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Abstract

Brain activation can reflect semantic information elicited by
natural words and concepts. Increasing research has been con-
ducted on decoding such neural activation patterns using rep-
resentational semantic models. However, prior work decod-
ing semantic meaning from neurophysiological responses has
been largely limited to ECoG, fMRI, MEG, and EEG tech-
niques, each having its own advantages and limitations. More
recently, the functional near infrared spectroscopy (fNIRS)
has emerged as an alternative hemodynamic-based approach
and possesses a number of strengths. We investigate brain
decoding tasks under the help of fNIRS and empirically com-
pare fNIRS with fMRI. Primarily, we find that: 1) like fMRI
scans, activation patterns recorded from fNIRS encode rich
information for discriminating concepts, but show limits on
the possibility of decoding fine-grained semantic clues; 2)
fNIRS decoding shows robustness across different brain re-
gions, semantic categories and even subjects; 3) fNIRS has
higher accuracy being decoded based on multi-channel pat-
terns as compared to single-channel ones, which is in line
with our intuition of the working mechanism of human brain.
Our findings prove that fNIRS has the potential to promote a
deep integration of NLP and cognitive neuroscience from the
perspective of language understanding. We release the largest
fNIRS dataset by far to facilitate future research.

Introduction

The increasing development and use of neuroimaging tech-
niques represent a significant advance in the field of brain
decoding, in which computational scientists interpret implicit
brain activities based on explicit linguistic representations
and deep-learning algorithms (Mitchell et al. 2008; Wehbe
et al. 2014b; Hale et al. 2018; Gauthier and Levy 2019; Cao
and Zhang 2019). The main research task is to establish a
mapping between the concepts and neural activation patterns
through neuroimaging experiments. As shown in the Equa-
tion 1, given brain images which imply mental content for
words or text snippets, the task of brain decoding is to predict
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Figure 1: Schematic representation of fNIRS-based brain
decoding: (a) emitter and detector probes are positioned over
the scalp surface; (b) stimuli are presented to participants; (c)
participants’ neural activation are recorded by fNIRS; (d) a
decoder is trained to take brain images as input and output
the corresponding text semantic vectors.

the stimulus word evoking such a neural pattern,

v = f(i), (D

where ¢, v is the brain activation image and the stimulus word,
respectively. The target is to learn the mapping function f(-),
which in most cases is a linear model (Mitchell et al. 2008).

Brain decoding is a significant fundamental research topic
both for cognitive science and artificial intelligence. For neu-
roimaging research, brain decoding methods are appreciated
tools for localizing and distinguishing intricate brain response
patterns and making predictions about undetectable neural
states (Shinkareva et al. 2008; Just et al. 2010). And for artifi-
cial intelligence research, in particular the domain of natural
language processing (NLP), the appealing properties of brain
decoding technology are increasingly being used to explore
to what extent the intelligent language understanding behav-
iors captured by those artificial models are consistent with
human reading physiology (Gauthier and Levy 2019; Abnar
et al. 2019). The underlying theory is that the brain neural
basis and the corpus distributional properties of the same
word are highly correlated (Mitchell et al. 2008).

However, as an important prerequisite of brain decoding,
the measurement of brain activation remains a challenge
due to limitations on neuroimaging technology. Existing
methods include electrocorticography (ECoG) (Kuruvilla
and Flink 2003), electroencephalogram (EEG) (Murphy, Ba-
roni, and Poesio 2009), functional magnetic resonance imag-



ing (fMRI) (Pereira, Just, and Mitchell 2001; Wehbe et al.
2014a; Gauthier and Levy 2019), and magnetoencephalog-
raphy (MEG) (Wehbe et al. 2014b; Fyshe et al. 2014), each
having its own relative advantages and weaknesses. One com-
paratively less studied tool is the functional near-infrared
spectroscopy, shortly fNIRS, which can interpret the brain
through cerebral hemodynamic responses associated with
neuron behaviors. In practice, as shown in Figure 1a, fNIRS
recording requires participants to wear a cap over the scalp
surface, which embeds with emitters and detectors of near-
infrared light. The emitters emit light, and the detectors re-
ceive light that passes through the tissue. A detector-emitter
pair forms a channel, within which hemodynamic responses
can be recorded and active cortex regions can be detected
based on the absorption and scattering of near-infrared light
by hemoglobin. At the end, the detected emerging fNIRS
signal comes mainly from oxygenated hemoglobin and de-
oxygenated hemoglobin located in small vessels. Therefore,
compared with other neuroimaging tools, fNIRS shows ad-
vantages of noninvasiveness, high temporal resolution, low
experimental cost, full compatibility, multiple biomarkers
and high tolerance for motion (Ferrari and Quaresima 2012).

