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Abstract

Recent advances in neural-symbolic learning, such as Deep-
ProbLog, extend probabilistic logic programs with neural pred-
icates. Like graphical models, these probabilistic logic pro-
grams define a probability distribution over possible worlds,
for which inference is computationally hard. We propose Deep-
StochLog, an alternative neural-symbolic framework based
on stochastic definite clause grammars, a kind of stochastic
logic program. More specifically, we introduce neural gram-
mar rules into stochastic definite clause grammars to create
a framework that can be trained end-to-end. We show that
inference and learning in neural stochastic logic program-
ming scale much better than for neural probabilistic logic pro-
grams. Furthermore, the experimental evaluation shows that
DeepStochLog achieves state-of-the-art results on challenging
neural-symbolic learning tasks.

Introduction
The integration of neural and symbolic learning methods
is high on the research agenda. It is popular to use (vari-
ants of) logic programs to represent the available symbolic
knowledge and use Prolog-like mechanisms to generate com-
putation structures that can then be differentiated (Manhaeve
et al. 2018; Dai et al. 2019; Rocktäschel and Riedel 2017;
Yang, Ishay, and Lee 2020; Cohen, Yang, and Mazaitis 2020;
Sourek et al. 2018; Si et al. 2019). Several of these approaches
also incorporate probability into these neural logic program-
ming models, cf. (De Raedt et al. 2020). Most notably, one
distinguishes probabilistic from stochastic logic programs
(PLPs vs SLPs). The more popular PLPs (De Raedt and Kim-
mig 2015) are based on a possible worlds semantics (i.e. the
distribution semantics (Sato 1995)), which extends proba-
bilistic graphical models, while the SLPs (Muggleton 1996,
2000; Cussens 2001) are based on stochastic grammars. The
difference can also be described as a random graph vs a ran-
dom walk model. So far, the emphasis in neural-symbolic
computation has been on the PLP approach, especially (Yang,
Ishay, and Lee 2020; Manhaeve et al. 2018; Sourek et al.
2018; Tsamoura and Michael 2020), with only Tensorlog
(Cohen, Yang, and Mazaitis 2020) adopting the SLP seman-
tics in an efficient but restricted Datalog or database setting.

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

To fill this gap, we introduce DeepStochLog, a neural stochas-
tic logic programming approach. It incorporates ideas from
DeepProbLog, such as the neural predicate. The neural predi-
cate encapsulates neural networks to cope with sub-symbolic
data such as images. Without loss of generality, we base
DeepStochLog on stochastic definite clause grammars (SD-
CGs) as this notation is not only easier to introduce and use,
but also results in a sequence-based model. SDCGs are a kind
of probabilistic unification-based grammar formalism (Have
2009). However, SDCGs and SLPs are very closely related.
SDCGs can be directly translated and executed as SLPs, and
all the concepts we introduce for SDCGs can directly apply to
SLPs as well. More specifically, the key contributions of this
paper are: 1) the introduction of the neural stochastic logic
programming framework DeepStochLog; 2) the introduc-
tion of inference and learning algorithms (through gradient
descent) for DeepStochLog programs; and 3) experimental
results that show that DeepStochLog obtains state-of-the-art
results on a number of challenging tasks for neural-symbolic
computation and that it is also several orders of magnitude
faster than alternative approaches based on PLPs.

Stochastic DCGs
A context-free grammar (CFG) G is a 4-tuple (V,Σ, S,R),
with V the set of non-terminals, Σ the set of terminals, S ∈ V
the starting symbol and R a set of rewrite rules of the form
N → S1, ..., Sk where N is a non-terminal, the Si are ei-
ther terminals or non-terminals. A probabilistic context-free
grammar (PCFG) extends a CFG by adding probabilities to
the rules R, i.e., the rules take the form pi :: N → S1, ..., Sk,
where pi is a probability. Furthermore, the probabilities of
rules with the same non-terminal N on the left-hand side
must sum to 1. We use list notation for sequences of termi-
nals such as [cat] and [the, cat]. Whereas CFGs only define
whether a sequence can be parsed, PCFGs define a probabil-
ity distribution over possible parses. This allows for the most
likely parse to be identified. An example PCFG is shown at
the top of Example 1.

