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Abstract

Motivated by the increasing concern about privacy in nowa-
days data-intensive online learning systems, we consider a
black-box optimization in the nonparametric Gaussian pro-
cess setting with local differential privacy (LDP) guarantee.
Specifically, the rewards from each user are further corrupted
to protect privacy and the learner only has access to the cor-
rupted rewards to minimize the regret. We first derive the re-
gret lower bounds for any LDP mechanism and any learn-
ing algorithm. Then, we present three almost optimal algo-
rithms based on the GP-UCB framework and Laplace DP
mechanism. In this process, we also propose a new Bayesian
optimization (BO) method (called MoMA-GP-UCB) based
on median-of-means techniques and kernel approximations,
which complements previous BO algorithms for heavy-tailed
payoffs with a reduced complexity. Further, empirical com-
parisons of different algorithms on both synthetic and real-
world datasets highlight the superior performance of MoMA-
GP-UCB in both private and non-private scenarios.

Introduction

We consider the problem of maximizing an unknown func-
tion f over a set D via sequentially querying it and received
only bandit feedback, i.e., when we query at z, we observe
a possibly noisy evaluation of f(z). This model has been
a main focus in machine learning research, e.g., the classic
multi-armed bandit (MAB) setting (Lai and Robbins 1985),
linear bandit setting (Abbasi-Yadkori, Pal, and Szepesvéri
2011) and the general Bayesian optimization (Shahriari et al.
2015), with each one generalizing the previous one. It also
finds broad applications in many real-world systems, includ-
ing medical experiments, online shopping websites and rec-
ommender systems (Li et al. 2010). These systems adap-
tively make a decision and receive rewards (feedback) from
the user to simultaneously learn insightful facts and maxi-
mize the profit.

Recently, privacy has become a key issue in the above
mentioned online learning systems. Users have become in-
creasingly concerned about directly sharing their online in-
formation or activities to these systems, since these activities
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may reveal their private information. For example, a cus-
tomer of an online shopping website is not willing to tell the
website that he or she has purchased medicines for mental is-
sues. Another example is the medical experiments in which
the patient could reject to share the actual effects of the treat-
ment due to privacy concerns. This stimulates the need to
have a mechanism that further corrupts the feedbacks from
each user to protect privacy, which exactly fits the locally
differential private (LDP) model (Kasiviswanathan et al.
2011; Duchi, Jordan, and Wainwright 2013).

In contrast to the standard differential privacy
model (Dwork, Roth et al. 2014), in which the learner
collects the true data while releasing a private output to
protect privacy, in the LDP model, the learner only has
access to corrupted input data from the users. Hence, LDP
often provides a much stronger privacy protection for the
user and is more appealing in real applications, especially
for the systems mentioned above (Cormode et al. 2018). To
the best of our knowledge, in the setting of online learning
with bandit feedback, LDP model has only been studied
theoretically very recently. For example, in (Gajane, Urvoy,
and Kaufmann 2018; Ren et al. 2020), the authors investi-
gate MAB with LDP guarantee. (Zheng et al. 2020) studies
LDP in the linear (contextual) bandit setting. However, LDP
in the most general scenario, i.e., Bayesian optimization
(BO), remains an important open problem.

Motivated by this, in this paper, we investigate the lo-
cally differentially private BO, in which the rewards are fur-
ther corrupted to protect privacy. Specifically, we consider
a Gaussian process (GP) model for BO (also called Gaus-
sian process bandit setting), which directly generalizes both
MAB and linear bandit setting. The main contributions of
this paper can be summarized as follows.

Contributions. (i) We first derive the regret lower bounds
for any LDP mechanism and any learning algorithm. (ii)
Then, we present three almost optimal algorithms based on
the GP-UCB framework and Laplace DP mechanism. (iii)
Our two new methods developed for handling LDP also con-
tribute to BO under heavy-tailed payoffs in general. In par-
ticular, one is a new truncation method that can be applied
to any sub-Weibull rewards. The other one, called MoMA-
GP-UCB, is based on median-of-means techniques and ker-
nel approximations, which complements previous BO al-
gorithms for general heavy-tailed payoffs (Chowdhury and



Gopalan 2019) with a reduced complexity. (iv) We further
conduct empirical comparisons of different algorithms over
both synthetic and real-world datasets, which demonstrate
the superior performance of our new MoMA-GP-UCB al-
gorithm in both private and non-private settings.

Related Work

In the traditional non-private case, a line of BO meth-
ods based on Gaussian process (GP) and upper confi-
dence bound (UCB) have been analyzed in both sub-
Gaussian (Srinivas et al. 2009; Chowdhury and Gopalan
2017) and heavy-tailed scenarios (Chowdhury and Gopalan
2019). Kernel approximation is recently proposed to reduce
complexity of GP-based BO algorithms (Mutny and Krause
2018; Calandriello et al. 2019). In the private BO case, (Kus-
ner et al. 2015) studies how to privately release the BO out-
puts to protect privacy (e.g., hyper-parameters of machine
learning model), and hence it belongs to the traditional DP
perspective rather than LDP.