Zinszer et al. (2017)0 make the first attempt to link fNIRS
signals to representations of concrete words. The dataset and
channel configuration they exploit are relatively small and
limited, leaving questions open to comprehensively detect the
decodability of fNIRS patterns. We try to better understand
fNIRS-based brain language processing and draw more con-
clusions on the property of fNIRS. To this end, we conduct
one pilot study and one large-scale decoding experiment us-
ing fNIRS technology. In the pilot study, we conduct a small
scale preliminary test using materials from Zinszer et al.
(2017), aiming to evaluate the feasibility, duration, channel
configuration, electrode setting, interested brain region and
decoding strategy of fNIRS operation. Then, we conduct
a full-scale decoding experiment with hyperparameters de-
cided by the pilot study, and verify whether fNIRS has the
potential to promote a deep integration of NLP and cognitive
neuroscience from the perspective of language understanding.
Beyond findings of Zinszer et al. (2017), we find that:

1. fNIRS indeed encodes rich linguistic information into
hemodynamic neurological signals, but shows limitations

on the possibility of decoding fine-grained semantic clues.

. INIRS decoding has weaker accuracy compared with fMRI
due to its limited penetration depth, but shows robustness
across different brain regions, semantic categories and even
subjects. This provides a basis for establishing a unified
model across subjects and diverse semantic spaces.

. fNIRS has higher accuracy decoded on multi-channel pat-
terns as compared to single-channel ones, in line with our
intuition of the working mechanism of the human brain.

In addition, to complement the extensive fMRI, MEG and
EEG datasets published for brain decoding tasks (Wehbe et al.
2014a,b; Pereira, Just, and Mitchell 2001; Sudre et al. 2012;
Pereira et al. 2018; Murphy, Baroni, and Poesio 2009), we
release the largest fNIRS dataset by far for future research,
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which covers 50 objects from 10 semantic categories

Related Work

The past decade has witnessed considerable progress in
the field of brain decoding regarding language process-
ing. Mitchell et al. (2008) used distributed word represen-
tation to decode neural activation associated with concrete
nouns. Subsequent studies extended the research from simple
word stimulus (Palatucci et al. 2009; Just et al. 2010; Murphy,
Talukdar, and Mitchell 2012) to successive phrases (Wehbe
et al. 2014a,b; Huth et al. 2016) and even sentences (Matsuo
et al. 2016; Pereira et al. 2018; Sun et al. 2019), based on
fMRI and MEG neuroimaging. Murphy, Baroni, and Poesio
(2009) demonstrated that corpus-based semantic representa-
tions can predict neural activation recorded by EEG. Research
based on EEG has further received much interests (Murphy
and Poesio 2010; Murphy et al. 2011; Hale et al. 2018).

Compared with various brain decoding studies based on
fMRI, MEG and EEG neural patterns, little attention has
been paid to fNIRS decoding. As mentioned earlier, Zinszer
et al. (2017) conducted the first study to explore fNIRS on
language processing problems. In their studies, subjects pas-
sively viewed 8 stimuli (bunny, bear, kitty, dog, mouth, foot,
hand, nose) and their blood oxygen levels were measured by
fNIRS. The main conclusion was that fNIRS signals encoded
information suitable for neural decoding via extrinsic repre-
sentation models. However, their experiments were limited in
using a small dataset and relatively constrained probe settings,
leaving it an open question whether fNIRS can generalize to
broader concepts and show robust performance.

In line with Zinszer et al. (2017), we also explore the de-
codability of fNIRS. Our contribution is four fold: First, we
adopt more extensive experiment settings, which include 50
concepts covering 10 semantic categories and 46 channels
covering 3 brain regions. In contrast, Zinszer et al. (2017)
adopted 8 concepts covering 2 categories and 42 channels
covering 2 brain regions. Second, we explore single and multi-
channel decoding strategies respectively, and find that fNIRS
signal is more stable and accurate under the multi-channel
setting. In contrast, Zinszer et al. (2017) did not make a com-
parison in this aspect. Third, we compare the performance
of {NIRS with fMRI under the same conditions, finding that
fNIRS has generally weaker accuracy due to its limits in
penetration depth, but shows robustness when being decoded
across different brain regions, semantic categories and even
subjects. Last, we also investigate the time window in which
the signal points have the best decodability and the time
extension for an acceptable experiment setting. To our knowl-
edge, we are the first to explore these properties of fNIRS
associated with language processing under the interdiscipline
of natural language processing and neuroscience.

