of Markov’s inequality and rescaling ε,
we can assume with constant probability

‖UTSTSU − UTU‖ ≤ ε. (1)

We show that this implies the ε-subspace embedding prop-
erty. To this end, fix γ ∈ R

d.

| ‖SXγ‖2 − ‖Xγ‖2 |
= ‖γTXTSTSXγ − γTXTXγ‖
= ‖γTV ΣUTSTSUΣV T γ − γTV ΣUTUΣV T γ‖
= ‖γTV Σ (UTSTSU − UTU) ΣV T γ‖
≤ ‖UTSTSU − UTU‖ · ‖ΣV T γ‖2
≤ ‖UTSTSU − UTU‖ · ‖Xγ‖2 ≤ ε‖Xγ‖2,

The first inequality follows by submultiplicativity, and the
second from rotational invariance of the spectral norm. Fi-
nally we conclude the proof by Inequality (1).

The question arises whether we can do better than
O(ρ log(ρ/ε)/ε2). One can show by reduction from the
coupon collectors theorem that there is a lower bound of
Ω(ρ log ρ) matching the upper bound up to its dependency
on ε. The hard instance is a dm × d,m ∈ N orthonormal
matrix in which the scaled canonical basis Id/

√
dm−1 is

stacked dm−1 times. The leverage scores are all equal to
1/dm, implying a uniform sampling distribution with prob-
ability 1/d for each basis vector. Any rank ρ = d preserving
sample must comprise at least one of them. This is exactly
the coupon collectors theorem with d coupons which has a
lower bound of Ω(d log d) (Motwani and Raghavan 1995).
The fact that the sampling is without replacement does not
change this since the reduction holds for arbitrarily large m
creating sufficient multiple copies of each element to simu-
late the sampling with replacement (Tropp 2011).

Now we know that with constant probability over the ran-
domness of the construction algorithm, S satisfies the ε-
subspace embedding property for a given input matrix X .
This is the crucial structural property to show that actually
SX is a coreset for Gaussian linear regression models and
dependency networks. Consider (G,Ψ), a Gaussian depen-
dency network (GDN), i.e., a collection of Gaussian linear
regression models

Ψ = {pi(X(i)|X\i, γ(i)) = N (X\iγ(i), σ2) | i ∈ [d]}
on an arbitrary digraph structure G (Heckerman et al. 2000).
The logarithm of the (pseudo-)likelihood (Besag 1975) of
the above model is given by

lnL (Ψ) = ln
∏

pi =
∑

ln pi.

A maximum likelihood estimate can be obtained by max-
imizing this function with respect to γ = (γ(1), . . . , γ(d))
which is equivalent to minimizing the GDN loss function

fG(X, γ) =
∑

‖X\iγ(i) −X(i)‖2.
Theorem 4. Given S, an ε-subspace embedding for the
columnspace of X as constructed above, SX is an ε-coreset
of X for the GDN loss function.

3822

Proof. Fix an arbitrary γ = (γ(1), . . . , γ(d)) ∈ R
d(d−1).

Consider the affine map Φ : Rd−1 × [d] → R
d, defined by

Φ(γ(i)) = I
\i
d γ(i)− ei. Clearly Φ extends its argument from

d − 1 to d dimensions by inserting a −1 entry at position
i and leaving the other entries in their original order. Let
β(i) = Φ(γ(i)) ∈ R

d. Note that for each i ∈ [d] we have

Xβ(i) = XΦ(γ(i)) = X\iγ(i) −X(i), (2)

and each β(i) is a vector in R
d. Thus, the triangle inequality

and the universal quantifier in Definition 2 guarantee that

|
∑

‖SXβ(i)‖2 −
∑

‖Xβ(i)‖2 |
= |

∑
(‖SXβ(i)‖2 − ‖Xβ(i)‖2) |

≤
∑

|‖SXβ(i)‖2 − ‖Xβ(i)‖2 |
≤

∑
ε‖Xβ(i)‖2 = ε

∑
‖Xβ(i)‖2.

The claim follows by substituting Identity (2).

It is noteworthy that computing one single coreset for
the columnspace of X is sufficient, rather than computing
d coresets for the d different subspaces spanned by X\i.

From Theorem 4 it is straightforward to show that the
minimizer found for the coreset is a good approximation of
the minimizer for the original data.
Corollary 5. Given an ε-coreset C of X for the GDN loss
function, let γ̃ ∈ argminγ∈Rd(d−1)fG(C, γ). Then it holds
that

fG(X, γ̃) ≤ (1 + 4ε) min
γ∈Rd(d−1)

fG(X, γ).