Definite clause grammars (DCGs) (Pereira and Warren
1980) are a well-known logic programming-based exten-
sion of CFGs. DCGs are unification base and can represent
context-sensitive grammars. They differ from CFGs in that
logical atoms are used instead of the non-terminals. An atom
a(t1, ..., tn) consists of a predicate a of arity n followed by
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n terms ti. Terms are either constants, logical variables or
structured terms of the form f(t1, ..., tk) with f a functor
and tj terms. The production rules are called definite clause
grammar rules because they can be directly translated to a set
of definite clauses (i.e., Horn clauses with exactly one posi-
tive literal) and can be executed as a Prolog program using
SLD-resolution. The right hand side of DCG rules are also
allowed to contain queries to Prolog predicates qi between
curly brackets {q1(t1,1, ..., t1,m1

), ..., qn(tn,1, ..., tn,mn
)} to

impose further constraints and perform additional computa-
tions during the inference process. These are to be considered
atoms as well. Substitutions {V1 = t1, ..., Vn = tk} are sets
of variable/term pairs. Applying a substitution to an atom a
yields the atom aθ where all variables Vi have been replaced
by their corresponding terms ti. θ is a unifier of an atom s
and an atom u if and only if sθ = uθ. For more information,
see standard textbooks on logic programming such as (Flach
1994; Sterling and Shapiro 1994).

Stochastic definite clause grammars (SDCGs) extend
DCGs by associating probabilities to the rules, just like how
PCFGs extend CFGs (Have 2009). As PCFGs, SDCGs re-
quire that the sum of the probabilities for the rules defining
a single non-terminal predicate equals 1. SDCGs also corre-
spond directly to stochastic logic programs (SLP) (Cussens
2001; Muggleton 1996, 2000) which are well-known in the
probabilistic (logic) programming community (De Raedt and
Kimmig 2015). An example SDCG is shown in Example 1
at the bottom.
Example 1 (PCFG and SDCG). A PCFG:

0.5 :: E → N

0.5 :: E → E, [+], N

0.1 :: N → [0] ... 0.1 :: N → [9]

and a similar SDCG that constrains the result of the expres-
sion.

0.5 :: e(N)→ n(N)

0.5 :: e(N)→ e(N1), [+], n(N2), {N is N1 +N2}
0.1 :: n(0)→ [0] ... 0.1 :: n(9)→ [9]

The inference task in (S)DCGs consists of deriving a se-
quence of terminals from a goal (which often captures the
starting symbol of the grammar). SLD-derivations are used
for this. More formally, in an SLD-derivation for a DCG, a
goal g1, ..., gn is a sequence where each gi is either a logical
atom (a non-terminal) or a list containing terminals or logical
variables. An SLD-derivation is shown in Example 2 and
uses several resolution steps. Applying resolution to a goal
g1, ..., gn and a definite clause grammar rule n → t1, ..., tk
yields the goal g1θ, ..., gi−1θ, t1θ, ..., tkθ, gi+1θ, ..., gnθ pro-
vided that gi is the leftmost atom in the goal (so g1, ..., gi−1
are terminal symbols), θ is the unifier of gi and n, i.e., giθ =
nθ.1 We will write g1, ..., gn ` t1θ, ..., tkθ, s2θ, ..., snθ. A
derivation d(G) is then the repeated application G ` G1θ1 `

1When a Prolog query q is the first non-terminal to occur in a
goal during the derivation process, the query is executed in Prolog
possibly yielding an answer substitution θ such that qθ is true. For
instance, in Example 1, there is the Prolog query N is N1 +N2

G2θ1θ2 ` ... ` Gnθ1θ2...θn of such resolution steps onto
a goal G. We will write G `∗ Gn. Successful derivations
of a goal end in a sequence T that consists only of terminal
symbols, see Example 2 for an example. We will write that
d(G) = T and also say that derives(Gθ, T ) is true, with
θ = θ1θ2...θn the answer substitution. A successful deriva-
tion corresponds to a proof. The set of all possible proofs can
be depicted using SLD-trees, see Figure 1a.

The probability P (d(G)) of a derivation d(G) is the prod-
uct of the probabilities

∏
pmi
i of the rules i used in the

derivation with mi the number of times the rule i was
used. An important difference between the probability of
a parse in a PCFG and a derivation in an SDCG is that
there can be a loss of probability mass in the latter. Deriva-
tions can fail in case there are non-terminals in the goal
that do not unify with the heads of any of the rules. This
is due to unification and is different from (P)CFGs, where
non-terminals can always be resolved using rules for that
non-terminal. There also exist non-terminating derivations.
The probability P (derives(Gθ, T )) of answer substitutions
θ and terminal sequences T for a goal G is defined as
P (derives(Gθ, T )) =

∑
di(Gθ)=T

P (di(Gθ)), i.e. the sum
of the probabilities of all derivations for G that result in
the terminal sequence T and answer substitution θ. Notice
that the distribution is always relative to the goal G and
sequence T . The goal can consist of one or more atoms,
but in general for parsing, this will typically be the start-
ing symbol or atom of the grammar. Notice that if there are
failing derivations, the total probability mass assigned to all
sequences of terminals for a goal G may be strictly less than
1. This is discussed at length by (Cussens 2001). It is pos-
sible to obtain normalized probabilities by calculating the
normalization constant, but this is computationally expensive.
We avoid this normalization in the present paper because in
practice, the goal is often to find the most likely derivation
dmax(G,T ) = arg maxd(G)=T P (d(G)), non-normalized
probabilities usually suffice.
Example 2 (Derivations). Consider the following successful
derivation using the SDCG in Example 1 for the goal G =
[e(X)], the answer substitution θ = {X/2} and the terminal
sequence T = [2,+, 0].