LDP model has been previously considered in MAB set-
ting (Gajane, Urvoy, and Kaufmann 2018; Basu, Dimi-
trakakis, and Tossou 2019; Ren et al. 2020). Recently, it is
generalized to linear contextual bandits in which both the
rewards and the contexts are corrupted for privacy (Zheng
et al. 2020). There are also some other types of DP con-
sidered in MAB and linear bandit setting (not comparable to
our work). Due to space limitations, we refer readers to (Ren
et al. 2020; Zheng et al. 2020) and the references therein.

Problem Statement and Preliminaries

We consider a sequential decision-making problem over a
set D. A learning policy is adopted to select an action
z; € D at each discrete time slot ¢ 1,2,... with the
corresponding reward observation y; = f(z) + n, ie.,
y: could be a noisy version of f(x;). Then, the reward y;
will be further corrupted to protect privacy, and only the
private response ¥ is revealed to the learning agent. The
action z; is chosen based on the arms played and the pri-
vate rewards obtained until ¢ — 1, denoted by the history
Hi—1 = {(ws,Js) : s € [t — 1]'}. The objective is to simul-
taneously preserve LDP and minimize the cumulative regret
defined as

T
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t=1
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where * = argmax,ep f(z) (assuming the maximum is
attained).

Definition 1 ((¢,d)-LDP). A randomized mechanism M :
D — Z is said to protect (¢,0)-LDP if for any x,z’ € D,
and any measurable subset E € Z, there is

P{M(z) € E} <eP{M(a2') € E} +,

fore > 0and § > 0. Moreover, if § = 0, we say it protects
e-LDP.
"For any positive integer, we define [m]:=

{1,2,...,m}
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Note that, if not explicitly stated, LDP in this paper means
e-LDP (stronger than (e, 6)-LDP).

Noise Assumptions. We assume that the noise 7, has zero
mean conditioned on the history and is bounded by 12 almost
surely. We also address the case of unbounded noise at the
end of the paper.

Regularity Assumptions. Attaining a sub-linear regret is
in general infeasible for an arbitrary reward function f over
a very large space without any assumptions on the structure
of f. In this paper, we assume that D is compact and f has
a bounded norm in the RKHS of functions D — R, corre-
sponding a kernel function k£ : D x D — R. This RKHS
denoted by H (D) is completely determined by its kernel
function with an inner product (-, -)4, that satisfies the repro-
ducing property: f(z) = (f, k(z,-))y for all f € Hy(D).
The norm for the RKHS is given by || f|l,, = /(f, f)n
which measures the smoothness of f. We assume || f||,, <
B and B < oo is a known constant. Moreover, we assume a
bounded variance by restricting k(x, z) < 1. Note that two
commonly used kernels Squared Exponential and Matérn
satisfy the bounded variance assumption, defined as:

ks (z,2") = exp (s /21%)
) ().

21—V (s

I'(v)
where ! > 0 and v > 0 are hyper-parameters, s = ||z — 2’||,
specifies the similarity between two points, and B, (+) is the
modified Bessel function.

Surrogate GP Model’. A Gaussian process, denoted
by GP(u(-),k(-,-)), is a collection of (possibly infinitely
many) random variables f(z),x € D, such that every fi-
nite subset of random variables {f(x;),7 € [m]} is jointly
Gaussian with mean E [f(z;)] = p(x;) and covariance
B ((f(2:) — ple)) (F(zy) — le;))] = K(wi,z;), where
i,j € [m] and m € N. By conditioning GPs on avail-
able observations, one can obtain a non-parametric surro-
gate Bayesian model over the space of functions. In par-
ticular, we use GP(0, k(-,-)) as an initial prior on the un-
known black-box function f, and a Gaussian likelihood with
the noise variables 7; drawn independently across ¢ from
N (0, ). Conditioned on a set of past observations H;
{(zs,ys),s € [t]}, by the properties of GPs (Rasmussen
2003), the posterior distribution over f is GP (1 (+), k: (-, -)),
where

2v
l

2v
l

kMatérn (x, .I'/) =

pi(x) = k(e ) (K¢ + )\I) Yi:t (2
ki(z,2') = k(z,2") — k()" (K; + M)~ ki (2)

o7 (2) = ke(, ), 3)

and ki(z) = [k(z1,2),...,k(zs,2)]T and K; =

[k(u, v)]u ven,. Therefore, for every x € D, the posterior
distribution of f(x), given H¢ is N (pu (), o 2(x)). The fol-
lowing term often plays a key role in the regret bounds of

The surrogate GP model described above (i.e., a GP prior and
a Gaussian likelihood) is only used for the algorithm design.



GP based algorithms.

1
max = In|l; + AT K 4,

= k,D) =
Ve =%k, D) ACD:|A|=t 2

where K4 = [k(z,2')]s.27c4- Roughly speaking, +; is the
maximum mutual information that can be obtained about
the GP prior from ¢ samples corrupted by a Gaussian chan-
nel A/(0, ). It is a function of the kernel k& and domain

D. For instance, if D is compact and convex, then we have

(d+1)
v = O((Int)@*1) for ks, O(tmigal-#l) In t) for knparerm, and
O(dInt) for a linear kernel (Srinivas et al. 2009).

Lower Bounds

In this section, we derive the lower bounds for both kgg and
kMatérn Under any LDP mechanism and any learning algo-
rithm, as presented in the following theorem.