Proof. Let γ∗ ∈ argminγ∈Rd(d−1)fG(X, γ). Then

fG(X, γ̃) ≤ 1

1− ε
fG(C, γ̃) ≤ 1

1− ε
fG(C, γ

∗)

≤ 1 + ε

1− ε
fG(X, γ∗) ≤ (1 + 4ε)fG(X, γ∗).

The first and third inequalities are direct applications of the
coreset property, the second holds by optimality of γ̃ for the
coreset, and the last follows from ε < 1

2 .

Moreover, the coreset does not affect inference within
GDNs. Recently, it was shown for (Bayesian) Gaussian lin-
ear regression models that the entire multivariate normal
distribution over the parameter space is approximately pre-
served by ε-subspace embeddings (Geppert et al. 2017),
which generalizes the above. This implies that the coreset
yields a useful pointwise approximation in Markov Chain
Monte Carlo inference via random walks like the pseudo-
Gibbs sampler in (Heckerman et al. 2000).

Negative Result on Coresets for Poisson DNs

Unfortunately, there is no (sublinear size) coreset for the
simpler problem of Poisson regression, which implies the
result for Poisson DNs. We show this formally by reduction
from the communication complexity problem known as in-
dexing.

Recall that the negative log-likelihood for Poisson regres-
sion is (McCullagh and Nelder 1989; Winkelmann 2008)

�(γ) := �(γ|X,Y) =
∑

exp(xiγ)− yi · xiγ + ln(yi!).

Theorem 6. Let ΣD be a data structure for D = [X,Y]
that approximates likelihood queries ΣD(γ) for Poisson re-
gression, such that

∀γ ∈ R
d : η−1 · �(γ|D) ≤ ΣD(γ) ≤ η · �(γ|D).

If η <
exp(n

4)

2n2 then ΣD requires Ω(n) bits of storage.

Proof. We reduce from the indexing problem which is
known to have Ω(n) one-way randomized communication
complexity (Jayram, Kumar, and Sivakumar 2008). Alice
is given a vector b ∈ {0, 1}n. She produces for every i
with bi = 1 the points xi = (r · ωi,−1) ∈ R

3, where
ωi, i ∈ {0, . . . , n − 1} denote the nth unit roots in the
plane, i.e., the vertices of a regular n-polygon of radius
r = n/(1 − cos(2πn)) ≤ n3 in canonical order. The cor-
responding counts are set to yi = 1. She builds and sends
ΣD of size s(n) to Bob, whose task is to guess the bit bj .
He chooses to query γ = (ωj , r · cos(2πn)) ∈ R

3. Note that
this affine hyperplane separates r · ωj from the other scaled
unit roots since it passes exactly through r · ω(j−1) mod n

and r · ω(j+1) mod n. Also, all points are within distance 2r
from each other by construction and consequently from the
hyperplane. Thus, −2r ≤ xiγ ≤ 0 for all i �= j.

If bj = 0, then xj does not exist and the cost is at most

�(γ) =
∑

exp(xiγ)− yi · xiγ + ln(yi!)

≤
∑

1 + 2r + 1 ≤ 2n+ 2nr ≤ 4n4 .

If bj = 1 then xj is in the expensive halfspace and at
distance exactly

xjγ = (rωj)Tωj − r · cos
(
2π

n

)

= r ·
(
1− cos

(
2π

n

))
= n

So the cost is bounded below by �(γ) ≥ exp(n)− n+ 1 ≥
exp(n2).

Given η <
exp(n

4)

2n2 , Bob can distinguish these two cases
based on the data structure only, by deciding whether ΣD(γ)
is strictly smaller or larger than exp(n4) · 2n2. Consequently
s(n) = Ω(n), since this solves the indexing problem.

Note that the bound is given in bit complexity, but restrict-
ing the data structure to a sampling-based coreset and as-
suming every data point can be expressed in O(d log n) bits,
this means we still have a lower bound of k = Ω(n

logn) sam-
ples.
Corollary 7. Every sampling based coreset for Poisson re-
gression with approximation factor η <

exp(n
4)

2n2 as in Theo-
rem 6 requires at least k = Ω(n

logn) samples.

At this point, it seems very likely that a similar argument
can be used to rule out any o(n)-space constant approxima-
tion algorithm. This remains an open problem for now.