Task Specification

Decoding Model We learn linear regression models that
map oxygenated hemoglobin (HbO) recorded by fNIRS into
representations of words produced by natural language un-
derstanding (NLU) models. For HbO, when a brain area is

"https://github.com/caolusg/decoding_fnirs



involved in execution of a certain task, its metabolic demand
for oxygen and glucose changes, leading to an increase in
HbO concentrations. This is called hemodynamic response
and can be measured through fNIRS at multiple locations
of cerebral cortex. For NLU models, Pereira et al. (2018)
carried out a comparison of all types of semantic vectors avail-
able at that time with regard to how well they can predict hu-
man judgments on behavioral tasks. The word2vec (Mikolov
et al. 2013) and GloVe embedding (Pennington, Socher, and
Manning 2014) were superior to others. We adopt the GloVe
embedding for its widespread application (Jat et al. 2019; Cao
et al. 2020) and homogeneity of value ranges in different di-
mensions and vocabulary size. New semantic representations
still have been put forward but we believe that improvements
in brain decoding have been marginal at best. For GloVe,
specifically, let H; € RV*P represent the D—dimentional
HbO in response to the j** stimulus, and V' represents the
GloVe word vector. For each subject and his/her stimuli-
triggered HbO variation, we use the ridge regression to learn
a linear map w : H; — V by minimizing the function:

J = |lwH; = V|3 + al|w]]?, ()

where « is a regularization hyperparameter. Note that HbO
is not used as input for the regression models. Given an ar-
bitrary stimulus word j, we first collect its brain activity
data H, which is HbO concentration transferred from near-
infrared light wavelength. Then we encode the meaning of j
via GloVe, obtaining a word vector V. Lastly, we use ridge
regression to learn a linear map from H to V. GloVe embed-
ding produces a dimensional vector representation of each
word. While these representations are unique to model, we
apply representational similarity methods to abstract GloVe
and fNIRS data from respective sources into a shared similar-
ity space. The linear regression model is trained and tested
by leave-two-out and leave-one-out cross validation. In the
leave-two-out approach, the model is trained repeatedly us-
ing C'(§?) stimuli and tested using the two stimuli left out.
In the leave-one-out approach, the model is trained using
C(N™1) stimuli and tested using the one left out. The proce-
dure repeats until all stimuli have been trained and tested.
We explore two decoding strategies, namely single-
channel decoding (SCD) and multi-channel decoding (MCD).
The former decodes each channel separately and gives a re-
sult on average. The latter considers signals from multiple
channels as a whole at once. For neuroimaging studies, con-
ventional analyses treat each voxel independently to localize
brain regions activated by a specific condition (Friston et al.
1994). While the popular multivariate statistical analyses use
multiple voxels simultaneously in a multivariate fashion. The
single/multivariate statistical method is a standard setting in
the literature (Mitchell et al. 2008; Mahmoudi et al. 2012).

Baseline The implicit assumption for the model is that it
would perform at chance level. For the necessity to show that
the mapping from brain activity to word vector is robust, re-
porting chance performance is not enough, thus we adopt the
random scrambled pairs (RSP) as one of our baselines. The
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Category | Exemplar
animal bunny, bear, kitty, dog
body-part | mouth, foot, hand, nose

Table 1: Exemplars used in the pilot study.

stimuli and corresponding fNIRS signals are randomly shuf-
fled in this setting. The comparison of model performance
with RSP baseline is to determine that the mapping is reliable
and not a result of noise.

Additionally, we also include a fMRI concept decoding
task (Mitchell et al. 2008) for comparison. Although fNIRS
has high time resolution like EEG does, we do not take EEG
into comparison because the working scheme of fNIRS is
quite different from that of EEG. EEG obtains neuronal activ-
ity through bioelectrical activities, while fNIRS (and fMRI)
from hemodynamic aspects. fNIRS measures similar phys-
iological signal to fMRI as both of them obtain neuronal
activity by measuring changes in blood oxygen. The differ-
ence is that fMRI is measured by magnetism which covers the
whole brain, while fNIRS is measured by lights and covers
only the brain surface. Several studies have been conducted to
validate and compare the metabolic correlates of neural activ-
ity as measured by fNIRS (i.e., increase in HbO and decrease
in HbR) with the gold standard measured by fMRI (i.e., the
blood oxygenation level-dependent response). Positive re-
sults have been established that the hemodynamic responses
as measured by fNIRS and fMRI are spatially and temporally
correlated (Strangman et al. 2002). Thus it is of interest to in-
vestigate the difference of the brain decoding ability between
fNIRS and fMRI in the setting of brain decoding.

Evaluation Metric The decoding performance of the
leave-two-out approach is evaluated by the matching score
(MS) metric, and the leave-one-out approach is evaluated by
the mean squared error (MSE) metric.