Theorem 1. Let D = [0, 1]¢ for some d € N. Fix a kernel
k € {kSEa kaém}, B>0,e>0T¢€Z € (0,1), [ S
(0,1] and v > 0. Given any learning algorithm, any e-LDP
mechanism, there exists a function f € H (D) with || f|,, <
B, and a reward distribution satisfying B [|y,|'T*|F;_1] <
v for all t € [T), such that the following hold, respectively

da
24+2a
>

B(l+o¢)/aT<2
n ,Ul/a

o E[Ry] = Q (miaTliaglfi (1
where ( = e — 1, if k = ksg

v v+d ~ da
o [E [RT] — 0O (U v(lfo)+da TV(I«F(z)idu CB v(ito)tda >’
~ —20 4 2da?
where C = (:1+0t (ITFa)(v(I+a)Fda) and( = e — 1, lf
k= k'Matérn-

Remark 1. For a small ¢ and o = 1, and hence ( = e,
the regret lower bounds in Theorem I have an additional
factor of 1/¢ in front of the lower bounds for non-private
case in (Chowdhury and Gopalan 2019)3.

Proof Sketch of Theorem 1. The proof follows the standard
techniques in (Scarlett, Bogunovic, and Cevher 2017;
Chowdhury and Gopalan 2019), which provide lower
bounds for non-private BO under i.i.d Gaussian noise (or
heavy-tailed payoffs). The key challenge is handle the addi-
tional requirement of e-LDP. To this end, we aim to relate
the Kullback-Leibler (KL) divergence between two distri-
butions P; and P, to the KL divergence between two new
distributions M; and Ms, which are the distributions trans-
formed from P; and P according to a given e-LDP mech-
anism. Inspired by (Basu, Dimitrakakis, and Tossou 2019),
we resort to Theorem 1 of (Duchi, Jordan, and Wainwright
2013) and Pinskers inequality. More specifically, by Theo-
rem 1 of (Duchi, Jordan, and Wainwright 2013), we have

Dy (My||Ma) + Dy (Ma||My) < 4(e® = 1)?||PL — Po |7y

Then, by Pinskers inequality, we have
|Pr = P27y < 2Du(P1]|Py).

Thus, roughly speaking, there is an additional term (e€—1)2.
The full proof is in Appendix. O

3for k = K, it holds for a large v.
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Algorithms and Upper Bounds

In this section, we will present three algorithms that are able
to achieve nearly optimal regret while guaranteeing e-LDP.
All the three algorithms rely on adding additional Laplace
noise on the reward (i.e., Laplace mechanism in DP) to
provide privacy guarantee. Note that, due to the additional
Laplace noise, the rewards received by the learner are now
no longer sub-Gaussian, and hence standard algorithms will
not work. As a result, the three algorithms mainly differ in
the way of handling the issue of non-sub-Gaussian rewards.

Laplace Mechanism

A commonly used mechanism in the areas of DP is the
Laplace mechanism, which adds independent Laplace noise
to the data point. For any £ > 0, the PDF of the Laplace(L)
(i.e., mean is zero) is given by

Laplace(£) : I(x | £) = (2£) " exp(—|z|/L).
Thus, it is with mean 0 and variance 2£2. The Laplace mech-

anism used in this paper is stated in Curator 1 and its theo-
retical guarantee is given by Lemma 1.

Curator 1 Convert-to-Laplace (CTL(e))
On receiving a reward observation y;:

return §; := y; + L, where L ~ Laplace(£) and £ =
2(B+R)

€

Lemma 1. CTL(¢) guarantees ¢-LDP.

Proof. See Appendix.

Adaptively Truncated Approximate (ATA)
Algorithm and Regret

One direct way of handling non-sub-Gaussian rewards in
BO is to utilize the recently developed technique for heavy-
tailed payoffs (Chowdhury and Gopalan 2019). In particu-
lar, the authors show that when combining a good feature
approximation (e.g., Nystrom approximation) and a feature
adaptive truncation of rewards (e.g., TOFU in (Shao et al.

2018)), one can obtain a regret bound roughly O(WTTH% ),
when the (1 + «)-th moment of the reward is finite and o €
(0, 1]. Hence, when o = 1, it recovers the regret bounds un-
der sub-Gaussian rewards (Chowdhury and Gopalan 2017).

Thus, it is natural to adapt ATA-GP-UCB introduced
in (Chowdhury and Gopalan 2019) to handle the non-sub-
Gaussian payoffs caused by the Laplace noise in the LDP
setting, which leads to the LDP-ATA-GP-UCB, as described
in Algorithm 1.

Further, by adapting the regret analysis of ATA-GP-UCB
in (Chowdhury and Gopalan 2019), we have the following
theorem for the regret upper bound of LDP-ATA-GP-UCB.
Theorem 2. Let f € H (D) with || f||,, < B forall x € D
and noise 1 is bounded by R. Fix ¢ > 0, ¢ € (0,1) and
set p = 15, and v = B? + R* + 8(B + R)*/e”. Then,
forany § € (0,1], LDP-ATA-GP-UCB with parameters q =
6pIn(4T/68)/e% by = \/v/In(4m,T/8) and B1+1 = B(1+



Algorithm 1 LDP-ATA-GP-UCB

Algorithm 2 LDP-TGP-UCB

1: Input: Parameters A\, B, R, € > 0, {b;}i>1, {B}i>1,
and q.