3823

Why Core DNs for Count Data can still work

In the Gaussian setting, the loss is measured in squared Eu-
clidean distance and the number of important points, i.e.,
having significantly large leverage scores, is bounded essen-
tially by O(d). This is implicit in the original early works
(Drineas, Mahoney, and Muthukrishnan 2008) and has been
explicitly formalized later (Langberg and Schulman 2010;
Clarkson and Woodruff 2013). It is crucial to understand that
this is an inherent property of the norm function, and thus
holds for arbitrary data. For the Poisson GLM, in contrast,
we have shown that its loss function does not come with
such properties from scratch. We constructed a worst case
scenario, where basically every single input point is impor-
tant for the model and needs to appear in the coreset. Usu-
ally, this is not the case with statistical models, where the
data is assumed to be generated i.i.d. from some generating
distribution that fits the model assumptions. Consider for in-
stance a data reduction for Gaussian linear regression via
leverage score sampling vs. uniform sampling. It was shown
that the leverage scores are quite uniform. In the presence
of more and more outliers generated by the heavier tails of
t-distributions, the leverage scores increasingly outperform
uniform sampling (Ma, Mahoney, and Yu 2015).

The Poisson model

yi ∼ Poi(λi), λi = exp(xiγ). (3)

suffers from its inherent limitation on equidispersed data
since E [yi|xi] = V [yi|xi] = exp(xiγ). Count data, how-
ever, is often overdispersed especially for large counts. This
is due to unobserved variables or problem specific het-
erogeneity and contagion-effects. The log-normal Poisson
model is known to be inferior for data which specifically
follows the Poisson model, but turns out to be more power-
ful in modeling the effects that can not be captured by the
simple Poisson model. We review the log-normal Poisson
model for count data (Winkelmann 2008)

yi ∼ Poi(λi),

λi = exp(xiγ)ui = exp(xiγ + vi),

vi = lnui ∼ N (μ, σ) .

A natural choice for the parameters of the log-normal distri-
bution is μ = −σ2

2 in which case we have

E [yi|xi] = exp(xiγ + μ+ σ2/2) = exp(xiγ) ,

V [yi|xi] = E [yi|xi] + (exp(σ2)− 1)E [yi|xi]
2
.

It follows that V [yi|xi] = exp(xiγ) + Ω(exp(xiγ)
2) >

exp(xiγ), where a constant σ2 that is independent of xi,
controls the amount of overdispersion. Taking the limit for
σ → 0 we arrive at the simple model (3), since the distribu-
tion of vi = lnui tends to δ0, the deterministic Dirac delta
distribution which puts all mass on 0. The inference might
aim for the log-normal Poisson model directly as in (Zhou
et al. 2012), or it can be performed by (pseudo-)maximum
likelihood estimation of the simple Poisson model. The lat-
ter provides a consistent estimator as long as the log-linear
mean function is correctly specified, even if higher moments
do not possess the limitations inherent in the simple Poisson
model (Winkelmann 2008).

Preserving the log-linear mean function in a Poisson
model is crucial towards consistency of the estimator. More-
over, modeling counts in a log-normal model gives us intu-
ition why leverage score sampling can capture the under-
lying linear model accurately: In the log-normal Poisson
model, u follows a log-normal distribution. It thus holds for
lnλ = Xγ + lnu = Xγ + v, that

v ∼ N
(
−σ2

2
· 1, σ2In

)

by independence of the observations, which implies

lnλ ∼ N
(
Xγ − σ2

2
· 1, σ2In

)
.

Omitting the bias μ = −σ2

2 in each intercept term (which
can be cast into X), we notice that this yields again an or-
dinary least squares problem ‖Xγ − ln(λ)‖2 defined in the
column space of X .

There is still a missing piece in our argumentation. In the
previous section, we have used that the coreset construc-
tion is an ε-subspace embedding for the columnspace of
the whole data set including the dependent variable, i.e., for
[X, ln(λ)]. We face two problems. First, λ is only implic-
itly given in the data, but is not explicitly available. Sec-
ond, λ is a vector derived from X\i in our setting and might
be different for any of the d instances. Fortunately, it was
shown via more complicated arguments (Drineas, Mahoney,
and Muthukrishnan 2008), that it is sufficient for a good ap-
proximation if the sampling is done obliviously to the de-
pendent variable. The intuition comes from the fact that the
loss of any point in the subspace can be expressed via the
projection of ln(λ) onto the subspace spanned by X , and
the residual of its projection. A good approximation of the
subspace implicitly approximates the projection of any fixed
vector, which is then applied to the residual vector of the or-
thogonal projection. This solves the first problem since it is
only necessary to have a subspace embedding for X . The
second issue can be addressed by increasing the sample size
by a factor of O(log d) for boosting the error probability to
O(1/d) and taking a union bound.

