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Abstract

Communication is essential for coordination among humans
and animals. Therefore, with the introduction of intelligent
agents into the world, agent-to-agent and agent-to-human
communication becomes necessary. In this paper, we first
study learning in matrix-based signaling games to empirically
show that decentralized methods can converge to a subopti-
mal policy. We then propose a modification to the messaging
policy, in which the sender deterministically chooses the best
message that helps the receiver to infer the sender’s obser-
vation. Using this modification, we see, empirically, that the
agents converge to the optimal policy in nearly all the runs.
We then apply this method to a partially observable gridworld
environment which requires cooperation between two agents
and show that, with appropriate approximation methods, the
proposed sender modification can enhance existing decentral-
ized training methods for more complex domains as well.

Introduction

Humans rely extensively on communication to both learn
quickly and to act efficiently in environments in which
agents benefit from cooperation. As artificial intelligence
(AI) applications become commonplace in the real world,
intelligent agents therefore can benefit greatly from being
able to communicate with humans and each other. For ex-
ample, a group of self-driving cars can improve their driving
performance by communicating with other cars about what
they see and what they intend to do (Yang et al. 2004). As
advances in other fields of Al have shown, a learned solu-
tion is often better than a manually designed one (He et al.
2015; Silver et al. 2018). Hence, training the agents to learn
to communicate has the potential to lead to more efficient
protocols than pre-defined ones.

One assumption that is commonly held when studying
communication between agents is that messages do not di-
rectly affect the payoffs or the rewards that the agents obtain,
which is also known as the “cheap-talk” assumption (Craw-
ford and Sobel 1982). While it does not accurately reflect all
real-world scenarios, it is a reasonable assumption in many
cases. For example, turn indicators and traffic lights do not
affect driving directly because the driving outcome only de-
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pends on the drivers’ actions, but not on the state of the
lights.

The aim of this paper is to study the performance of learn-
ing algorithms in synthetic cooperation tasks involving ra-
tional agents that know that they are in a cooperative set-
ting and require communication to act optimally. First, we
consider one of the simplest setting to study communica-
tion: one-step, two-agent cooperative signaling games (Gib-
bons 1992) depicted in Fig. 1, with arbitrary payoffs such
as those used in the climbing game ((Claus and Boutilier
1998)). In every round of such games, the sender receives a
state s from the environment and then sends message m to
the receiver which, based only on m, takes action a. In the
problems studied here, both agents receive the same payoff
R(s, a), independent of m. We restrict our studies to decen-
tralized training methods that learn from experience. In the
algorithms we consider, each agent maintains its own param-
eters and updates them only dependent on its private obser-
vations and rewards. Such methods are more scalable com-
pared to centralized training and allow the agents to keep
their individual training methods private while still allowing
cooperation.

We also consider a more complex gridworld cooperation
task, in which two agents need to share their private infor-
mation using a limited communication channel while simul-
taneously acting in the environment to achieve the best pos-
sible performance. Since both agents receive the same re-
wards in both domains, the agents are always motivated to
correctly communicate their private observations.

In what follows, we first discuss related work and then
propose a method of communication based on the sender
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Figure 1: Signaling game with the normalized payoff matrix
of the climbing game.



choosing the best message that would lead to the correct
inference of its private observation. In the tabular case
of a signaling game, the sender exactly simulates the re-
ceiver’s inference process, whereas, in the multi-step grid-
world environment, an approximation is necessary. We then
empirically show that finding optimal policies incremen-
tally through playing experience can be difficult for exist-
ing algorithms even in one-step signaling games, but our
method manages to reach an optimal policy in nearly all
the runs. Finally, we present and discuss the results of our
approximation-based method applied to a more complex
gridworld environment.

Background and Related Work
Multi-Agent Reinforcement Learning

Reinforcement learning (RL) (Sutton and Barto 2018) is a
learning paradigm that is well suited for learning incremen-
tally through experience, and has been successfully applied
to single-agent (Mnih et al. 2015) and adversarial two-player
games (Silver et al. 2018; Vinyals et al. 2019).

A multi-agent reinforcement learning (MARL) prob-
lem (Littman 1994) consists of an environment and N > 2
agents, formalized using Markov games (Shapley 1953):
At each time step ¢, agents receive state s/ € S. Each

agent ¢ then takes action agt) € A; and receives re-
(t+1)

ward 7; and the next state s(**1). The distributions of
the reward and the next state obey the Markov property:
p(r+D) )| 5(S8) a(S)) = o(p(t+1) st |51 at)),
With partial observability or incomplete information, instead
of the complete state, the agents only receive private obser-
vation ol(-t). In a pure cooperative setting, the rewards rl(t)
agents receive are equal at every time step.