2: Set: jig(z) = 0and 6¢(z) = k(x,x) forall z € D.
3: fort=1,2,3,...,7T do
4 Play xy = argmax,cp fis—1(x) + Bi(x)5¢—1(x)
5: Receive private response ; from CTL(¢)
6: Set mg as the dimension of ¢ ~ o
7: Set &7 = [@i(21),...,P¢(z¢)] and V; = &T' D, +
Mo,
Find the rows uf ..., u}, of V2T
9: Set 7; = Zj—:l Wi v Yr Lju, 5. |<b, TOr i € [my]

10:  Setf, =V, V3r, s T )T

11: Set i (z) = ¢ ()"0,

120 Set of(x) = k(@wx) — @) @(r) +
A () TV, gy ()

13: end for

L) + 4\/In(4m,T/5)vm¢/ N, with probability at least

1—¢

1 — 6, has regret bound

Ry =0 (pB Trr + E%@T) :

in which p = p(1+ \/11?) and pp =

wﬁ\/v In(T/6) In( 2L 0T/0))

Remark 2. Note that by substituting the value of v into the
regret bound, we obtain that Ry = O(yr\/T /). That is,
it has a factor of 1/e compared to the non-private case,
which matches the same scaling of € in the lower bounds
as shown in Theorem 1. Moreover, LDP-ATA-GP-UCB en-
Jjoys the same scaling with respect to both yr and T' as in
the state-of-the-art non-private sub-Gaussian case.

Although the LDP-ATA-GP-UCB algorithm achieves al-
most optimal regret bound, it might be a ‘overkill” for the
LDP setting. In particular, the original setting for the ATA-
GP-UCB algorithm in (Chowdhury and Gopalan 2019) only
assumes at most a finite variance. However, in our LDP
setting, the corrupted reward ¢ has all the moments being
bounded and enjoys an exponential-type tail. In other words,
although the additional Laplace noise causes the corrupted
reward to be no longer sub-Gaussian, it still enjoys better
properties compared to the general conditions for the ATA-
GP-UCB algorithm to work. Therefore, it seems that there
is some hope that we can design simple algorithm to achieve
the same regret bound. Another issue of ATA-GP-UCB is
its computational complexity. As pointed out by (Shao et al.
2018) in the linear bandit setting (ATA-GP-UCB reduces to
TOFU), for each round, it needs to truncate all the historical
payoffs, which leads to a high complexity.

Based on the discussions above, in the following, we will
propose two novel algorithms that are also able to achieve
almost optimal regret while substantially reducing the im-
plementation and computational complexity of LDP-ATA-
GP-UCB.

1: Input: Parameters B, R, € > 0, A, 4.

2: Set: K = B> + R? 4 22

3: fort =1,2,3,...,T do

4: Setbi_1 =B+ R+ LIn(t—1)

5. Set B = B + %bt_l Y1 +1n(1/5) +

S VE({t-1)+1)

6 Play z; = argmaxsep jir—1 (z) + 011 ()

7: Receive private response y; from CTL(e).

8: Setgjt :gt]lwt‘gbt andYt = [gl,...,gt]T

9: Set/lt(ac) :kt(l')T(Kt-F)\I)ilet
10 Set 02 (z) = k(x,x) — k()T (K + M) 7Lk (2)
11: end for

Raw Reward Truncation Algorithm and Regret

In this section, instead of using the sophisticated trunca-
tion in the feature space as in LDP-ATA-GP-UCB, we turn
to adopt the simple truncation on the raw rewards. In the
general heavy-tail reward setting (with at most a finite vari-
ance), (Chowdhury and Gopalan 2019) proposed TGP-UCB
algorithm which truncates the reward to zero if it is larger
than a truncated point b; for round ¢. Specifically, for a finite
variance case, the truncated point b; is 6(t'/*) in TGP-UCB,
which finally leads to an regret bound of O(73/4). Hence,
it has an additional factor O(7/*) when compared to the
regret bound for the sub-Gaussian case. This means that we
cannot directly adopt TGP-UCB to achieve the same regret
bound as in LDP-ATA-GP-UCB of the last section.

However, as pointed before, the corrupted reward ¢ has
a nice exponential tail property. This suggests that a trun-
cated point of order O(Int) is enough, which will only in
turn incurs an additional O(InT') factor in the regret. Based
on this idea, we propose the LDP-TGP-UCB algorithm, as
described in Algorithm 2.

Moreover, by refining the regret analysis of TGP-UCB
in (Chowdhury and Gopalan 2019), we can obtain the fol-
lowing theorem for the regret bound of LDP-TGP-UCB.

Theorem 3. Fix e > 0. Let f € Hy (D) with | f||,, < B for
all x € D and the noise 1, is bounded by R for all t. Then,
forany 6 € (0,1], LDP-TGP-UCB achieves, with probabil-
ity at least 1 — 0, the regret bound

Rr=0 (ﬁ\/lnTyTT + VT In T\ Ar(yr + 1n(1/5))> :

where ¥ = (B + R)/e.