e(X) ` e(N1), [+], n(N2), {X is N1 +N2}
` n(N1), [+], n(N2), {X is N1 +N2}
` [2,+], n(N2), {X is 2 +N2}
` [2,+, 0], {2 is 2 + 0}
` [2,+, 0]

with θ1 = {}, θ2 = {}, θ3 = {N1/2} and θ4 =
{X/2, N2/0}. Moreover, p = 0.5× 0.5× 0.1× 0.1

DeepStochLog
DeepStochLog integrates neural networks and SDCGs by
introducing neural definite clause grammars (NDCG).

which computes N as the sum of N1 and N2. In this paper, we
assume that when such a query is called there is at most one answer
substitution that is true. If there were more such substitutions, we
would have to introduce a probability for such substitutions in the
SDCG case, which unnecessarily complicates the semantics.
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More formally, DeepStochLog allows for specifying an
SDCG that additionally supports neural definite clause gram-
mar rules, or neural rules for short. These are statements of
the form:

nn(m, I,O,D) :: nt→ g1, ..., gn

where nt is an atom, g1, ..., gn is a goal, and the I =
[I1, ..., Im] and O = [O1, ..., OL] are lists of variables oc-
curring in g1, ..., gn and nt. The nn declaration states that
m is a neural network that takes the variables I1, . . . , Im as
input and produces a probability distribution over the out-
put variables for O1, ..., OL as output. It thus maps an input
substitution σ for the variables I1, ..., Im to a set of output
substitutions θj with probability pj . D = [D1, ..., DL] is a
list of unary predicates, where Di defines the domain of the
output variable Oi. The neural rule serves as a template. For
every input substitution σ, the template (nt → g1, ..., gn)σ
defines the set of instantiated stochastic definite clause gram-
mar rules pj :: (nt→ g1, ..., gn)σθj .

Example 3 (Neural definite clause grammar rules). Consider
the SDCG in Example 1. We can substitute the n(X)→ [X]
rules with the following neural rule

nn(mnist, [Mnist], [N ], [digit]) :: n(N)→ [Mnist].

Here, the neural network called mnist takes as input an
MNIST image (Lecun et al. 1998) and returns a probabil-
ity for all digits between 0 and 9, indicating its confidence
for each digit. The predicate digit is defined as the facts
digit(0) up to digit(9). Given the neural network and the
input substitution σ = {Mnist = } (which could be
obtained through unification with the terminal sequence),
the neural network could generate the output substitutions
θ0 = {N = 0}; ... ; θ9 = {N = 9}; with probabilities 0.87;
... ;0.05. Thus, the neural rule with the input substitution
σ = {Mnist = } denotes the following set of grammar
rules: 0.87 :: n(0)→ [ ]; . . . ; 0.05 :: n(9)→ [ ]

The neural rules are reminiscent of the neural predicates in
DeepProbLog (Manhaeve et al. 2018), which also encapsu-
late a neural network that outputs a distribution over a number
of alternatives. It is worth analyzing how a neural rule be-
haves w.r.t the neural inputs (e.g. images). In fact, a neural
rule defines a probability distribution over the values of the
output variables given the neural inputs, whose distribution
is not modeled in the program. This conditional setting is
akin to conditional PCFGs (Riezler et al. 2002; Sutton and
McCallum 2006) and it is a common modeling strategy in
discriminative parsing. DeepStochLog could also be used
to define generative grammars on subsymbolic inputs (e.g.
images) if provided with neural models that can provide a
joint probability distribution of both outputs and images. This
is also discussed in (Manhaeve et al. 2021) but will not be
further analyzed in the current paper.

Using empty production rules can be a technique for more
flexible modeling. This also more clearly shows the link
between SLPs and DCGs. This is illustrated in Example 4.

Example 4 (Empty productions). We show a variant of the
single digit MNIST Addition problem using empty produc-

tions.

nn(mnist, [X], [Y ],[digit]) :: number(X,Y )→ [].

addition(X,Y,N)→number(X,N1),

number(Y,N2), {N is N1 +N2}.

This grammar will always produce the empty sequence, in-
stead of producing a sequence of MNIST digit images that
must be summed. Instead, the single digit numbers are given
as arguments X and Y to the goal addition predicate,
which are then passed to the number predicate, in turn
giving them as input to the neural network. Through the Pro-
log unification mechanism and the probabilistic modeling,
we can thus express complex stochastic logic programs that
include calls to neural networks.