Scenarios involving multiple learning agents can be very
complex because of non-stationarity, huge policy spaces,
and the need for effective exploration (Hernandez-Leal, Kar-
tal, and Taylor 2019). One way to solve a MARL prob-
lem is to independently train each agent using a single-
agent RL algorithm, treating the other agents as a part of the
environment. However, due to non-stationarity, the conver-
gence guarantees of the algorithms no longer exist (Bowl-
ing and Veloso 2000). Additionally, when more than one
equilibrium exists, selecting a Pareto-optimal equilibrium
becomes a problem, in addition to actually converging to
one (Claus and Boutilier 1998; Fulda and Ventura 2007).
WoLF-PHC (Bowling and Veloso 2002) attempts to solve
this problem in adversarial games, while “hysteretic learn-
ers” (Matignon, Laurent, and Fort-Piat 2007; Omidshafiei
et al. 2017) and “lenient learners” (Panait, Sullivan, and
Luke 2006; Palmer et al. 2018) are examples of algorithms
designed for convergence to a Pareto-optimal equilibrium
in cooperative games. A comprehensive survey of learn-
ing algorithms for multi-agent cooperative settings is given
by Panait and Luke (2005); Hoen et al. (2005); Busoniu,
Babuska, and Schutter (2008); Tuyls and Weiss (2012);
Matignon, Laurent, and Fort-Piat (2012); Hernandez-Leal,
Kartal, and Taylor (2019).
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Multi-Agent Communication

In the context of MARL problems, communication is added
in form of messages that can be shared among agents. At

each time step ¢, each agent ¢ sends a message mgt) € M, in
addition to taking an action. Agents can use messages from
other agents to take more informed actions.

Communication in multi-agent systems was initially stud-
ied using fixed protocols to share observations and experi-
ences (Tan 1993; Balch and Arkin 1994). It was found that
communication speeds up learning and leads to better per-
formance in certain problems.

In some of the newer studies, such as DIAL (Foerster
et al. 2016) and CommNet (Sukhbaatar, Szlam, and Fer-
gus 2016), agents are trained by backpropagating the losses
through the communication channel. However, these meth-
ods require centralized training, which may not always be
possible in real-world settings.

On the other hand, Jaques et al. (2018) and Eccles et al.
(2019) focus on decentralized training. Jaques et al. (2018)
use the idea of social influence to incentivize the sender to
send messages that affect the actions of the receiver. Eccles
et al. (2019) add additional losses to the agents in addition
to the policy gradient loss. The sender optimizes an informa-
tion maximization based loss while the receiver maximizes
the usage of the received message.

Communication is also studied in the context of emer-
gence of language (Wagner et al. 2003; Lazaridou,
Peysakhovich, and Baroni 2017; Evtimova et al. 2018; Lowe
et al. 2019) in which agents are trained to communicate to
solve a particular task with the goal of analyzing the result-
ing communication protocols. One of the commonly used
problem setting is that of a referential game which is a spe-
cial case of a signaling game in which the reward R(s, a) is
1 if s and a match and O otherwise. In this paper, we show
that the problem becomes considerably harder when using
an arbitrary payoff matrix and we propose methods to over-
come this issue.

Inference-Based Messaging

In a multi-agent communication problem, agents could po-
tentially require access to the private state of other agents to
be able to find an optimal action. By contrast, in a decentral-
ized setting, the only information available about the private
state is through the received message.

One way for the receiver to build beliefs about the
private state of the sender is through Bayesian infer-
ence of private states given the message. Mathematically,
given a message m, prior state probabilities p(s) for
each state s, and model of the sender messaging policy
p(m|s) the posterior probabilities are given by p(slm) =
p(mls) - p(s) / > p(m|s’) - p(s’). The receiver then uses
the posterior belief for its action selection. For example, it
can assume that the current state of the sender s®) equals
argmax, p(s|m®)) and act accordingly, or maximize the ex-
pected reward w.r.t the posterior. There are two issues with
this: During decentralized training, the receiver does not
have access to the sender’s messaging policy, and, even if



the receiver accurately models the sender’s messaging pol-
icy, the posterior state probabilities would not be useful if
the sender’s messaging policy is not good.

In our method, we use the inference process to improve
the sender’s message. The sender calculates the posterior
probabilities of its current state for each possible message
that it can send. It then chooses the message that leads to
the highest posterior probability. Intuitively, the sender is as-
suming that the receiver is performing inference and chooses
the message that is most likely to lead to correct inference.
Mathematically, the chosen message m(*) is given by

m® = argmax p(s™|m)

= argglaxp(m\s(t)) / Zp(m|5/)p(31)

s’/

ey

The p(s®)) term is not present in the numerator because it
is constant. Henceforth, we will use the term unscaled mes-
saging policy to refer to p(m/|s) and scaled messaging pol-
icy to refer to the above inference-based policy.

p(s|m) is undefined if message m is not used by the
sender, i.e., Vs : p(m|s) = 0. While it can be set to an
arbitrary value in this case, setting it to 1 allows the sender
to explore unused messages, which potentially leads to the
policy being updated to use such messages.