Remark 3. As in LDP-ATA-GP-UCB, LDP-TGP-UCB is
also able to achieve regret bound O(yr\/T [¢). The advan-
tage of LDP-TGP-UCB is its simple implementation in the
sense that each reward is only trimmed once.

Proof Sketch of Theorem 3. As in most GP-UCB like algo-
rithms (Chowdhury and Gopalan 2017, 2019), the key step
boils down to establishing a (high-probability) confidence
interval bound, i.e., in our setting,

|f(z) — fie(x)| < Brrr0¢(x).




To this end, with some linear algebra calculations, we have

) o¢(x),

where 7 = §: — f(x¢), p(z) := k(z,-), which maps z €
R4 to RKHS H associated with kernel function k and V; =
¢g¢t + AIH? q)t = [So(ml)T? LR So(xt)T]T'

The key term is |30 _, - ¢(,) ”Vfl , which can be han-
dled by the self-normalized inequality if 7}, is sub-Gaussian.
However, in our setting, it is not. To overcome this issue, we
will divide it into two parts. In particular, similar to (Chowd-
hury and Gopalan 2019), we define &, = 7, — E 1) | Fy—1].
Now, the key term can be written as

t
13" ()l
T=1

|f (@) = fu ()| < (B ATV ()l

T=1

t t
=I1N_ &l + 1D ElirlFro] éla)ly - @)
T=1 =1

T T2

For 71, note that & 9 — E[g; | Fe—1], which is
bounded by 2b,, and hence sub-Gaussian. Thus, by the self-
normalized inequality for the RKHS-valued process in (Du-
rand, Maillard, and Pineau 2018; Chowdhury and Gopalan
2019), we can bound 77 as follows

Ti < 2biy/2(y, + In(1/9)).
For 73, with some linear algebra, we can first bound it as
\/ZizlE[ﬁA}'T,l]Q. Further, note that E [7j,|F,_1] =

—E [g:1)5,|>b, | Fr—1]. Hence, by Cauchy-Schwartz in-
equality with b, = B+ R + LIn T, we have

1
E [i|Fro1)® < E[F2|F-1] P(L| > L1nT) < K-,

where K := B? + R%+2L2. The last inequality holds since
|L| ~ Exp(1/L). Therefore, by the property of Harmonic

sum, we have
To <V/K(lnt+1).

Hence, the (high-probability) confidence interval bound is
obtained by setting

2v2
VA

The full proof is relegated to Appendix.

VEK(nt+1).

O

1
+ —

1= B+
Bf—&-l \/X

bt Yt +ln(1/5)

It is worth pointing out the truncation trick used in LDP-
TGP-UCB also sheds light on the regret bounds for non-
private BO under payoffs that are beyond sub-Gaussian,
e.g., sub-Weibull which includes sub-Gaussian and sub-
exponential as special cases (Vladimirova et al. 2019). More
specifically, according to (Vladimirova et al. 2019), a ran-
dom variable X is said to be a sub-Weibull with tail parame-
ter 0, i.e., X ~ subW(#), if for some constants a and b such
that

P(IX| > z) < aexp(—bz!/?), forallz >0. (5)
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It can be seen that sub-Gaussian and sub-exponential distri-
butions are special cases of sub-Weibull with § = 1/2 and
0 = 1, respectively. Thus, instead of choosing the truncation
point b; = O(Int) as in LDP-TGP-UCB, one turn to choose
by = O((Int)?), which in turn only incurs a log factor in
the regret bound. As a result, with this simple truncation, the
non-private BO under sub-Weibull noise is still O(y7v/T).

Median of Means Approximate (MoMA)
Algorithm and Regret

In this section, we will introduce a new BO method that is
able to achieve almost optimal regret bounds under general
heavy-tailed payoffs. Hence, the LDP setting is just a special
case. This new method is mainly inspired by the MENU al-
gorithm in (Shao et al. 2018), which is introduced to handle
the heavy-tailed payoffs in the linear bandit setting. More-
over, it has been shown to have a lower complexity than
TOFU (which is the core of ATA-GP-UCB). The key idea
in MENU is based on median of means techniques (Bubeck,
Cesa-Bianchi, and Lugosi 2013). The main challenge in gen-
eralizing MENU to the BO setting is to handle the possibly
infinite feature dimension associated with the kernel func-
tion. To this end, we will again use kernel approximation
techniques (i.e., Nystrom approximation) developed in (Ca-
landriello et al. 2019; Chowdhury and Gopalan 2019). How-
ever, instead of updating the approximations after every it-
eration as in ATA-GP-UCB, in our new method the approx-
imation is only updated after each ‘epoch’, which is com-
posed of multiple iterations. This further reduces its com-
plexity.

This new algorithm is called MoMA-GP-UCB, which is
presented in Algorithm 3. With the aid of Fig. 1 (adapted
from (Shao et al. 2018)), we can easily see that the total
number of 7" iterations are divided into [V epochs, each con-
sisted of k iterations. The algorithm will loop over each
n = 1,..., N epoch. Within each epoch n, a point z,, is
selected in a GP-UCB fashion, and the selected point x,,
will be played k times with corresponding rewards. Then,
the kernel approximation terms are updated, i.e., @, P, and
V... Following this update, it will calculate k least-square-
estimates (LSE), each is based on the rewards along each
row j € [k] (e.g., using the data in the pink row to generate
the pink LSE, and similarly green data for the green LSE).
Next, it applies median-of-means techniques to find the best
LSE 6,, i« for epoch n. Finally, the posterior mean and vari-
ance are updated.