Empirical Illustration

Our intention here is to corroborate our theoretical results by
investigating the following questions empirically:

(Q1) How does the performance of CDNs compare to DNs
with access to the full training data set and to a uniform
sample from the training data set? And, how does the em-
pirical error behave according to the sample sizes?

(Q2) Do coresets affect the structure recovered by the DN?

To this aim, we implemented (C)DNs in Python1. All ex-
periments ran on a Linux machine (56 cores, 4 GPUs,
and 512GB RAM). All DNs were trained using Iteratively
reweighted least squares (IRWLS), however, coresets do not
depend on the learning algorithm used.

1https://github.com/alejandromolinaml/CoreDNs

3824

10% 20% 30% 40% 100%

Training data (Sample size in percentage)

3.55×107

3.6×107

3.65×107

3.7×107

3.75×107

N
eg

at
iv

e
G

au
ss

ia
n

P
se

ud
o

Lo
g–

Li
ke

lih
oo

d

3.59 5.23 3.58 3.59 3.58 3.63 3.58 3.59 3.58

CDN
Uniform
Full

10% 20% 30% 40% 100%

Training data (Sample size in percentage)

−2.7

−2.65

−2.6

−2.55

−2.5

Lo
g

R
M

S
E

(R
oo

tM
ea

n
S

qu
ar

e
E

rr
or

) −2.6 −2.55 −2.64 −2.62 −2.65 −2.65 −2.66 −2.66 −2.67

CDN
Uniform
Full

10% 20% 30% 40% 100%

Training data (Sample size in percentage)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
g

Ti
m

e
(in

ho
ur

s)

1.72 1.76 2.38 2.46 2.79 2.9 3.08 3.18 4.0

CDN
Uniform
Full

10% 20% 30% 40% 100%

Training data (Sample size in percentage)

3.2×106

3.3×106

3.4×106

3.5×106

3.6×106

N
eg

at
iv

e
Po

is
so

n
P

se
ud

o
Lo

g–
Li

ke
lih

oo
d

3.48 3.58 3.35 3.36 3.33 3.31 3.31 3.29 3.26

CDN
Uniform
Full

10% 20% 30% 40% 100%

Training data (Sample size in percentage)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Lo
g

R
M

S
E

(R
oo

tM
ea

n
S

qu
ar

e
E

rr
or

) 1.55 1.68 1.4 1.48 1.36 1.42 1.35 1.4 1.39

CDN
Uniform
Full

10% 20% 30% 40% 100%

Training data (Sample size in percentage)

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
g

Ti
m

e
(in

m
in

ut
es

)

0.29 −0.25 0.48 0.09 0.81 0.54 1.05 0.86 2.56

CDN
Uniform
Full

Negative Log Pseudo Likelihood RMSE Training Time

Figure 2: (Q1) Performance (the lower, the better) of Gaussian CDNs on MNIST (upper row) and Poisson CNDs on the traffic
dataset (lower row) 10-fold cross-validated. Shown are the negative log pseudo-likelihood (left), the squared error loss (middle,
in log-space) as well as the training time (right, in log-space) on the y-axis for different proportions of the data sampled (x axis).
Please note the jump in the x-axis after 40%. As one can see, CDNs (blue) quickly approach the predictive performance of the
full dataset (Full, black). Uniform sampling (Uniform, red) does not perform as well as CDNs. Moreover, CDNs can be orders
of magnitude faster than DNs on the full dataset and scale similar to uniform sampling. This is also supported by the vertical
lines. They denote the mean performances (the more to the left, the better) on the top axes. (Best viewed in color)

Benchmarks on MNIST and Traffic Data (Q1): We
considered two datasets. We used the MNIST2 data set of
handwritten labeled digits. We employed the training set
consisting of 55000 images, each with 784 pixels, for a total
of 43,120,000 measurements, and trained Gaussian DNs on
it. The second dataset contains traffic count measurements
on selected roads around the city of Cologne in Germany
(Ide et al. 2015). It consists of 7994 time-stamped measure-
ments taken by 184 sensors for a total of 1,470,896 measure-
ments, and we trained Poisson DNs on it. For each dataset,
we performed ten fold cross-validation for training a full DN
(Full) using all the data, leverage score sampling coresets
(CDNs), and uniform samples (Uniform), for different sam-
ple sizes. We then compared the predictions made by all the
DNs and the time taken to train them. Although the traffic
dataset is easy to approximate by larger uniform sampling;
due to the regularities in daily traffic patterns (commuting
people cause peaks in the morning and evening, little traffic
at night, more traffic at daytime). The challenging task is to
be good at small sample sizes, where CPDNs are superior. It
can also be seen that CPDNs are better in predictive perfor-
mance (RMSE). For the predictions on the MNIST dataset,
we clipped the values to the range [0,1] for all the DNs. For
the Traffic dataset, we computed the predictions
x� of ev-
ery measurement x rounded to the largest integer less than
or equal to x.