Inference in DeepStochLog
The goal of the inference is to compute the probability
P (derives(G,T )) for a given goal G and (possibly un-
known) sequence T . This is divided into two steps: logical
inference and probabilistic inference.

Logical inference Given a DeepStochLog program, a goal
G and a (potentially unknown) sequence T , logical inference
uses resolution to answer derives(G,T )2. This corresponds
to finding all the possible derivations for G that result in a ter-
minal sequence T . The resolution process is then turned into
a compact AND-OR circuit, which represents all possible
derivations and will be the input for the probabilistic infer-
ence. The logical inference procedure is illustrated in Figure
1. The SLD resolution tree for the given goal is at the top and
its corresponding AND-OR circuit below. The translation
to the AND-OR circuit is straightforward. It has exactly the
same structure as the SLD-tree. For every resolution step
with a rule pi :: ri, an AND node is added. Furthermore,
for a normal SDCG rule, the corresponding probability pi is
added, and for a neural grammar rule, there is a call to the
neural network that returns the probability pm. Whenever
there are two (or more) branches in the SLD tree for a goal,
an OR node is added. Notice that all the leaves are either
probabilities given as parameters or the result of a neural call.

During SLD resolution, many identical intermediate goals
may be proved multiple times which results in an explosion
of inference time. To avoid proving the same goals, we use
SLG resolution (Chen and Warren 1996), which plays a sim-
ilar role as the dynamic programming CYK algorithm for
CFGs (Kasami 1966). Tabling using SLG resolution is a
standard logic programming technique that memoizes the an-
swers of predicates by tabling the evaluations. This technique
is incorporated in Prolog implementations such as XSB, SWI-
Prolog and Prism (Sato and Kameya 1997). The important
difference with SLD resolution is that the results are not a
single derivation tree, but rather a forest, where certain parts
are re-used for multiple derivations thanks to tabled evalua-
tions. The effect of tabling is carried over to the creation of
the AND-OR tree. Each time a derivation is reused from the

2This is sometimes called phrase or sentence in actual Prolog
implementations and it requires an automatic syntactical translation
of a DCG into Prolog. We show an example in the Appendix.
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e(1)

e(E1), [+], n(E2), {1 is E1+E2}

n(E1), [+], n(E2), {1 is E1+E2}

[  ,+], n(E2), {1 is 0+E2}

[  ,+,  ], {1 is 0+1}

[  ,+,  ]

[  ,+], n(E2), {1 is 1+E2}

[  ,+,  ], {1 is 1+0}

[  ,+,  ]

(a) The SLD tree for derives(e(1), [ ,+, ]). Fail-
ing branches are omitted.

ANDp1

OR

ANDp2

AND ANDpm(     = 0) pm(     = 1)

ANDp2

pm(     = 1)

AND p2

pm(     = 0)

(b) AND-OR circuit for derives(e(1), [ ,+, ])

Figure 1: The different steps of inference on an example
grammar.

table, its corresponding node is returned and linked to the
new derivation. Thus, also the AND-OR circuit turns into a
forest. During training, DeepStochLog caches the AND-OR
forests and is able to re-evaluate them with different parame-
ters and inputs. This prevents unnecessary computation and
makes training more tractable.

Probabilistic inference. With probabilistic inference, we
refer to the task of calculating the probability:

P (derives(G,T )) =
∑

d(Gθ)=T

P (d(Gθ))

=
∑

d(Gθ)=T

∏
ri∈d(Gθ)

pmi
i ,

i.e. the sum of the probabilities of all derivations for a given
G that result in a given terminal sequence T and answer sub-
stitution θ. Thanks to SLG resolution and tabling, the shared
sub-structure of many derivations is explicit in the AND-OR
circuit obtained from the logical inference. This dissipates
the need for a specialized algorithm, like the inside algorithm
used in the probabilistic extension of CYK. Computing the
probability P (derives(GΘ, T )) is just a bottom-up evalua-
tion of the AND-OR circuit where AND-nodes are substi-
tuted by multiplications and OR-nodes by summations, i.e.
compiling the logical circuit to an arithmetic circuit using the
(+,×) semiring (Kimmig, Van den Broeck, and De Raedt
2011). Analogously, the most probable derivation for the goal
G is found with the (max,×) semiring.

Learning in DeepStochLog
Let us consider a dataset of triples D = {(Giθi, Ti, ti)},
where Gi is a goal, θi a substitution for Gi, Ti a sequence

of terminals and ti a target probability. Let us also consider
a DeepStochLog program parameterized by the vector p of
rule probabilities.