The unscaled messaging policy p(m|s) can be learned us-
ing any RL algorithm. For example, in our experiments, we
use a value-based method, Q-Learning (Watkins and Dayan
1992), for the matrix signaling games and an asynchronous
off-policy policy gradient method, IMPALA (Espeholt et al.
2018), in the gridworld experiments. While the sender sim-
ulates inference, it does not require the receiver to infer the
private state of the sender to work well. In fact, in our exper-
iments, the receiver is trained using standard RL algorithms:
Q-Learning and REINFORCE (Williams 1992) for matrix
games, and IMPALA for gridworld.

Algorithm 1 lists the pseudocode of the described sender
algorithm for tabular cases.

Approximating Posterior Probabilities

In a small matrix game, the posterior state probability, and
consequently, the message to send, can be calculated exactly
by using Eq. 1. But in more complex environments, in which
the state space is large or even infinite, it is necessary to ap-
proximate the probabilities. Further, with partial observabil-
ity and multiple time-steps in the episode, the state would be
replaced by the history of received messages and observa-
tions. In practice, we use an LSTM (Hochreiter and Schmid-
huber 1997) that maintains a summary of the history in the
form of its hidden state, h. The LSTM calculates its cur-
rent hidden state, h(®), using the current observation, o®),
(t=1)
—1

the received message, m , and the previous hidden state,

h(t=1) as the input. This hidden state, h(*), is equivalent to
a Markov state in an MDP. Hence, in this paper, we use the
term state (or s) even in partially observable problems.

We use a simple empirical averaging method to approx-
imate p(s|m) while the agents are acting in the environ-
ment. The numerator in Eq. 1 can be calculated using the
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Algorithm 1: Inference-Based Messaging (Signal-
ing Game, Tabular Case)

Input: Step size o

Initialize Q(s, m) arbitrarily
Vse€S:N(s)«0

fort+ 1,2,...do

Receive state s from the environment
N(s)+ N(s)+1

for s’ € S do

p(s') < N(s') / > N(s")

7(s')  argmax,,, Q(s',m’)

end
Ym € M : p(slm) «
{1
Lim=r(s)}
Dot Limen(s)3P(s")
m <+ argmax,,, p(s|m’)

Send m to the receiver
Observe r after the receiver acts

Q(Svm) A Q(S?m) + a(r - Q(S7m))

ZS/ ]l{m:ﬂ(s/)}p(s’) =0
otherwise

end

unscaled messaging policy. The denominator can be writ-
ten as p(m) = E;[p(m|s)]. Since we use online training for
the agents, the samples of states that it receives are accord-
ing to the state distribution p(s) given by the combination
of the environment dynamics and the current action policies
of the agents. Hence, we can approximate the expectation
Es[p(m|s)] as the empirical mean of the unscaled messag-
ing probabilities that is calculated at each time step.

In practice, due to the small number of samples in a roll-
out batch, the variance in the mean estimate is high, reducing
the quality of the messaging policy. We empirically found
that it is better to use estimates from the previous rollout
batches to reduce the variance despite them being biased due
to policy updates that have happened since then. Mathemati-
cally, we maintain an estimate p(m) that we update as an ex-
ponentially weighted moving average of the empirical mean
calculated during a rollout p(m) with weight p.

Another way to estimate p(m) is to train a predictor, using
the policy parameters ¢ as the input and the true mean as the
training signal. Preliminary tests in the gridworld environ-
ment showed that this is a hard task, possibly due to a large
number of policy parameters, the complex neural network
dynamics, and not having access to the true mean. Empir-
ically, the performance was lower when using a predictor
compared to using a moving average.

The parameters of the unscaled messaging probabilities
can be updated using any RL algorithm. The updates need
to account for the fact that we are updating the unscaled
messaging policy (the target policy) while acting using the
scaled messaging policy (the behavior policy). Since the be-
havior policy has a probability of 1 for the taken action and
the target policy has a probability p(m®|s(*)), the impor-
tance weight is given by p(*) = p(m®|s®)) / 1. Algo-
rithm 2 implements these ideas for the sender in domains



Algorithm 2: Inference-Based Messaging (Grid-
world, Approximation Case)

Input: Step size o, weight 0 < p < 1, unscaled
messaging policy p(m/|s; 6)
Initialize 6 arbitrarily
Vm e M :p(m) < 1/ |M|
for rollout k + 1,2,...do
Ym e M :p(m) <0
fort+ 1,2,...T do
Receive state s from the environment
m < argmax,,, (p(m/[s;0) / p(m’))
B(m) — p(m) + p(m]s) / T
Send m to the receiver
end
Vm € M : p(m) < pp(m) + (1 — p)p(m)
Update 6 using any RL algorithm after off-policy
correction

end

requiring approximation.