Fig. 2 summarizes the results. As one can see, CDNs out-
perform DNs trained on full data and are orders of mag-
nitude faster. Compared to uniform sampling, coresets are
competitive. As seen on the traffic dataset, CDNs can have

2http://yann.lecun.com/exdb/mnist/

Sample MNIST Traffic

portion GCDN GUDN PCDN PUDN
10% 18.03% 11162.01% 6.81% 9.6%
20% 0.57% 13.86% 2.9% 3.17%
30% 0.01% 13.33% 2.04% 1.68%
40% 0.01% 2.3% 1.59% 0.99%

Table 1: (Q1) Comparison of the empirical relative error (the
lower, the better). Best results per dataset are bold. Both
Gaussian (GCDNs) and Poisson (PCDNs) CDNs recover the
model well, with a fraction of the training data. Uniformly
sampled DNs (UDNs) lag behind as the sample size drops.

more predictive power than the “optimal” model using the
full data. This is in line with Mahoney (2011), who ob-
served that coresets implicitly introduce regularization and
lead to more robust output. Table 1 summarizes the empiri-
cal relative errors |f(X, γ̃) − f(X, γ∗)|/f(X, γ∗) between
(C/U)DNs γ̃ and DNs γ∗ trained on all the data. CDNs
clearly recover the original model, at a fraction of training
data. Overall, this answers (Q1) affirmatively.

Relationship Elucidation (Q2): We investigated the per-
formance of CDNs when recovering the graph structure of
word interactions from a text corpus. For this purpose, we
used the NIPS3 bag-of-words dataset. It contains 1,500 doc-
uments with a vocabulary above 12k words. We considered
the 100 most frequent words. Fig. 3 illustrates the results
qualitatively. It shows three CDNs of sampling sizes 40%,
70% and 100% for Gaussians (top) after a log(x+ 1) trans-