Matching score was first used in the brain decoding studies
by Mitchell et al. (2008). Given a trained model, two test
stimuli (w1, w2) and ground truth word vectors (v, v2), the
model predicts the word vector p; for wy and po for ws. It
then decides which one is a better match: (p; = vy, pa = v3)
or (p1 = ve, p2 = v1). The matching score is assigned as:

MS(p1 = v1,p2 = v2) = cosine(py,v1)

+ cosine(pz, v2).

3)

Similarity between the predicted and ground-truth vectors is
measured by the cosine function, and the decoding accuracy
for each subject is the fraction of correct pairs.

Mean squared error is also commonly used (Gauthier and
Levy 2019), which measures average squares of errors be-
tween the predicted and ground-truth word vectors.

The two evaluation metrics serve complementary roles: the
MS metric simply requires that fNIRS signals are semanti-
cally distinguishable, while the MSE metric strictly evaluates
the ability of fNIRS signals to match the representational
geometry of model activation. We use these two metrics to
fully understand the decoding performance of fNIRS signals.



Pilot Study

We first conduct a pilot study to evaluate the feasibility and
adjust experimental settings and hyperparameters. This study
is conducted preliminarily before large-scale experiments due
to expenses and difficulty in managing human experiments.
Figure 1 depicts the high-level design of the process: a se-
quence of concepts is presented to subjects, and their cortical
activity is recorded during the processing of each instant. We
then decode fNIRS signals into semantic representations.

Participant Four right-handed undergraduates (two males
and two females, mean age 22) participate in the task. > The
tendency to include only right-handed people in neuroimag-
ing research stems from the finding that certain processes are
different in the brains of adextrals. While the left hemisphere
dominates language processing in almost all right-handed
people, in about 30% of adextrals this processing occurs
predominantly in the right or both hemisphere. Handedness
also influences how the brain represents sensation and move-
ment of hands. Neuropsychologists have therefore avoided
recruiting adextrals for fear of affecting data.

Procedure Following the settings of Zinszer et al. (2017),
the stimuli are pictures and audios of 8 common objects from
2 semantic categories (Table 1). Each stimulus is presented
12 times, with a random permutation of item sequence in
each presentation. Visual presentation lasts for 3 seconds,
with audio presented immediately at the onset, followed by
a 10-second rest period. During rest period, participants are
instructed to fixate on an X displayed in the center of the
screen (Figure 1b). The task for participants is to passively
view and listen, simply focusing on each stimulus and think-
ing about properties of the object freely when it is presented.
Participants’ blood oxygen levels are measured by the NIRx
NIRScout fNIRS system throughout the exposure. Note that
the paradigm of viewing and listening simultaneously is effec-
tively used in language-processing-related neural encoding
and decoding tasks (Huth et al. 2016; Jat et al. 2019), thus
there is no doubt that the results can reflect semantic process-
ing rather than low-level sensory differences.

fNIRS Measurement and Preprocessing

The probes are arranged in three arrays: 26 channels in poste-
rior, approximately covering the occipital lobe; 10 channels
in left temporal lobe; and 10 channels in right temporal lobe.
Detailed arrangement of probes and channels is demonstrated
in Figure 2a. The posterior array is centered on the back of
the head, with the most inferior row of channels just over the
inion, and the two lateral arrays are positioned directly above
the ears. Compared with Zinszer et al. (2017) who arrange
probes in two arrays on the left and posterior of the head
only, we adopt three arrays and take the right brain regions
into account, aiming to achieve a more elaborate channel
configuration. By this setting, we try to verify whether the
cerebral hemodynamic responses from fNIRS varies across

YInformed consent procedures and experimental methods are
approved by the institutional review board in advance.
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recording regions, and if so, which decoding region is the
most responsible for language and semantic processing.
Brain activity data collected by NIRScout are detector
readings for near-infrared light wavelength, with sampling
rate being set as 3.9 Hz. Preprocessing of fNIRS data is per-
formed using nirsLab (Xu, Graber, and Barbour 2014). We
first remove discontinuities and spike artifacts, then bandpass
filter the data (high pass: 0.01 Hz, low pass: 0.1 Hz), follow-
ing the common way in this field (Zinszer et al. 2017; Pereira
et al. 2018; Blankertz, Curio, and Miiller 2002). Finally, we
convert the wavelength data to oxygenated and deoxygenated
hemoglobin concentration according to the modified Beer-
Lambert law (Kocsis, Herman, and Eke 2006). We use the
resulting HbO concentration data for subsequent analysis.

Results and Analysis

We determine: (a). Which part of the brain area is the most
informative for language-related neural decoding? (b). What
time period after hemodynamic response has the most abun-
dant information? (c). Will word embedding parameters in-
fluence the decoding performance? (d). What is a better de-
coding strategy? We discuss the results of the pilot study
from the perspective of decoding strategy, word embedding
dimension, decoding time window, channel configuration and
interested brain region, respectively, with the aim to deter-
mine the feasibility of the following large-scale experiment.