Learning in DeepStochLog is defined as the following
optimization problem, with L being any differentiable loss
function:

min
p

∑
(Giθi,Ti,ti)∈D

L
(
P (derives(Giθi, Ti)), ti

)
(1)

Computing the probability in terms of an arithmetic circuit
has an important advantage. In fact, the corresponding com-
putational graph is differentiable and the derivatives of the
loss function L w.r.t. the probabilities p can be carried out au-
tomatically using out-of-the-box differentiation frameworks.
Moreover, when the probabilities p are computed by a neural
network as for a neural grammar rule, the gradients can be
seamlessly backpropagated to the network to train its internal
parameters. We solve the learning problem using standard
gradient descent techniques from deep learning, e.g. Adam
(Kingma and Ba 2015).

One interesting case is when the loss function L is the neg-
ative log-likelihood, as it brings DeepStochLog into the stan-
dard learning scenario for probabilistic grammars, where the
optimization problem is usually carried out in the expectation-
maximization (EM) framework. Here, given an inside algo-
rithm that computes the probability of a given input, a corre-
spondent outside algorithm is designed to extract the expected
counts of the various grammar rules from data (E-step) and
then the counts are used to update the probabilities (M-step).
Most of the developed inside-outside algorithms are tailored
to a specific formalism. However, the gradient descent ap-
proach of DeepStochLog on the negative log-likelihood is
actually equivalent to the EM approach but it does not require
the explicit definition of the corresponding outside algorithm.
In fact, the gradients obtained by the backward pass through
the AND-OR circuit have been shown to actually compute
the outside probabilities (E-step), while the gradient descent
step is used to update the parameters (M-step) (Salakhutdi-
nov, Roweis, and Ghahramani 2003; Berg-Kirkpatrick et al.
2010; Eisner 2016).

Code and Data
We released DeepStochLog as an installable Python package
and published all code and data used evaluation tasks on
https://github.com/ML-KULeuven/deepstochlog.

Evaluation
Research Questions
The goal of our experiments is to answer the following ques-
tions:

Q1 Does DeepStochLog reach state-of-the-art predictive per-
formance on neural-symbolic tasks?

Q2 How does the inference time of DeepStochLog compare
to other neural-symbolic frameworks and what is the role
of tabling?

Q3 Can DeepStochLog handle larger-scale tasks?
Q4 Can DeepStochLog go beyond grammars and encode

more general programs?
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Tasks
We used several tasks to evaluate DeepStochLog. Complete
details are specified in the appendix and the code repository.
We used similar or the same architectures and hyperparame-
ters for the neural network models as used in DeepProbLog.

T1: MNIST Addition. In the MNIST Addition task (Man-
haeve et al. 2018), the model is given two sequences of
length N of MNIST images containing handwritten images,
each representing an N-digit number. The task is to predict
the sum of these numbers. The training data only contains
the two image sequences and the sum of the correspond-
ing numbers, thus not providing the digit labels of the indi-
vidual images. For example, a top level query for this task
is derives(addition(5), [ ,+, ]))). A neural rule is de-
fined for recognizing single digits. These are then used in the
rules that sum the numbers represented by these images. The
datasets for each digit length use all 60K images of MNIST
images exactly once.

T2: Handwritten Formulas. In the Handwritten For-
mulas (HWF) task, the goal is to solve mathematical ex-
pressions, where both digits and operators (addition, sub-
traction, multiplication and division) are images of hand-
written characters. Like T1, the data of T2 only con-
tains the outcome of the expression and the sequence of
images. For example, a top level query for this task is
derives(expression(−2.5), [ , , , , ]). One neu-
ral rule recognizes digits, while another recognizes operators.
A different rule then performs the mathematical operations
to predict the outcome. For this task, we use the Handwritten
Formula (HWF) dataset, introduced in (Li et al. 2020). The
dataset contains 10000 expressions of lengths 1, 3, 5 and 7.
Unlike the original paper, we do not consider a curriculum
learning setting here, and split the dataset into 4 separate
parts by length.

T3: Well-formed Parentheses. We introduce the Well-
formed Parentheses task, where the model is asked to recog-
nize image sequences that represent well-formed parentheses.
Well-formed parentheses is a classic context-free grammar
language where Σ = {(, )}, and R = {s → ()|(s)|ss}, i.e.
all open brackets are closed in the right order. As images,
we use the zeros from MNIST as “(” and ones as “)”, and
generate 1000 well-formed parenthesis sequences without la-
bels as training data. The goal is to predict the most probable
parse of the sequence.

T4: Context-Sensitive Grammar. Since DCGs support
context-sensitive grammars, we created a dataset of 2000
image sequences representing the canonical context-sensitive
grammar anbncn. Since each sequence of length 3n only has
one valid parse, we increased the difficulty by allowing per-
mutations such as bnancn. We also generated 2000 negative
examples, i.e. random sequences of the form akblcm, and
permutations like ckalbm such that k, l, m are all larger than
1, sum to a multiple of 3 and are not all the same number.
The goal of the task is to predict whether the input image
sequence belongs to the first grammar or the second.