Certain problems require the agents to simultaneously act
in the environment and exchange messages. In such cases,
a single agent acts as both the sender and the receiver. Each
agent first calculates a Markov state s (e.g. with LSTM) us-
ing the current observation, received message, and the pre-
vious state. At this stage, the agent acts as a receiver. Each
agent also maintains an action policy, p(a|s), and a messag-
ing policy, p(m/|s), which are used to select the action to
take in the environment and the message to send to the other
agent respectively. The agent acts as a sender at this stage.
When using inference-based messaging, the message to be
sent is selected from the scaled messaging policy instead of
the unscaled messaging policy.

Signaling Game Experiments

To show the effectiveness of our proposed methods we con-
ducted three experiments using signaling games: First, we
used the climbing game (Figure 1) to explain the issue of
convergence to sub-optimal policies. We then performed ex-
periments on two sets of 1,000 payoff matrices of sizes 3x3
and 32 x 32, respectively, with each payoff generated uni-
formly at random between 0 and 1 and normalized such that
the maximum payoff is 1, to show that the observed conver-
gence issues are not specific to the climbing game.

Each run of our experiments lasted for 1,000 episodes in
3 x 3 matrix games and 25,000 episodes in 32 x 32 matrix
games. Using a higher number of episodes gave qualitatively
similar results and hence, we restricted it to the given num-
bers. In each episode, first, a uniform random state was gen-
erated and passed to the sender. The sender then computed
its message and sent it to the receiver, which used the mes-
sage to compute its action. Finally, the reward corresponding
to the state and the action was sent to both agents and used
to independently update their policies. The obtained rewards
(normalized by the maximum possible reward) and the con-
verged policies of the agents were recorded.
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Benchmark Algorithms

We considered two variants of our algorithm - Info-Q
and Info-Policy. In both algorithms, the sender uses Al-
gorithm 1. All Q-values of the sender were initialized pes-
simistically to prevent unwanted exploration by the sender.
In Info-Q, the receiver used Q-Learning with optimistically
initialized Q-values, while in Info-policy, the receiver used
REINFORCE (Williams 1992).

We first compared our method with variants of traditional
single-agent RL algorithms. In Independent Q-Learning
(IQL), both the sender and the receiver are trained indepen-
dently using Q-Learning. In Iterative Learning (IQ), the
learning is iterative, with the sender updating its policy for
a certain number of episodes (denoted by “period”) while
the receiver is fixed, followed by the receiver updating its
policy while the sender is fixed, and so on. In Model the
sender (ModelS), based on the message sent by the sender
and the model of the sender, the receiver performs inference
and assumes the true state to be the one with the highest
probability. The action is then chosen using the (state, ac-
tion) Q-table.

We then compared algorithms from the literature that have
been shown to be effective in cooperative games with si-
multaneous actions. In Model the receiver (ModelR), the
sender calculates the payoffs that would be obtained if the
receiver follows the modeled policy and selects the mes-
sage that maximizes this payoff. This algorithm is simi-
lar to the one used by Sen, Airiau, and Mukherjee (2003),
with the difference being that ModelR uses epsilon-greedy
w.r.t. the max Q-values instead of Boltzmann action selec-
tion w.r.t. expected Q-values since it was found to be better
empirically. In Hysteretic-Q (Matignon, Laurent, and Fort-
Piat 2007), higher step size is used for positive Q-value up-
dates and lower step size for negative Q-value updates. In
Lenience (Panait, Sullivan, and Luke 2006) (specifically the
RL version given by Wei and Luke (2016)), only positive
updates are made on Q-values during initial time steps, ig-
noring low rewards. As the number of episodes increases,
Q-values are always updated. In Comm-Bias, we used RE-
INFORCE to independently train both the sender and the
receiver. The sender and the receiver additionally use the
positive signaling and the positive listening losses given by
Eccles et al. (2019) during training.

Results for the Climbing Game

Experiments with the climbing game were performed using
the payoff matrix given in Figure 1 to highlight the issues
with the existing algorithms.

Figure 2 shows the plot of the mean normalized reward,
as a function of episodes. One standard error is shaded, but
less than the line width in most cases. While some of the
algorithms obtain rewards close to that obtained by Info-Q,
the difference is magnified in Figure 3 which shows the per-
centage of runs that took the optimal actions, as a function
of episodes.