Decoding Strategy Conventional analysis for neuroimag-
ing treats each voxel independently of any other to localize
brain regions activated by a specific condition (Friston et al.
1994). The recently popular approach, termed multi-voxel
pattern analysis (MVPA), on the other hand, utilizes mul-
tiple voxels simultaneously in a multivariate fashion, and
is commonly exploited in fMRI decoding (Mitchell et al.
2008; Mahmoudi et al. 2012). The fact is that one fMRI
voxel covers 3 x 3 x 3mm?, while one fNIRS channel covers
2.5cm — 3cem distance, larger than area covered by a single
fMRI voxel. Thus, we are interested in verifying whether
signals from such a distance are sufficient for encoding brain
information. We compare the performance of single-channel
decoding (SCD) and multi-channel decoding (MCD). Our
null hypothesis is that SCD or MCD does not differ from a
randomly scrambled pair baseline. We set the significance
level to 0.05, where the test statistic is the difference between
SCD, MCD and the RSP baseline. The results are validated
by permutation test, with statistic distribution created by per-
mutating test statistic 1000 times.

As presented in Table 2, the SCD performance is not sig-
nificantly better than RSP under both metrics (MS: p > 0.16,
MSE: p > 0.92), while the MCD is significantly better than
RSP under the MS metric (p < 0.03). This demonstrates
that for fNIRS, multi-channel decoding is a better choice
compared to the single-channel scheme, which is in accor-
dance with fMRI studies (We further verify this point on the
large-scale experiment with more data, and the results are
consistent and significant under both MS and MSE metrics.
We list the results in Table 8). Thus the subsequent analysis
is mainly based on multi-channel decoding.
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(a) Pilot study.

(b) Full-scale experiment.

Figure 2: Probe and channel arrangement for two experiments. Red circles, blue circles, green lines indicate lasers, detectors and
channels, respectively. The goal for the pilot study is to cover a broad brain area to determine which part is the most informative
for language-related neural decoding. Thus we focus on the number of brain regions covered rather than the number of channels
in each area. In order to cover more areas, there will naturally be fewer probes arranged in each area. The goal for the full-scale
study is to focus on one area and explore the potentiality of fNIRS patterns as much as possible in the decoding. With permission
of experimental equipment, we arrange more probes in the left hemisphere than the pilot study.

Subjects | 1 2 3 4

RSP 0.50 0.49 0.51 0.50
SCD 0.55 0.46 0.56 0.55
MCD 0.57 0.50 0.71 0.71

(a) Matching score.

Subjects | 1 2 3 4

RSP 0.2517 0.2632 0.2621 0.2524
SCD 0.2469 0.3103 0.2549 0.2479
MCD 0.2927 0.2652 0.2532 0.2395

(b) Mean square error.

Table 2: The results of SCD and MCD in the pilot study, compared with the RSP baseline.

Word Embedding Dimension As shown in Figure 3a, we
test the influence of word embedding dimension size on the
decoding performance, with GloVE embedding sizes of 50,
100, 200 and 300. A relatively stable matching score is ob-
served in the figure, with lower dimensional GloVe word
embeddings achieving slightly better decoding performance
for fNIRS patterns. This phenomenon may suggest that lim-
itations exist on the possibility of decoding fine-grained se-
mantic information encoded in high-dimensional embeddings
from fNIRS human neuroimaging, which is also observed un-
der fMRI operation (Gauthier and Levy 2019). Hence, we fix
the dimension of word vector as 50 in the following analysis.

Decoding Time Window When the word vector is set to
50 dimensions, we test model performance under various
decoding time window sizes. It has been reported that the
hemodynamic response peaks 6 seconds after the neurons’
immediate activation in a region (Kohl et al. 2000; Devor et al.
2008). Thus we decode the signals from various time win-
dows to determine the time point of the most informative sig-
nal after the 6th second. A noticeable trend is demonstrated
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in Figure 3b: decoding signals between 6.5s to 7.5s result
in the best matching score, and the performance decreases
as further time elapses. This is in line with our intuition that
the intensity of physiological signals gradually weakens after
stimuli. Hence, we fix the decoding time window as 6.5-7.5
seconds in the following experiments.

Brain Region Previous studies have shown that decoding
fMRI data in different brain regions yields significant vari-
ations (Mitchell et al. 2008; Pereira et al. 2018). We test
whether fNIRS patterns are very different across recording
sessions and which part is the most informative for neural
decoding. We comprehensively collect fNIRS data from the
left, right and occipital side of the brain, with a null hypothe-
sis that its decoding performance does not differ among brain
regions. We set the significance level as 0.05, and test the
significance by permutation test. As illustrated in Table 3,
the p-values under both metrics are all above the significance
level, not rejecting the null hypothesis. Thus this suggests
that in contrast to fMRI, the fNIRS performances in different
regions are not significantly different.
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Figure 3: The influence of word embedding dimension and time window selection on decoding performance, evaluated by
matching score on validation test. Shaded regions represent 95% confidence intervals, pooling across all subjects.