T5: Semi-supervised classification in citation net-
works. Given a set of scientific papers represented as bag-
of-words and their citation network, the goal is to assign the
correct class to a large test set of documents by having access

only to the true labels of a small training set. The intuition
is that one can infer the class of a paper not only by the fea-
tures of the document but also by the class of its neighbors.
This task is interesting from a neural-symbolic perspective
because one must be able to use both the features of the doc-
uments and the symbolic network. Two well-known datasets
for this task are the Cora (2708 nodes and 5429 edges) and
Citeseer (3327 nodes and 9228 edges) (Sen et al. 2008).

T6: Word Algebra Problems. In this task, a natural lan-
guage text describes a word algebra problem (e.g, “Mark
has 6 apples. He eats 2 and divides the remaining among
his 2 friends. How many apples did each friend get?”). This
dataset of this task contains 300 training instances and was
introduced in (Roy and Roth 2015). Each text contains 3
numbers, and all numbers have to be used exactly once in a
formula containing addition subtraction, multiplication and
division. The task is to predict the right numerical answer to
the expression implied by textual description.

Results
For experiments T1, T2 and T3, we report the mean parse
accuracy. For experiments T4, T5 and T6, we report the
mean classification accuracy. For all experiments, we report
the standard deviation over 5 runs. We report “timeout” if a
single of these 5 runs took more than 1 hour to execute.

Q1: Performance of DeepStochLog We first investigate
whether DeepStochLog achieves state-of-the-art results com-
pared to similar neural-symbolic frameworks. Table 1 shows
the result for the MNIST addition task (T1), for training and
testing on lengths 1 to 4. It shows that DeepStochLog per-
forms similarly to DeepProbLog (Manhaeve et al. 2018) and
NeurASP (Yang, Ishay, and Lee 2020), but scales to larger
sequences. Table 2 shows the result on the HWF task (T2).
DeepStochLog performs similar to NGS and DeepProbLog
for expressions of length 1 and 3. Starting from expression
length 5, it becomes infeasible to train DeepProbLog. NGS
(Li et al. 2020) can still be trained, but for expression length
7, some runs fail to converge. DeepStochLog, however, per-
forms well for all expression lengths. Table 3 shows the ac-
curacy on task T3. Here we can see that both DeepStochLog
and DeepProbLog achieve high accuracy, but DeepStochLog
reaches a slightly higher accuracy for a longer length. For
task T6, DeepStochLog and DeepProbLog achieve a simi-
lar accuracy of 94.8 ± 1.1 and 94.2 ± 1.4 respectively. We
also compare to δ4 (Bošnjak, Rocktäschel, and Riedel 2017),
but the authors only report the maximum accuracy reached.
For all three frameworks, the max accuracy reached is 96.0.
To conclude, DeepStochLog is able to achieve similar or
better performance compared to other state-of-the-art neural-
symbolic frameworks.

Q2: DeepStochLog scalability We now investigate
whether DeepStochLog is more scalable than similar neural-
symbolic frameworks. First, we observe that in the tasks T1,
T2, T4 and T5, DeepStochLog scales to settings or datasets
that are infeasible for the competitors. Next, in Table 7, we
compare the execution times for inference in task T1. We
randomly selected 100 queries from the training data and
we computed the average time required from the system to
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Number of digits per number (N)
1 2 3 4

NA 97.3± 0.3 93.9± 0.7 timeout timeout
DPL 97.2± 0.5 95.2± 1.7 timeout timeout
DSL 97.9± 0.1 96.4± 0.1 94.5± 1.1 92.7± 0.6

Table 1: The test accuracy (%) on the MNIST addition
(T1) for NeurASP (NA), DeepProbLog (DPL) and Deep-
StochLog(DSL).

Expression length
1 3 5 7

NGS 90.2± 1.6 85.7± 1.0 91.7± 1.3 20.4± 37.2
DPL 90.8± 1.3 85.6± 1.1 timeout timeout
DSL 90.8± 1.0 86.3± 1.9 92.1± 1.4 94.8± 0.9

Table 2: The accuracy (%) on the HWF dataset (T2) for
Neuro-Symbolic Grammars (NGS), DeepProbLog (DPL)
and DeepStochLog (DSL).

compute the probability of the query. We repeated the experi-
ment for increasing number lengths. DeepStochLog shows a
huge gap over the competitors, especially for large numbers.
This is due to the fact that DeepStochLog is based on a ran-
dom walk semantics which is computationally cheaper than
the possible world semantics exploited by DeepProbLog and
NeurASP.

Another speedup in DeepStochLog is due to it being na-
tively implemented on top of SLG resolution and tabling,
which plays a fundamental role in compactly representing
derivations and SLD-trees. We analyzed the impact of tabling
in Table 6, where we show the comparison between SLD and
SLG resolution in DeepStochLog. In particular, we compared
the resolution time required to find all the possible answers
for expressions of variable lengths (on task T2).