For obtaining more insight into the potential issues of the
baseline algorithms, we counted (state, action) pairs for each
run. We iterated through the states, and for each state, we
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Figure 2: Normalized reward obtained during training, as a
function of episodes in the climbing game. Info-Q converged
to an optimal policy in around 300 episodes.
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Figure 3: Percentage of optimal actions during training, as
a function of episodes in the climbing game. The difference
between the algorithms is magnified in this plot.

calculated the corresponding message sent by the sender and
the action taken by the receiver. Figure 4 shows the ma-
trix with the counts for each (state, action)-pair in case of
Independent Q-Learning (IQL, on the left) and Info-Q (on
the right). It can be observed that in state s, (middle row),
the receiver takes inferior action a3 (last column) with Q-
Learning, whereas Info-Q takes optimal action as.

We also plotted Venn diagrams to visualize messaging
policies. Figure 5 shows the Venn diagrams for independent
Q-Learning and Info-Q. The region labeled s; outside of any
intersection corresponds to runs in which s; was assigned a
unique message. The intersection of regions s; and s; denote
the runs in which s; and s; were assigned the same message.
The intersection of all regions corresponds to runs in which
all states were assigned the same message. Info-Q assigns
a distinct message to each state, whereas some Q-Learning
runs assign the same message to multiple states.

The combination of (state, action) pair counts and the
Venn diagrams suggests that Q-Learning is converging to
a sub-optimal policy of choosing ag in so. We hypothesize
that this is due to the closeness of the two payoffs and the
fact that a3 is a “safer” action to take since the penalty is
not high if the message was incorrect. The messages corre-
sponding to s and s3 are the same in many runs. A possible
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Figure 4: Counts of (state, action) pairs for IQL and Info-Q.
With IQL, the receiver took ag in s9, even though ay is the
optimal action to take. With Info-Q, all runs converged to an
optimal policy.

IQL Info-Q

S1 S2

428
119

56
95

730

1000 1000 1000

397

S1 S2 S3

452

S3

Figure 5: Venn diagram of messaging policy for IQL and
Info-Q. Intersections in case of IQL imply that in some runs,
multiple states were assigned the same message. In case of
Info-Q, all states were assigned a distinct message.

reason for this is that, since the receiver is more likely to take
as, there is insufficient incentive to send distinct messages
for s5 and s3. We believe that this vicious cycle leads to
the agents converging to a sub-optimal policy. Info-Q over-
comes this cycle by forcing the sender to fully utilize the
communication channel irrespective of the incentive it re-
ceives through the rewards.

Results for Random Payoff Signaling Games

To ensure that the issues were not specific to a single game,
we next conducted experiments on randomly generated pay-
off matrices of size 3 x 3 and 32 x 32. Figures 6 and 7 show
the plots of the mean normalized reward, as a function of
episodes, on 3 x 3 and 32 x 32 payoff matrices respectively.
The mean, here, refers to all random payoff matrices and
multiple runs for each matrix. One standard error of the
mean is shaded, but less than the line width in most cases.
Figures 8 and 9 show the boxplots of the percentage of runs
that converge to an optimal policy for each payoff matrix
of size 3 x 3 and 32 x 32 respectively. The boxplots clearly
demonstrate the advantage of Info-Q compared to the other
algorithms in terms of convergence to an optimal policy.
The version of our algorithm with the receiver being
trained using policy gradient (Info-Policy) does not perform
as well as Info-Q. This is due to the policy gradient method
itself being slower to learn in this problem. Comm-Bias is
also affected by it and performs worse than Info-Policy. 1Q
works fairly well in many problems since it is approximately
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Figure 7: Mean normalized reward obtained during training,
as a function of episodes, on random 32x32 payoff matrices.

equivalent to iterative best response. It fails in cases in which
iterative best response converges to a sub-optimal policy.
Since the agents explore more at the beginning of a period,
the obtained reward is much lower. Hence, the reward curve
for IQ does not truly reflect its test-time performance. Mod-
eling the sender only works well if the receiver has access
to the sender’s state during training (but still not as well as
Info-Q). Otherwise, the performance is poor as shown in
the plots. Modeling the receiver suffered from the issue of
sub-optimal policy of the receiver. The best response by the
sender to a sub-optimal receiver policy could be sub-optimal
for the problem and vice versa, leading to the agents not im-
proving. We postulate that the messages having no effect on
the reward makes it harder for Hysteretic-Q and Lenience.
The sender may receive the same reward for each of the
messages it sends, leading to switching between messages
for the same state and confusing the receiver.