LR’ L-0° RO’
Matching score | 0.12 0.21 0.68
MSE 0.14 0.89 0.26

Uleft vs. right temporal lobe 2 left vs. occipital lobe

3 right vs. occipital lobe

Table 3: The p-values of decoding performance cross brain
regions. The test statistic is the decoding difference between
each two brain regions. The test statistic distribution is cre-
ated by randomly permutating 1000 times.

Category Exemplar

tool pliers, saw, screwdriver, scissor, hammer

vegetable celery, corn, carrot, tomato, lettuce

building bird’s nest, tiananmen, oriental pearl TV
tower, pyramid, water cube

insect bee, butterfly, dragonfly, ant, fly

transportation | car, train, truck, airplane, bicycle

furniture sofa, chair, desk, bed, bookshelf

cloth sweater, jeans, shirt, skirt, dress

animal panda, cat, dog, horse, cow

body-part arm, eye, foot, palm, leg

kitchen knife, pan, spoon, glass, chopsticks

Table 4: Exemplars used in the full-scale experiment. Though
some test words are compounds in form, what they express
is a unified concept and we examine brain activity associated
with the meanings of concepts.

Full-scale Experiment

We conduct a large-scale experiment based on hyperparame-
ters selected from the pilot study. The schematic procedure
is the same as the pilot study.

Participant Seven additional right-handed undergraduates
(four males and three females, mean age 22) participate in
this task. The number of participants in our study is compara-
ble with existing research (Pereira, Just, and Mitchell 2001;
Mitchell et al. 2008; Cox and Savoy 2003).
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Subjects 1 2 3 4 5 6 7

0.58 0.57 0.55 0.58 0.61 0.49 0.48
0.55 0.48 0.57 0.51 0.50 0.50 0.45
0.57 0.47 0.52 0.55 0.55 0.49 0.48

Between-category
Within-category
Leave-one-category

Table 5: Matching score of cross-category decoding.

#subjects | 1 2 3 4 5 6

MSE 0393 0374 0372 0372 0372 0.372

Table 6: Mean squared error of cross-subject decoding.

Procedure To extend the pilot study, we adopt 50
frequently-used concepts from 10 broader semantic cate-
gories, with 5 exemplars per category (Table 4). Each stim-
ulus is presented 7 times randomly, which is comparable to
the fMRI literature on this topic (Mitchell et al. 2008). To
avoid fatigue, we divide the experiment into two sessions,
each presenting 25 words. There is a ten-minute break be-
tween two sessions. Other settings follow the same protocols
as the pilot study strictly. The amount of data we adopted
is comparable to previous literature using fMRI and EEG.
For example, Mitchell et al. (2008) used 60 concrete nouns
to decode fMRI activation associated with the meaning of
nouns; Jat et al. (2019) used 32 sentences to understand sim-
ple sentence processing in deep neural networks and the brain.
This reflects cost and difficulty in obtaining human data.

fNIRS Measurement and Preprocessing

As shown in Figure 2b, fNIRS probes are arranged to cover
the left temporal, parietal and prefrontal lobes, with a total
of 22 channels. As the performance across regions is not
significantly different under fNIRS recording, we decrease
fNIRS probes from 46 channels in the pilot study to 22 chan-
nels and mainly focus on the left hemisphere. The left brain
has two cortical areas known to be involved in language pro-
cessing, namely the Left Inferior Frontal Gyrus (LIFG), also
known as Broca’s area (Dronkers et al. 2007), and the Left
Superior Temporal Gyrus (LSTG) / Left Posterior Middle
and Superior Temporal Gyrus (LMTG), also known as Wer-
nicke’s area (Bogen and Bogen 1976). The left hemisphere



henceforth becomes the main region of interest in our study.

The sampling rate is set as 7.8 Hz in this task. The sam-
pling rate of fNIRS depends on the number of emitters and
detectors of near-infrared light. Since the emitters emit in-
frared light in turn, the sampling rate becomes higher with
less detector-emitter pairs. Compared to the pilot study, this
task has less detector-emitter pairs and thus a higher sampling
rate. The collection and preprocessing of fNIRS data are all
conducted according to the same guidelines as the pilot study.