Q3: Larger scale relational datasets The complexity of
many of the previous experiments comes from the large num-
ber of derivations for a single goal, while the number of
subsymbolic inputs (e.g. images) in a single relational ex-
ample was quite limited. Here, we focus on task T5, i.e.
semi-supervised classification in citation networks, where
the complexity mainly comes from the large number of el-
ements of the unique relational example, i.e. the citation
network. This task is usually out of the scope of (neural)
PLP approaches due to the fact that there is a unique large
relational example and the possible world semantics is pro-
hibitive in this scenario. We compare against the following
baselines: label propagation (LP) (Zhu, Ghahramani, and
Lafferty 2003), semi-supervised embedding (SemiEmb) (We-
ston et al. 2012), manifold regularization (ManiReg) (Belkin,
Niyogi, and Sindhwani 2006), skip-gram based graph embed-
dings (DeepWalk) (Perozzi, Al-Rfou, and Skiena 2014), ICA
(Lu and Getoor 2003) and GCN (Kipf and Welling 2017).
All these baselines are specific to the semi-supervised classi-
fication task, while DeepStochLog is a much more general
framework. We finally tried to compare with DeepProbLog,

Maximum expression length
10 14 18

DPL 100.0± 0 99.4± 0.5 99.2± 0.8
DSL 100.0± 0 100.0± 0 100.0± 0

Table 3: The parse accuracy (%) on the well-formed parenthe-
ses dataset (T3) for DeepProbLog (DPL) and DeepStochLog
(DSL).

Expression length
3-12 3-15 3-18

DPL 99.8± 0.3 timeout timeout
DSL 99.4± 0.5 99.2± 0.4 98.8± 0.2

Table 4: The accuracy (%) on the anbncn dataset (T4) for
DeepProbLog (DPL) and DeepStochLog (DSL).

which, however, does not scale to the size of this problem due
to the different probabilistic semantics. Results are reported
in Table 5. DeepStochLog compares similarly or favorably
to most of the other methods, even though it is the only one
that has not been developed for the specific task. However, it
still underperforms w.r.t. ICA and GCN. But these methods
use extra knowledge as input to the classifier in the form of
precomputed or learned features of the neighbors of a doc-
ument, which is very useful for this task but not considered
in the DeepStochLog experiment. Adding or learning rela-
tional features for input to the neural modules is, however, an
interesting future direction.

Q4: General programs in DeepStochLog Even though
DeepStochLog naturally represents grammars for parsing
sequences, NDCGs with Prolog goals are a powerful for-
malism to express more complex relational problems and
programs. Actually, both task T5 and T6 have been solved
with programs that depart from the pure grammar formal-
ism and are more like general logic programs. We provide
the complete models in the appendix. The main ingredients
are (neural) empty production rules, sometimes referred to
as non-consuming or ε-production rules. They allow to take
probabilistic decisions, including also neural networks, with-
out consuming any element of the sequence, as shown in
Example 4. This also shows that DeepStochLog has the full
power of stochastic logic programs.

Related Works
DeepStochLog is an expressive neural-symbolic framework
whose distinguishing features are: 1) it is based on the ex-
pressive stochastic logic programming paradigm, which can
express some probabilistic programs (as in T5-T6) as well
as probabilistic unification based grammars (T1-T4); 2) it
can work with both symbolic and subsymbolic data such as
images (as shown in T1-T4); and 3) its inference and learn-
ing mechanism is based on SLG-resolution that naturally
supports tabling, a form of dynamic programming (see Q2).

There are several strands of related research. First, Deep-
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Method Citeseer Cora

ManiReg 60.1 59.5
SemiEmb 59.6 59.0
LP 45.3 68.0
DeepWalk 43.2 67.2
ICA 69.1 75.1
GCN 70.3 81.5

DeepProbLog timeout timeout
DeepStochLog 65.0 69.4

Table 5: Accuracy (%) of the classification on the test nodes
on task T5

Lengths # Answers No Tabling Tabling

1 10 0.067 0.060
3 95 0.081 0.096
5 1066 3.78 0.95
7 10386 30.42 10.95
9 68298 1494.23 132.26

11 416517 timeout 1996.09

Table 6: Parsing time in seconds (T2). Comparison of the
DeepStochLog with and without tabling (SLD vs SLG reso-
lution).