3https://archive.ics.uci.edu/ml/datasets/bag+of+words

3825

road

stress

blockcontrollerattractor

lesion

iiii
tangent

direction

analog

evidence

control

disparity

rule

digit

set

callletter

context

routing

fuzzy

eeg

buildingstar

estimator

neural

option

component

potential

item

cell

policy

channel

wavelet

loss

pyramid

object
oscillator

document

circuit
chip

delay

dialogue

subscriber

instruction

map

spike

saliency

user

light

skill

rules

distance
pca
neuron

classifier

speaker

net

tree

rotation

road

stress

blockcontrollerattractor

lesion

iiii
tangent

direction

analog

evidence

control

disparity

rule

digit

set

callletter

context

routing

fuzzy

eeg

buildingstar

estimator

neural

option

component

potential

item

cell

policy

channel

wavelet

loss

pyramid

object
oscillator

document

circuit
chip

delay

dialogue

subscriber

instruction

map

spike

saliency

user

light

skill

rules

distance
pca
neuron

classifier

speaker

net

tree

rotation

road

stress

blockcontrollerattractor

lesion

iiii
tangent

direction

analog

evidence

control

disparity

rule

digit

set

callletter

context

routing

fuzzy

eeg

buildingstar

estimator

neural

option

component

potential

item

cell

policy

channel

wavelet

loss

pyramid

object
oscillator

document

circuit
chip

delay

dialogue

subscriber

instruction

map

spike

saliency

user

light

skill

rules

distance
pca
neuron

classifier

speaker

net

tree

rotation

road

stress

blockcontrollerattractor

lesion

iiii
tangent

direction

analog

evidence

control

disparity

rule

digit

set

callletter

context

routing

fuzzy

eeg

buildingstar

estimator

neural

option

component

potential

item

cell

policy

channel

wavelet

loss

pyramid

object
oscillator

document

circuit
chip

delay

dialogue

subscriber

instruction

map

spike

saliency

user

light

skill

rules

distance
pca
neuron

classifier

speaker

net

tree

rotation

road

stress

blockcontrollerattractor

lesion

iiii
tangent

direction

analog

evidence

control

disparity

rule

digit

set

callletter

context

routing

fuzzy

eeg

buildingstar

estimator

neural

option

component

potential

item

cell

policy

channel

wavelet

loss

pyramid

object
oscillator

document

circuit
chip

delay

dialogue

subscriber

instruction

map

spike

saliency

user

light

skill

rules

distance
pca
neuron

classifier

speaker

net

tree

rotation

road

stress

blockcontrollerattractor

lesion

iiii
tangent

direction

analog

evidence

control

disparity

rule

digit

set

callletter

context

routing

fuzzy

eeg

buildingstar

estimator

neural

option

component

potential

item

cell

policy

channel

wavelet

loss

pyramid

object
oscillator

document

circuit
chip

delay

dialogue

subscriber

instruction

map

spike

saliency

user

light

skill

rules

distance
pca
neuron

classifier

speaker

net

tree

rotation

Gaussian CDN

Poisson CDN

road

stress

blockcontrollerattractor

lesion

iiii
tangent

direction

analog

evidence

control

disparity

rule

digit

set

callletter

context

routing

fuzzy

eeg

buildingstar

estimator

neural

option

component

potential

item

cell

policy

channel

wavelet

loss

pyramid

object
oscillator

document

circuit
chip

delay

dialogue

subscriber

instruction

map

spike

saliency

user

light

skill

rules

distance
pca
neuron

classifier

speaker

net

tree

rotation

road

stress

blockcontrollerattractor

lesion

iiii
tangent

direction

analog

evidence

control

disparity

rule

digit

set

callletter

context

routing

fuzzy

eeg

buildingstar

estimator

neural

option

component

potential

item

cell

policy

channel

wavelet

loss

pyramid

object
oscillator

document

circuit
chip

delay

dialogue

subscriber

instruction

map

spike

saliency

user

light

skill

rules

distance
pca
neuron

classifier

speaker

net

tree

rotation

road

stress

blockcontrollerattractor

lesion

iiii
tangent

direction

analog

evidence

control

disparity

rule

digit

set

callletter

context

routing

fuzzy

eeg

buildingstar

estimator

neural

option

component

potential

item

cell

policy

channel

wavelet

loss

pyramid

object
oscillator

document

circuit
chip

delay

dialogue

subscriber

instruction

map

spike

saliency

user

light

skill

rules

distance
pca
neuron

classifier

speaker

net

tree

rotation

road

stress

blockcontrollerattractor

lesion

iiii
tangent

direction

analog

evidence

control

disparity

rule

digit

set

callletter

context

routing

fuzzy

eeg

buildingstar

estimator

neural

option

component

potential

item

cell

policy

channel

wavelet

loss

pyramid

object
oscillator

document

circuit
chip

delay

dialogue

subscriber

instruction

map

spike

saliency

user

light

skill

rules

distance
pca
neuron

classifier

speaker

net

tree

rotation

road

stress

blockcontrollerattractor

lesion

iiii
tangent

direction

analog

evidence

control

disparity

rule

digit

set

callletter

context

routing

fuzzy

eeg

buildingstar

estimator

neural

option

component

potential

item

cell

policy

channel

wavelet

loss

pyramid

object
oscillator

document

circuit
chip

delay

dialogue

subscriber

instruction

map

spike

saliency

user

light

skill

rules

distance
pca
neuron

classifier

speaker

net

tree

rotation

road

stress

blockcontrollerattractor

lesion

iiii
tangent

direction

analog

evidence

control

disparity

rule

digit

set

callletter

context

routing

fuzzy

eeg

buildingstar

estimator

neural

option

component

potential

item

cell

policy

channel

wavelet

loss

pyramid

object
oscillator

document

circuit
chip

delay

dialogue

subscriber

instruction

map

spike

saliency

user

light

skill

rules

distance
pca
neuron

classifier

speaker

net

tree

rotation

Figure 3: (Q2) Elucidating the relationships between random variables. Shown are the (positive) dependency structures of
Gaussian (top) and Poisson (bottom) CDNs on NIPS and different learning sampling sizes: using 40% (Left) , 70% (Middle)
and 100% (Right). The edges show the 70 top thresholded positive coefficients of the GLMs. The colors of the edges represent
modularity. As one can see, CDNs elucidate relationships among the words that make semantical sense and approach the
structure learned using the full dataset. For a quantitative assessment, see Tab. 2. (Best viewed in color)

formation and for Poissons (bottom): CDNs capture well the
gist of the NIPS corpus. Table 2 confirms this quantitatively.
It shows the Frobenius norms between the DNs: CDNs cap-
ture the gist better than naive, i.e., uniform sampling. This
answers (Q2) affirmatively.

To summarize our empirical results, the answers to ques-
tions (Q1) and (Q2) show the benefits of CDNs.