Now, we have the following theorem for the regret bound
of MoMA-GP-UCB under general heavy-tailed payoffs.

Theorem 4. Let f € Hy(D) with || f|,, < B forall x € D.
Assume that E [|n,|'T® | F,_1] < c Fixe € (0,1) and
set p = 1t Then, for any § € (0,1], MoMA-GP-UCB
with parameters q = 6pIn(4T/8)/<% k = [241n (2<F

= [240n (5501,
and Bp41 = B(1+ \/11:) +3 ((anc)mnww) ) with




update posterior

=
S 3
!* ;

apply MoM using {0,,,:}%_, +
b,
find k LSEs based on{z; }/— -
AL
update approximations
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Figure 1: [llustration of MoMA-GP-UCB

probability at least 1 — 6, has regret bound

T T e
Ry =0 <B ~rT In 3 +ZIn 5cl+1aT1i0772~“+")> ,

o
where B = pB(1 + \/17) and 7 = (p >1+a.

Remark 4. Note that when oo = 1, MoMA-GP-UCB recov-
ers the same regret bound O('yT \/> T) as in the sub-Gaussian
case. Moreover, for the special linear kernel case, substitut-
ing yr = O(dInT), the bound in Theorem 4 recovers the
regret bound in (Shao et al. 2018) up to logarithmic factor.

3+a

£2

Proof Sketch of Theorem 4. The proof is mainly inspired
by (Shao et al. 2018; Chowdhury and Gopalan 2019). The
key step is again a (high-probability) confidence interval
bound, i.e.,

[f(x) = fin(2)] < Brir0n(z). (©)
Assume that the kernel approximation is e-accurate, the
LHS of Eq. (6) can be bounded by

@) = fiu(a)| < B+ <) (a)
X2V = O |l G (), (D)
where f, = [f(x1),..., f(z,)]T, i.e., a vector containing

f’s evaluations up to epoch n. Now, we need to focus on the

term |V, 1@ f,, — 0, - |, - To this end, we first establish
the following result regardmg the k LSEs. In particular, for
j € [k], we have

P (”vnil(igfn - én,ij/n < ’Y) >

where v := (9mpc) 5 207+ . Based on this result, by the
choice of k*, we obtain that if k = [241n (<L), then for all
n € [N], with probability at least 1 — 4,

IV @8 fo = Onie Il < 37 ®)
Combining Egs. (8) and (7), yields that, under the event that

the kernel approximation is e-accurate, with probability at
least 1 — 6,

F(&) - fin(a)| < (B(l n

1 —1/2 .
) A 37) 5ul2)
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Algorithm 3 MoMA-GP-UCB

1: Input: Parameters A, d, {8, }¢>1, and q.

2: Set: fig(z) = 0 and 6¢(x) = k(z, ) forall z € D.

3: Set: k= [24In (L) ] and N = | T .

4: forn=1,2,3,..., N do

5: Tp = argmax,cp ,an—l(x) + ﬁn(m)&n—l(ﬂj)

6: Play z, with k£ times and observe rewards
Yn,1,Yn,25 -« Yn,k-

7: &n(z) = NystromEmbed ({ (z;, 5r—1(2:)) }1,q)

8: Set m,, as the dimension of ¢,

9:  Set® =[p,(x1),...,Pn(xy)]and V,, = ®Td, +
Ao,

10: For j € [k], 0, 121 1Y, j‘Pn( i)

11: For j € [k], r] = med1an({||9nj — s v, 1S €
K]\ J})

12: Set k* = arg min ey ;

13: Set ﬂn(x) = @n(‘r)Tén,k*

14: Set 62(z) = k(z,2) — Pn(@)TPn(x) +
A ()T V()

15: end for

forall n € [N] when k = [241n (<L)]. Since for any 6, the
kernel approximation (under given parameters) is e-accurate
with probability at least 1 — 9, by the virtue of union bound,
we have that when k = [241n (2¢)],

foralln € [N], where 3,41 := B(1+ \/11:)+)\’1/23’y. Fi-

nally, by the nice properties of Nystrém approximation, we

can obtain that with probability at least 1 — J, both m,,
2

O(Z v, In(T/5)) and Gy, —1(zn) < pon— 1(xn) Then, the

regret bound follows from that R = 2k Z —1 BnOn-1(x)

along with standard GP-UCB analysis. The full proof is rel-
egated to Appendix. O

Now, we can easily design the private version of it,
called LDP-MoMA-GP-UCB. The only difference is line 6,
in which LDP-MoMA-GP-UCB received private response
from CTL(e). Thus, we can directly obtain the regret bound
of LDP-MoMA-GP-UCB as a corollary of Theorem 4.