Gridworld Experiments

We use the gridworld environment called “Treasure Hunt”
introduced by Eccles et al. (2019) to test our algorithm in
domains in which exact inference is infeasible (Figure 10).
There are two agents in the environment with the goal of
reaching the treasure at the bottom of one of the tunnels.
Both agents have a limited field of view, and their posi-
tions make it so that one agent can easily see the goal lo-
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Figure 9: Boxplot of the percentage of runs that converged
to an optimal policy for each 32 x 32 payoff matrix.

cation but cannot reach it, while the other agent can reach
the goal, but potentially needs to explore all tunnels before
reaching the goal. By allowing communication, one agent
can easily locate the goal and signal the location to the other
agent. Specifically, both the agents receive the message that
the other agent sent at the previous time step. Hence, both
agents take the role of a sender and a receiver, in contrast to
the signaling game, in which there is only one sender and
one receiver.

We kept the core of the training algorithms including the
neural network architecture used by Eccles et al. (2019) to
make results comparable, and only modified the communi-
cation method. The agents choose messages to be sent by
treating them as additional actions. We used a convolutional
neural network followed by densely connected layers for
feature extraction. An LSTM layer (Hochreiter and Schmid-
huber 1997) over the features is used for dealing with par-
tial observability, whose outputs are fed into linear layers
for action and unscaled message logits and the value esti-
mate. The action policy and the unscaled message policies
of agents is updated using an off-policy policy gradient algo-
rithm, IMPALA (Espeholt et al. 2018). Contrastive Predic-
tive Coding (van den Oord, Li, and Vinyals 2018) is used to
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Figure 10: The Treasure Hunt environment.

Method Final Fraction of
reward good runs
No-Bias (our 11.55 £ 0.42 (5 / 12)
implementation) 1.03
No-Bias (Eccles et al. 2019) 12.45 £ 0.28 (14 / 50)
0.48
Positive signaling (our 16.45 + 1(12/12)
implementation) 0.20
Positive signaling (Eccles 14.22 + 0.84 (42 / 50)
et al. 2019) 0.36
Positive signaling + listening ~ 16.25 + 1(12/12)
(our implementation) 0.20
Positive signaling + 15.14 + 0.94 (47 / 50)
listening (Eccles et al. 2019) 0.33
Inference-Based Messaging 14.29 + 0.92 (11 / 12)
1.26
Inference-Based Messaging +  15.48 + 0.92 (11 / 12)
positive listening 0.76

Table 1: Comparison of our work with the biases given by
Eccles et al. (2019)

improve the LSTM performance. The experiments were run
using the RLLib (Liang et al. 2018) library. In our method,
the message selection uses inference simulation as shown in
Algorithm 2 to compute m®) = argmax,,, p(s®)|m).

As a baseline, we used agents that picked messages based
on the learned unscaled messaging policy and were trained
independently using IMPALA (called No-Bias). We also
compared our method with the biases given by Eccles et al.
(2019). With positive signaling bias, the sender was incen-
tivized into sending a message with higher information,
using losses based on mutual information between private
states and messages. With positive listening bias, the re-
ceiver was incentivized to use the received message for its
action selection. It was achieved by maximizing the diver-
gence between action probabilities resulting when messages
are used and those when the messages are zeroed out. Each
experiment was repeated 12 times and each run lasted for
300 million time steps.
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Results

Table 1 shows the results we obtained for methods presented
in Eccles et al. (2019) and our inference-based method. Sim-
ilar to their paper, we divide the runs into two categories:
good runs, in which the final reward is greater than 13, and
all runs. Good runs require efficient communication since
the max reward achieved without communication is 13 as
shown by Eccles et al. (2019). Due to discrepancies in the
results of our implementation of the communication biases
and the values reported by Eccles et al. (2019), we provide
both the values in the table. We believe that the difference in
the number of repetitions for each experiment and the num-
ber of training steps to be the reason for these discrepan-
cies. Due to computational constraints, we couldn’t perform
longer runs or more repetitions.

Inference-based messaging performed significantly (more
than one standard error of the mean difference) better than
No-Bias. Adding positive listening bias further improved
the performance of inference-based messaging. The perfor-
mance of our method is similar to the reported value of
positive signaling bias. Adding positive listening bias fur-
ther improves our method, reaching a level similar to that
of both signaling and listening biases. Agents receive more
than 13 reward per episode after training in 11 of the 12 runs
with inference-based messaging, which, as described earlier,
shows that the agents are learning to communicate in most of
the runs. Eccles et al. (2019) also show results of the social
influence algorithm (Jaques et al. 2018) on this environment.
The reported performance of social influence is nearly equal
to that achieved by the no-bias baseline. Hence, our method
significantly outperforms it too.

The results indicate that inference-based messaging can
also improve communication in complex multi-agent envi-
ronments, and be complementary to methods that improve
the receiver.