Results and Analysis

Across Semantic Category Distinguishing within-
category differences (e.g., skirt, dress) is more challenging
than between-category differences (e.g., skirt, celery).
Mitchell et al. (2008) demonstrated that predicting words
from the same category yields lower accuracy than from
different categories by fMRI. It is also interesting to
determine the category distinguishing ability of fNIRS
signals. Besides, we are also interested in predicting words
from a new category by excluding all words in the same
category from the training set (e.g., for the test words ant
and scissor, we exclude all insects and tools from the
training set). Our null hypothesis is that the performance of
within-category and leave-one-category decoding will differ
from the between-category decoding for fNIRS, like what
has been observed from fMRI scans (Mitchell et al. 2008).
The results are shown in Table 5. We set the signifi-
cance level of 0.05. The test statistic distribution is cre-
ated by permutating test statistic 1000 times. The matching
score of within-category (p > 0.09) and leave-one-category
(p > 0.21) decoding is not significantly inferior to that of
between-category decoding. We conclude that fNIRS demon-
strates robust differentiation power, and the decoded concept
is still distinguishable even under the leave-out condition.
Palatucci et al. (2009) demonstrated that it can predict words
that people were thinking about from fMRI of their neural ac-
tivity, even without training examples for those words. Our re-
sults suggest that fNIRS also has the potential to be expanded
into diverse semantic spaces. While most subject show results
significantly above the random baseline (p < 0.05), we find
that subjects 6 and 7 give low results. Possible reason can be
poor optical contact and light obstruction by their dense hair.

Across Subjects Following most previous work on
fMRI (Mitchell et al. 2004; Pereira et al. 2018), our models
analyzed above are trained and tested separately for each
subject. However, training subject-specific models is not fea-
sible for real life applications since users do not participate
in product-turing work. Thus we further investigate whether
fNIRS signals preserve commonalities among different sub-
jects. We divide subjects into training and testing groups,
conducting training with 1 subject and testing with the re-
maining 6 subjects in turn, and averaging the 6 performances
as the overall performance in this iteration. Then, we train
with 2 subjects and test with the remaining 5 subjects in turn.
The experiments are repeated until the last group is trained
with 6 subjects and tested with the remaining one.

We iterate all possible combinations and demonstrate the
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Figure 4: MSE of cross-subjects decoding.

results in Table 6. In contrast to fMRI scans which are very
different across subjects (Mitchell et al. 2008), we find that
for fNIRS, the performance is stronger with more training
subjects as MSE decreased, indicating that the model has
learned more commonalities among subjects. This provides
a basis for establishing a unified model across subjects.

Stimuli Influence The cross-subject robustness of fNIRS
can be exploited in different applications. Theoretically, we
can build a large dictionary for the human brain by means of
fNIRS. The keys are brain activity images, and the values are
corresponding concepts evoking such a neural pattern (Pol-
drack 2018). However, this is not easy in practice. One of
critical factors of brain decoding is that, as the experiment
stimuli expends, the experiment time becomes longer, thus
subjects may distract more or less and infect the signal quality.
And individual differences can also affect. We study whether
fNIRS decoding will be affected as the concepts increase
and experiment length increases. We compare the decoding
performance of the pilot study, which consists of 8 concepts
and lasts for 25 minutes, and the full-scale experiment, which
consists of 50 concepts and lasts for 50 minutes. The results
are presented in Table 7. Significance test is performed by
the permutation test with the same setting mentioned above.
Our results show that with the extension of experiment time
and the increase of concepts, the decoding performance does
not decrease significantly (p > 0.12). This means that it is
acceptable to increase the number of stimuli to a certain de-
gree, and it is an interesting question to record more concepts
and cover more semantic categories in future study.

fMRI vs. fNIRS

fMRI has become a de-facto standard for in vivo imaging of
the human brain in recent years. Compared to fMRI, fNIRS
has its own advantages and limitations. fNIRS is critical for
extending cognitive neuroscience beyond MRI scanners and
enabling research with partici-pants who are not well-suited
for fMRI studies (e.g., children, clinical populations). The
optical nature of fNIRS stands out for its low cost, portability
and robustness to motion noise, bringing functional imag-
ing into a more realistic environment. It also has a higher
temporal resolution than fMRI, allowing measurements of
concentration changes in both oxygenated and deoxygenated
hemoglobin. But fNIRS is limited by its inferior spatial res-
olution. It is therefore of interest how fNIRS compares to
fMRI in studies of brain decoding. We adopt a fMRI decod-



Pilot Study

Full-scale Experiment

Subjects 1 2 3 4 1 2 3 4 5 6 7
Matching Score | 0.57 0.50 0.71 0.71 0.58 0.56 0.55 0.58 0.60 0.49 0.47
Table 7: Stimuli Influence.