Corollary 1. Let f € Hy (D) with || f||,, < B forall x €
D and noise 1, is bounded by R. Fixe > 0, ¢ € (0,1)
and set p = 1=, and ¢ = R* + 8(B + R)?/€%. Then,
for any § € (0,1), LDP-MoMA-GP-UCB with parameters

q=6pIn(4T/8)/e? k = [241n (2<L)] and Bpi1 = B(1+

\/11:) +3 ((9mn0)1+%n2<11:r(:‘> ), with probability at least
1 — 6, has regret bound

. T TB+R
RT:O<B ’yTTln(s—i—Zlng + 'yT\/>>
2
whereB:pB(lJrF) and 7Z = (?) e



IS

[=)

-
=
.2

Cumulative Regret
)

Cumulative Regret
o =~ N w Ao o

o

14

egref
S ™

®

Cumulative Regret

o N Ao

o

0.5 15 2

x10*

(a) LDP, € = 1, Synthetic data, kmagm

4x10°

o

1 2000 4000
Iteration

x10°

6000 8000 10000
Iteration

(b) LDP, € = 0.5, Light sensor data

0 2000 4000 6000 8000 10000

Iteration

(c) LDP, € = 1, Stock market data.

x10°

« TGP-UCB « TGP-UCB
'©ATA-GP-UCB |©ATA-GP-UCB
'wMoMA-GP-UCB| 'wMoMA-GP-UCB|

3 3

\

Cumulative Regret
r

Cumulative Regret
)

[« TGP-UCB
l@ATA-GP-UCB
'¥MoMA-GP-UCB|

& o ®

Cumulative Regret
N

15 2

2000 4000
x10*

1
Iteration

(d) Non-private, Synthetic data, ksg

6000 8000 10000
Iteration

(e) Non-private, Light sensor data

2000 4000 6000 8000 10000
Iteration

(f) Non-private, Stock market data

Figure 2: (a)-(c) Cumulative regrets for three LDP algorithms; (d)-(f) Cumulative regrets (and standard variance) for non-private

versions on heavy-tailed data.

Unbounded Noise Case

In the case of unbounded noise, we show that Laplace mech-
anism can ensure (¢, §)-LDP (weaker than e-LDP), see Ap-
pendix.

Experiments

We conduct experiments to compare the performance of
the three private algorithms (i.e., LDP-ATA-GP-UCB, LDP-
TGP-UCB, LDP-MoMA-GP-UCB) and the performance of
three non-private BO methods for general heavy-tailed pay-
offs (i.e., ATA-GP-UCB, TGP-UCB in (Chowdhury and
Gopalan 2019) and MoMA-GP-UCB proposed in this pa-
per). As in (Chowdhury and Gopalan 2019), the parameters
used for each algorithm are set order-wise similar to those
recommended by the theorems. We run each algorithm for
10 independent trials and plot the average of cumulative re-
gret along with time evolution.

Datasets and Settings

Synthetic data. The domain D is generated by discretiz-
ing [0, 1] uniformly into 100 points. The black-box function
f = >, aik(-,x;) is generated by uniformly sampling
a; € [—1,1] and support points z; € D with p = 100. The
parameters for the kernel function are [ = 0.2 for ksg and
I =02, v =25 for kyaem. We set B = maxgep | f(2)]
and y(x) f(x) + n. For the LDP case, the noise 7 is
uniformly sampled in [—1, 1] and hence R = 1. For the non-
private heavy-tailed case, the noise 7 are samples from the
Student’s ¢-distribution with 3 degrees of freedom. Hence,
v=DB?+3andc=3.

Light sensor data. This data is collected in the CMU In-
telligent Workplace in Nov 2005, which is available online
as Matlab structure* and contains locations of 41 sensors,
601 train samples and 192 test samples. We use it in the
context of finding the maximum average reading of the sen-
sors. For fair comparison, the settings for this dataset follow

*http://www.cs.cmu.edu/~guestrin/Class/10708-F08/projects
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from (Chowdhury and Gopalan 2019),which has shown that
the payoffs are heavy-tailed. In particular, f is set as empir-
ical average of the test samples, with B set as its maximum,
and k is set as the empirical covariance of the normalized
train samples. The noise is estimated by taking the differ-
ence between the test samples and its empirical mean (i.e.,
f), and R is set as the maximum. Here, we consider o = 1,
set v as the empirical mean of the squared readings of test
samples, and c is the empirical mean of the squared noise.

Stock market data. This dataset is the adjusted closing
price of 29 stocks from January 4th, 2016 to April 10th,
2019. We use it in the context of identifying the most prof-
itable stock in a given pool of stocks. As verified in (Chowd-
hury and Gopalan 2019), the rewards follows from heavy-
tailed distribution. We take the empirical mean of stock
prices as our objective function f and empirical covariance
of the normalized stock prices as our kernel function k. The
noise is estimated by taking the difference between the raw
prices and its empirical mean (i.e., f), with R set as the max-
imum. Consider o = 1, with v set as the empirical mean of
the squared prices and c set as the empirical mean of squared
noise.

Results

From Figure 2, we can see that MoMA-GP-UCB (or LDP-
MoMA-GP-UCB) tends to empirically outperform the other
two algorithms in both non-private and private settings.
We also conduct additional experiments (relegated to Ap-
pendix), and similar observations are obtained. Note that
similar to (Chowdhury and Gopalan 2019), the high error
bar in (d) is because a different f is chosen for each trial.