Conclusions

Inspired by the question of how we can train graphical mod-
els on massive datasets, we have studied coresets for estimat-
ing Dependency networks (DNs). We present the first rigor-
ous guarantees for obtaining compressed ε-approximations
of Gaussian DNs for large data sets. We proved worst-case
impossibility results on coresets for Poisson DNs. A review
of log-normal Poisson modeling of counts provided deep in-
sights into why our coreset construction still performs well
for count data in practice. Our experimental results demon-
strate the resulting Core Dependency Networks (CDNs) can
achieve significant gains over no or naive sub-sampling,
even in the case of count data, making it possible to learn
models on much larger datasets using the same hardware.

CDNs provide several interesting avenues for future work.
The conditional independence assumption opens the door to
explore hybrid multivariate models, where each variable can
potentially come from a different GLM family or link func-
tion, on massive data sets. This can further be used to hint
at independencies among variables in the multivariate set-
ting, making them useful in other large data applications.

Sample UDN CDN

portion Gaussian Poisson Gaussian Poisson
40% 9.0676 6.4042 3.9135 0.6497
70% 4.8487 1.6262 2.6327 0.3821

Table 2: (Q2) Frobenius norm of the difference of the ad-
jacency matrices (the lower, the better) recovered by DNs
trained on the full data and trained on a uniform subsam-
ple (UDN) resp. coresets (CDNs) of the training data. The
best results per statistical type (Gaussian/Poisson) are bold.
CDNs recover the structure better than UDNs.

Our results may pave the way to establish coresets for deep
models using the close connection between dependency net-
works and deep generative stochastic networks (Bengio et
al. 2014), sum-product networks (Poon and Domingos 2011;
Molina, Natarajan, and Kersting 2017), as well as other sta-
tistical models that build multivariate distributions from uni-
variate ones (Yang et al. 2015).

Acknowledgements: The authors would like to thank the
anonymous reviewers for their feedback and acknowledge
the support by the German Science Foundation (DFG) Col-
laborative Research Center SFB 876 Providing Information
by Resource-Constrained Analysis, projects B4 and C4. KK
acknowledges the support by the Centre for Cognitive Sci-
ence at the TU Darmstadt.

3826

References

Agarwal, P. K., and Sharathkumar, R. 2015. Streaming algo-
rithms for extent problems in high dimensions. Algorithmica
72(1):83–98.
Allen, G. I., and Liu, Z. 2013. A local poisson graphical
model for inferring networks from sequencing data. IEEE
Transactions on Nanobioscience 12(3):189–198.
Badoiu, M., and Clarkson, K. L. 2003. Smaller core-sets for
balls. In Proc. of SODA, 801–802.
Badoiu, M., and Clarkson, K. L. 2008. Optimal core-sets
for balls. Computational Geometry 40(1):14–22.
Badoiu, M.; Har-Peled, S.; and Indyk, P. 2002. Approximate
clustering via core-sets. In Proceedings of STOC, 250–257.
Bengio, Y.; Laufer, E.; Alain, G.; and Yosinski, J. 2014.
Deep generative stochastic networks trainable by backprop.
In Proc. of ICML, 226–234.
Besag, J. 1975. Statistical analysis of non-lattice data. Jour-
nal of the Royal Statistical Society, Series D 24(3):179–195.
Carlson, J. M.; Brumme, Z. L.; Rousseau, C. M.; Brumme,
C. J.; Matthews, P.; Kadie, C. M.; Mullins, J. I.; Walker,
B. D.; Harrigan, P. R.; Goulder, P. J. R.; and Heckerman,
D. 2008. Phylogenetic dependency networks: Inferring pat-
terns of CTL escape and codon covariation in HIV-1 gag.
PLoS Computational Biology 4(11).
Clarkson, K. L., and Woodruff, D. P. 2013. Low rank ap-
proximation and regression in input sparsity time. In Proc. of
STOC, 81–90.
Dasgupta, A.; Drineas, P.; Harb, B.; Kumar, R.; and Ma-
honey, M. W. 2009. Sampling algorithms and coresets for �p
regression. SIAM Journal on Computing 38(5):2060–2078.
Dobra, A. 2009. Variable selection and dependency net-
works for genomewide data. Biostatistics 10(4):621–639.
Drineas, P.; Mahoney, M. W.; and Muthukrishnan, S. 2006.
Sampling algorithms for �2 regression and applications. In
Proc. of SODA, 1127–1136.
Drineas, P.; Mahoney, M. W.; and Muthukrishnan, S. 2008.
Relative-error CUR matrix decompositions. SIAM Journal
on Matrix Analysis and Applications 30(2):844–881.
Feldman, D.; Faulkner, M.; and Krause, A. 2011. Scalable
training of mixture models via coresets. In Proc. of NIPS.
Feldman, D.; Munteanu, A.; and Sohler, C. 2014. Smallest
enclosing ball for probabilistic data. In Proc. of SOCG, 214–
223.
Feldman, D.; Schmidt, M.; and Sohler, C. 2013. Turning big
data into tiny data: Constant-size coresets for k-means, PCA
and projective clustering. In Proc. of SODA, 1434–1453.
Geppert, L. N.; Ickstadt, K.; Munteanu, A.; Quedenfeld, J.;
and Sohler, C. 2017. Random projections for Bayesian re-
gression. Statistics and Computing 27(1):79–101.
Hadiji, F.; Molina, A.; Natarajan, S.; and Kersting, K. 2015.
Poisson dependency networks: Gradient boosted models for
multivariate count data. MLJ 100(2-3):477–507.
Har-Peled, S.; Roth, D.; and Zimak, D. 2007. Maximum
margin coresets for active and noise tolerant learning. In
Proc. of IJCAI, 836–841.