Matching Score MSE
Subjects | 1 2 3 4 5 6 7 1 2 3 4 5 6 7
RSP 050 052 049 049 049 0.51 0.49 0.3830 0.3821 0.3839 0.3809 0.3812 0.3851 0.3804
SCD 049 046 050 051 0.49 0.51 0.47 0.3803 0.3804 0.3805 0.3802 0.3887 0.4121 0.3805
MCD 0.58 0.56  0.55 058 060 049 047 0.3803 0.3809 0.3806 0.3801 0.3800 0.3805 0.3803

Table 8: The results of SCD and MCD in the full-scale experiment, compared with the RSP baseline. We find that the SCD does
not reject the null hypothesis (Matching Score: p > 0.32, MSE: p > 0.62), while the MCD rejects the null hypothesis under
both matching score and MSE metrics (Matching Score: p < 0.03, MSE: p < 0.003).

Categories | Exemplar

animal bear, cat, dog, horse, cow

vegetable lettuce, carrot, corn, tomato, celery
body part eye, arm, foot, leg, hand

man-made | telephone, key, bell, watch, refrigerator
building igloo, barn, house, apartment, church
kitchen spoon, bottle, cup, knife, glass

vehicle truck, car, train, bicycle, airplane
clothing dress, skirt, coat, pants, shirt

furniture chair, dresser, desk, bed, table

build part | door, chimney, closet, arch, window
insect fly, bee, butterfly, ant, beetle

tool hammer, chisel, screwdriver, saw, pliers

Table 9: Exemplars used in the Mitchell et al. (2008).

between-category
0.58
0.85

within-category
0.52
0.59

leave-one-category
0.53
0.77

fNIRS
fMRI

Table 10: Mean matching score of cross-category decoding.
fNIRS exIcudes the subject 6 and 7 due to poor signal quality.
The results of fMRI are better than those reported in the
original paper (0.77, 0.62, 0.70) in between-category and
leave-one-category conditions. One possible reason is that
GloVe is better than frequency based semantic model.

ing dataset from Mitchell et al. (2008) to compare the fNIRS
to fMRI decoding. Their task is to decode 60 concrete nouns
(Table 9) based on fMRI activation. During the fMRI data
collection, 60 words are presented to 9 subjects with each
stimulus exhibited 6 times randomly. The stimuli setting, ex-
periment procedure and subject size are all comparable to
our study, which laid a foundation for comparability of two
datasets. Therefore, we decode the fMRI scans in the same
way as we decode fNIRS, and make comparison from the
perspective of cross category and cross subject, respectively.

The performance of cross-category decoding is summa-
rized in Table 10. The evaluation metric is the matching score.
The results show that generally fMRI decoding has a higher
accuracy than fNIRS decoding, in terms of between-category,
leave-one-category and within-category aspects. One likely
reason is that fMRI scan covers the whole-brain (lateral sur-
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face and depth) and can be 50, 000 to 200, 000 dimensions,
whereas fNIRS is limited to brain surface and is usually less
than 10, 000 dimensions. This shows fNIRS’s limits in pene-
tration depth. However, the results also show that fNIRS has
a robust decodibility across categories, since the matching
score under three conditions does not vary significantly. In
contrast, for fMRI signals, the accuracy drops dramatically
from between category decoding to leave-one category decod-
ing, and declines more sharply for within category decoding.

The performance of cross-subject decoding is summarized
in Figure 4. The evaluation metric is the mean square error.
As discussed in the earlier section, fNIRS signal can pre-
serve commonalities among different subjects. In contrast,
the mean square error of fMRI increases when more sub-
jects are involved. We conclude that fMRI has higher subject-
specific and category-specific recording accuracy than fNIRS,
and fNIRS has higher robustness across different conditions.
This may offer new possibilities for a combination of fMRI
and fNIRS technologies. The two methods can complement
each other and allow for more complex research paradigms
that are unfeasible with either technique alone.

Conclusion

We presented a set of experimental results for decoding dif-
ferent mental states evoked by language processing, on the
basis of the underlying brain activation measured with fNIRS.
A large-scale fNIRS study is conducted among 50 frequently-
used concepts across 10 semantic categories. Through an
empirical comparison between semantic vectors generated
by neural networks and brain activities observed by fNIRS,
we explored the decodebility and robustness of fNIRS sig-
nals. Results show that 1) fNIRS can encode rich linguistic
information into neurological signals, but show limits on the
possibility of decoding fine-grained semantic information;
2) fNIRS decoding shows robustness across different brain
regions, semantic categories and even subjects; 3) in line
with the expectation that the brain uses multiple parts si-
multaneously to comprehend concepts, multi-channel fNIRS
signals demonstrate stable precision compared with single-
channel ones. We made our effect on validating fNIRS as a
well-suited technology to promote a deep integrate of natural
language processing and cognitive neuroscience.
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