Conclusion

We derived regret lower bounds for LDP BO and pre-
sented three almost optimal algorithms. We also proposed
MoMA-GP-UCB. It complements previous BO algorithms
for heavy-tailed payoffs and has superior performance with
areduced complexity.



References

Abbasi-Yadkori, Y.; Pal, D.; and Szepesvéri, C. 2011. Im-
proved algorithms for linear stochastic bandits. In Advances
in Neural Information Processing Systems, 2312-2320.

Basu, D.; Dimitrakakis, C.; and Tossou, A. 2019. Differen-
tial Privacy for Multi-armed Bandits: What Is It and What Is
Its Cost? arXiv preprint arXiv:1905.12298 .

Bubeck, S.; Cesa-Bianchi, N.; and Lugosi, G. 2013. Bandits
with heavy tail. IEEE Transactions on Information Theory
59(11): 7711-7717.

Calandriello, D.; Carratino, L.; Lazaric, A.; Valko, M.; and
Rosasco, L. 2019. Gaussian process optimization with
adaptive sketching: Scalable and no regret. arXiv preprint
arXiv:1903.05594 .

Chowdhury, S. R.; and Gopalan, A. 2017. On kernelized
multi-armed bandits. arXiv preprint arXiv:1704.00445 .

Chowdhury, S. R.; and Gopalan, A. 2019. Bayesian opti-
mization under heavy-tailed payoffs. In Advances in Neural
Information Processing Systems, 13790-13801.

Cormode, G.; Jha, S.; Kulkarni, T.; Li, N.; Srivastava, D.;
and Wang, T. 2018. Privacy at scale: Local differential pri-
vacy in practice. In Proceedings of the 2018 International
Conference on Management of Data, 1655-1658.

Duchi, J. C.; Jordan, M. I.; and Wainwright, M. J. 2013. Lo-
cal privacy and statistical minimax rates. In 2013 IEEE 54th
Annual Symposium on Foundations of Computer Science,
429-438. IEEE.

Durand, A.; Maillard, O.-A.; and Pineau, J. 2018. Stream-
ing kernel regression with provably adaptive mean, variance,
and regularization. The Journal of Machine Learning Re-
search 19(1): 650-683.

Dwork, C.; Roth, A.; et al. 2014. The Algorithmic Founda-
tions of Differential Privacy. Foundations and Trends®) in
Theoretical Computer Science 9(3—4): 211-407.

Gajane, P.; Urvoy, T.; and Kaufmann, E. 2018. Corrupt ban-
dits for preserving local privacy. In Algorithmic Learning
Theory, 387-412. PMLR.

Kasiviswanathan, S. P.; Lee, H. K.; Nissim, K.; Raskhod-
nikova, S.; and Smith, A. 2011. What can we learn privately?
SIAM Journal on Computing 40(3): 793-826.

Kusner, M.; Gardner, J.; Garnett, R.; and Weinberger, K.
2015. Differentially private Bayesian optimization. In In-
ternational conference on machine learning, 918-927.

Lai, T. L.; and Robbins, H. 1985. Asymptotically efficient
adaptive allocation rules. Advances in applied mathematics
6(1): 4-22.

Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010. A
contextual-bandit approach to personalized news article rec-

ommendation. In Proceedings of the 19th international con-
ference on World wide web, 661-670.

Mutny, M.; and Krause, A. 2018. Efficient high dimensional
bayesian optimization with additivity and quadrature fourier
features. In Advances in Neural Information Processing Sys-
tems, 9005-9016.

11159

Rasmussen, C. E. 2003. Gaussian processes in machine
learning. In Summer School on Machine Learning, 63-71.
Springer.

Ren, W.; Zhou, X.; Liu, J.; and Shroff, N. B. 2020. Multi-
Armed Bandits with Local Differential Privacy. arXiv
preprint arXiv:2007.03121 .

Scarlett, J.; Bogunovic, I.; and Cevher, V. 2017. Lower
bounds on regret for noisy gaussian process bandit optimiza-
tion. arXiv preprint arXiv:1706.00090 .

Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R. P.; and
De Freitas, N. 2015. Taking the human out of the loop: A
review of Bayesian optimization. Proceedings of the IEEE
104(1): 148-175.

Shao, H.; Yu, X.; King, I.; and Lyu, M. R. 2018. Almost
optimal algorithms for linear stochastic bandits with heavy-
tailed payoffs. In Advances in Neural Information Process-

ing Systems, 8420-8429.

Srinivas, N.; Krause, A.; Kakade, S. M.; and Seeger, M.
2009. Gaussian process optimization in the bandit set-
ting: No regret and experimental design. arXiv preprint
arXiv:0912.3995 .

Vladimirova, M.; Girard, S.; Nguyen, H.; and Arbel, J. 2019.
Sub-Weibull distributions: generalizing sub-Gaussian and
sub-Exponential properties to heavier-tailed distributions.
arXiv preprint arXiv:1905.04955 .

Zheng, K.; Cai, T.; Huang, W.; Li, Z.; and Wang, L. 2020.
Locally Differentially Private (Contextual) Bandits Learn-
ing. arXiv preprint arXiv:2006.00701 .