Har-Peled, S. 2015. A simple algorithm for maximum mar-
gin classification, revisited. arXiv 1507.01563.
Heckerman, D.; Chickering, D.; Meek, C.; Rounthwaite, R.;
and Kadie, C. 2000. Dependency networks for density esti-
mation, collaborative filtering, and data visualization. Jour-
nal of Machine Learning Research 1:49–76.
Ide, C.; Hadiji, F.; Habel, L.; Molina, A.; Zaksek, T.;
Schreckenberg, M.; Kersting, K.; and Wietfeld, C. 2015.
LTE connectivity and vehicular traffic prediction based on
machine learning approaches. In Proc. of IEEE VTC Fall.
Jayram, T. S.; Kumar, R.; and Sivakumar, D. 2008. The
one-way communication complexity of Hamming distance.
Theory of Computing 4(1):129–135.
Langberg, M., and Schulman, L. J. 2010. Universal epsilon-
approximators for integrals. In Proc. of SODA.
Lucic, M.; Bachem, O.; and Krause, A. 2016. Strong core-
sets for hard and soft bregman clustering with applications
to exponential family mixtures. In Proc. of AISTATS, 1–9.
Ma, P.; Mahoney, M. W.; and Yu, B. 2015. A statistical
perspective on algorithmic leveraging. JMLR 16:861–911.
Mahoney, M. W. 2011. Randomized algorithms for matri-
ces and data. Foundations and Trends in Machine Learning
3(2):123–224.
McCullagh, P., and Nelder, J. 1989. Generalized Linear
Models. Chapman and Hall.
Molina, A.; Natarajan, S.; and Kersting, K. 2017. Pois-
son sum-product networks: A deep architecture for tractable
multivariate poisson distributions. In Proc. of AAAI.
Motwani, R., and Raghavan, P. 1995. Randomized Algo-
rithms. Cambridge Univ. Press.
Phatak, A.; Kiiveri, H. T.; Clemmensen, L. H.; and Wilson,
W. J. 2010. NetRaVE: constructing dependency networks
using sparse linear regression. Bioinformatics 26(12):1576–
1577.
Phillips, J. M. 2017. Coresets and sketches. In Handbook
of Discrete and Computational Geometry.
Poon, H., and Domingos, P. 2011. Sum-Product Networks:
A New Deep Architecture. Proc. of UAI.
Reddi, S. J.; Póczos, B.; and Smola, A. J. 2015. Communi-
cation efficient coresets for empirical loss minimization. In
Proc. of UAI, 752–761.
Rudelson, M., and Vershynin, R. 2007. Sampling from large
matrices: An approach through geometric functional analy-
sis. Journal of the ACM 54(4):21.
Tropp, J. A. 2011. Improved analysis of the subsampled ran-
domized hadamard transform. Advances in Adaptive Data
Analysis 3(1-2):115–126.
Winkelmann, R. 2008. Econometric Analysis of Count Data.
Springer, 5th edition.
Yang, E.; Ravikumar, P.; Allen, G. I.; and Liu, Z. 2015. On
graphical models via univariate exponential family distribu-
tions. JMLR 16:3813–3847.
Zhou, M.; Li, L.; Dunson, D. B.; and Carin, L. 2012. Log-
normal and gamma mixed negative binomial regression. In
Proceedings of ICML.

3827