Conclusions

The contributions of this paper are threefold. First, we
demonstrated that state-of-the-art MARL algorithms often
converge to sub-optimal policies in a signaling game. By
analysing random payoff matrices we found that a sub-
optimal payoff being close to the optimal payoff, in com-
bination with the sub-optimal action having higher average
payoffs in other states can lead to such behaviour.

We then proposed a method in which the sender simu-
lates the receiver’s Bayesian inference of private state given
a message to guide its message selection. Training agents
with this new algorithm led to convergence to the optimal
policy in nearly all runs, for a varied set of payoff matri-
ces. The motivation to use the full communication channel
irrespective of the reward appears to help learning agents to
converge to the optimal policy.

Finally, we applied our method to a more complex grid-
world problem which requires probability approximations
for the inference simulation process. In this domain, too,
we could show performance gains. However, we believe
that with more sophisticated inference approximation tech-
niques, the performance can be further improved.



Acknowledgements

This work was funded by The Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

References

Balch, T. R.; and Arkin, R. C. 1994. Communication in
Reactive Multiagent Robotic Systems. Autonomous Robots
1(1): 27-52.

Bowling, M.; and Veloso, M. 2000. An Analysis of Stochas-
tic Game Theory for Multiagent Reinforcement Learning.
Technical report, School of Computer Science, Carnegie-
Mellon University.

Bowling, M.; and Veloso, M. 2002. Multiagent Learning Us-
ing a Variable Learning Rate. Artificial Intelligence 136(2):
215-250.

Busoniu, L.; Babuska, R.; and Schutter, B. D. 2008. A Com-
prehensive Survey of Multiagent Reinforcement Learning.
IEEE Trans. Syst. Man Cybern. Part C .

Claus, C.; and Boutilier, C. 1998. The Dynamics of Rein-
forcement Learning in Cooperative Multiagent Systems. In
Proceedings of the Fifteenth National Conference on Artifi-
cial Intelligence and Tenth Innovative Applications of Artifi-
cial Intelligence Conference, T746-752.

Crawford, V. P.;; and Sobel, J. 1982. Strategic information
transmission. Econometrica: Journal of the Econometric
Society 1431-1451.

Eccles, T.; Bachrach, Y.; Lever, G.; Lazaridou, A.; and Grae-
pel, T. 2019. Biases for Emergent Communication in Multi-
agent Reinforcement Learning. In Advances in Neural In-
Jformation Processing Systems, 13111-13121.

Espeholt, L.; Soyer, H.; Munos, R.; Simonyan, K.; Mnih,
V.; Ward, T.; Doron, Y.; Firoiu, V.; Harley, T.; Dunning,
I; Legg, S.; and Kavukcuoglu, K. 2018. IMPALA: Scal-
able Distributed Deep-RL with Importance Weighted Actor-
Learner Architectures. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, 1406-1415.

Evtimova, K.; Drozdov, A.; Kiela, D.; and Cho, K. 2018.
Emergent Communication in a Multi-Modal, Multi-Step
Referential Game. In Proceedings of the 6th International
Conference on Learning Representations.

Foerster, J. N.; Assael, Y. M.; de Freitas, N.; and Whiteson,
S.2016. Learning to Communicate with Deep Multi-Agent
Reinforcement Learning. In Advances in Neural Informa-
tion Processing Systems, 2137-2145.

Fulda, N.; and Ventura, D. 2007. Predicting and Preventing
Coordination Problems in Cooperative Q-learning Systems.
In Proceedings of the 20th International Joint Conference
on Artificial Intelligence, 780-785.

Gibbons, R. 1992. A primer in game theory. Harvester
Wheatsheaf. ISBN 978-0-7450-1159-2.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving
Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, 1026—-1034.

11235

Hernandez-Leal, P.; Kartal, B.; and Taylor, M. E. 2019. A
survey and critique of multiagent deep reinforcement learn-
ing. Autonomous Agents and Multi-Agent Systems 33(6):
750-797.

Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Computation 9(8): 1735-1780.

Hoen, P. J.; Tuyls, K.; Panait, L.; Luke, S.; and Poutré, J.
A. L. 2005. An Overview of Cooperative and Competitive
Multiagent Learning. In Learning and Adaption in Multi-
Agent Systems, LAMAS.

Jaques, N.; Lazaridou, A.; Hughes, E.; Giilcehre, C.; Ortega,
P. A.; Strouse, D.; Leibo, J. Z.; and de Freitas, N. 2018.
Intrinsic Social Motivation via Causal Influence in Multi-
Agent RL. CoRR abs/1810.08647.

Lazaridou, A.; Peysakhovich, A.; and Baroni, M. 2017.
Multi-Agent Cooperation and the Emergence of (Natural)
Language. In Proceedings of the 5th International Confer-
ence on Learning Representations.

Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.; Gold-
berg, K.; Gonzalez, J.; Jordan, M. I.; and Stoica, 1. 2018.
RLIib: Abstractions for Distributed Reinforcement Learn-
ing. In Proceedings of the 35th International Conference
on Machine Learning, 3059-3068.

Littman, M. L. 1994. Markov Games as a Framework for
Multi-Agent Reinforcement Learning. In Proceedings of

the Eleventh International Conference on Machine Learn-
ing, 157-163.

Lowe, R.; Foerster, J. N.; Boureau, Y.; Pineau, J.; and
Dauphin, Y. N. 2019. On the Pitfalls of Measuring Emer-
gent Communication. In Proceedings of the 18th Interna-
tional Conference on Autonomous Agents and MultiAgent
Systems, 693-701.

Matignon, L.; Laurent, G. J.; and Fort-Piat, N. L. 2007. Hys-
teretic Q-Learning : An Algorithm for Decentralized Rein-
forcement Learning in Cooperative Multi-Agent Teams. In
Proceedings of the International Conference on Intelligent
Robots and Systems, 64—69.

Matignon, L.; Laurent, G. J.; and Fort-Piat, N. L. 2012. In-
dependent Reinforcement Learners in Cooperative Markov
Games: A Survey Regarding Coordination Problems. The
Knowledge Engineering Review 27(1): 1-31.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-Level Control Through
Deep Reinforcement Learning. Nature 518(7540): 529-533.

Omidshafiei, S.; Pazis, J.; Amato, C.; How, J. P.; and Vian,
J. 2017. Deep Decentralized Multi-task Multi-Agent Re-
inforcement Learning under Partial Observability. In Pro-
ceedings of the 34th International Conference on Machine
Learning.

Palmer, G.; Tuyls, K.; Bloembergen, D.; and Savani, R.
2018. Lenient Multi-Agent Deep Reinforcement Learning.



In Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems.

Panait, L.; and Luke, S. 2005. Cooperative Multi-Agent
Learning: The State of the Art. Auton. Agents Multi Agent
Syst. .

Panait, L.; Sullivan, K.; and Luke, S. 2006. Lenience To-
wards Teammates Helps in Cooperative Multiagent Learn-
ing. In Proceedings of the Fifth International Joint Confer-
ence on Autonomous Agents and Multi Agent Systems. Cite-
seer.

Sen, S.; Airiau, S.; and Mukherjee, R. 2003. Towards a
Pareto-Optimal Solution in General-Sum Games. In Pro-
ceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems, 153—160.

Shapley, L. S. 1953. Stochastic Games. Proceedings of the
National Academy of Sciences 39(10): 1095-1100.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Grae-
pel, T.; Lillicrap, T.; Simonyan, K.; and Hassabis, D. 2018.
A General Reinforcement Learning Algorithm that Mas-
ters Chess, Shogi, and Go Through Self-Play. Science
362(6419): 1140-1144. doi:10.1126/science.aar6404.

Sukhbaatar, S.; Szlam, A.; and Fergus, R. 2016. Learning
Multiagent Communication with Backpropagation. In Ad-
vances in Neural Information Processing Systems 29.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. MIT press.

Tan, M. 1993. Multi-Agent Reinforcement Learning: Inde-
pendent vs. Cooperative Agents. In Proceedings of the Tenth
International Conference on Machine Learning, 330-337.

Tuyls, K.; and Weiss, G. 2012. Multiagent Learning: Basics,
Challenges, and Prospects. Al Mag. .

van den Oord, A.; Li, Y.; and Vinyals, O. 2018. Represen-
tation Learning with Contrastive Predictive Coding. CoRR
abs/1807.03748.

Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P,; et al. 2019. Grandmaster Level in StarCraft 11
Using Multi-Agent Reinforcement Learning. Nature 1-5.

Wagner, K.; Reggia, J. A.; Uriagereka, J.; and Wilkinson, G.
2003. Progress in the Simulation of Emergent Communica-
tion and Language. Adaptive Behaviour 11(1): 37-69.

Watkins, C. J.; and Dayan, P. 1992. Q-Learning. Machine
Learning 8(3-4): 279-292.
Wei, E.; and Luke, S. 2016. Lenient Learning in

Independent-Learner Stochastic Cooperative Games. Jour-
nal of Machine Learning Research 17: 84:1-84:42.

Williams, R. J. 1992. Simple Statistical Gradient-Following
Algorithms for Connectionist Reinforcement Learning. Ma-
chine Learning 8: 229-256.

Yang, X.; Liu, J.; Zhao, F.; and Vaidya, N. H. 2004. A
Vehicle-to-Vehicle Communication Protocol for Coopera-
tive Collision Warning. In Proceedings of the 1st Annual In-

11236

ternational Conference on Mobile and Ubiquitous Systems,
114-123.