StochLog is a neural logic programming language in the
spirit of DeepProbLog (Manhaeve et al. 2018), NeurASP
(Yang, Ishay, and Lee 2020), the neural theorem prover
(Rocktäschel and Riedel 2017) and lifted relational neural
networks (LRNNs) (Sourek et al. 2018). The first two sys-
tems are based on a probabilistic possible world semantics,
while DeepStochLog is based on stochastic grammars, which
– as we have shown – scales much better (in part also due to
the use of tabling). The latter two approaches focus on Data-
log (which cannot deal with function symbols) and use the
logic to construct the neural network in a kind of knowledge
based model construction approach. Furthermore, they are
neither probabilistic nor do they deal with subsymbolic inputs
such as images. Another related system is Tensorlog (Cohen,
Yang, and Mazaitis 2020), which is based on stochastic logic
programming. While sharing their roots in SLPs, it is less
expressive than DeepStochLog, as it considers only Datalog
and predicates of arity 2. While Tensorlog’s implementation
is fast thanks to being in terms of tensors, it has only been
applied to symbolic data.

Second, DeepStochLog can be viewed as a neural-based
grammar, similarly to Neural Grammars (Dyer et al. 2016)
and NGS (Li et al. 2020). Neural Grammars have been in-
troduced in the natural language community as an effective
strategy to learn PCFGs. They are neural parameterizations
of PFCG and it is possible to learn the structure of the gram-
mar by enumerating a set of candidate rules and using neu-
ral networks to learn their probabilities. Differently from
DeepStochLog, they are restricted to context-free grammars.
Furthermore, Neural Grammars (Dyer et al. 2016) do not con-
sider subsymbolic inputs (as in all our tasks T1-T6). Different

Number length
1 2 3 4

NA 9.2± 1.4 85.7± 22.6 158.2± 47.7 timeout
DPL 13.5± 3.0 36.0± 0.5 199.7± 14.0 timeout
DSL 1.3± 0.9 2.3± 0.4 4.0± 0.4 5.7± 1.8

Table 7: Inference times in milliseconds for NeurASP (NA),
DeepProbLog (DPL) and DeepStochLog (DSL) on task T1
for variable number lengths.

from the probabilistic interface of DeepStochLog, NGS uses
backsearch, a greedy search that defines the backward feed-
back from the grammar to the neural nets. While this makes
NGS very scalable, the backsearch must be defined per-
program, while DeepStochLog backpropagates the backward
feedback automatically through any NDCG. (Mukherjee et al.
2021) integrates attribute grammars with neural networks.
While this is also an expressive grammatical framework, the
two approaches and their applications are quite different and
it has not been applied to subsymbolic data.

Third, many systems in the neural-symbolic community
(Donadello, Serafini, and d’Avila Garcez 2017; Diligenti,
Gori, and Sacca 2017; Sourek et al. 2018) obtain differen-
tiable logics by relaxing logical programs or theories using
fuzzy logic and t-norms. While the shift in semantics from
probabilistic to fuzzy logic has known issues (van Krieken,
Acar, and van Harmelen 2020), fuzzy logic allows for more
scalable systems as compared to probabilistic logic based on
the possible world semantics. But by exploiting the stochas-
tic grammars, DeepStochLog shows the same benefits as
fuzzy logic in terms of computational complexity (i.e. no
disjoint-sum problem required) by resorting to an alternative
probabilistic semantics.

Conclusions
We have introduced a novel and very expressive neural-
symbolic model based on stochastic logic programming, that
allows to integrate symbolic knowledge with sub-symbolic
representations, that scales well, and gives state-of-the-art
results on a wide range neural-symbolic computation tasks.

There are several limitations of DeepStochLog that we
want to explore in further research. First, DeepStochLog
does not yet learn the structure of the rules, while the neu-
ral theorem prover (Rocktäschel and Riedel 2017), DiffLog
(Si et al. 2019) and the neural grammars (Dyer et al. 2016)
can all enumerate rules and then identify the most relevant
ones. Second, DeepStochLog’s inference could be further
optimised by parallelization of the circuit using ideas from
TensorLog (Cohen, Yang, and Mazaitis 2020). Third, SLPs
and hence, DeepStochLog, may lose probability mass due to
failing derivations. This can be addressed by normalizing and
computing the partition function (Cussens 2001). It would be
interesting to approximate the partition function and also to
further speed up the inference by sampling or by searching
for the k-best derivations. Finally, it would be interesting to
explore the use of DeepStochLog as a generative model to
generate sequences.
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Appendix
Data and Licenses For tasks T1, T3 and T4, we used the
MNIST dataset from (Lecun et al. 1998) to generate new
datasets. The MNIST dataset itself was released under the
Creative Commons Attribution-Share Alike 3.0 license. We
distribute our new datasets built on top of MNIST and the
corresponding generating code under the Apache License 2.0
on https://github.com/ML-KULeuven/deepstochlog/releases/
tag/0.0.1. The Handwritten Formula Recognition (HWF)
dataset (used in T2) originates from (Li et al. 2020). The
Cora and Citeseer datasets (T5) are form Sen et al. (2008).
The dataset of the Word Algebra Problem (T6) originates
from (Roy and Roth 2015).

Computational Details Inference time experiments are all
executed on a MacBookPro 13 2020 (2.3 GHz Quad-Core
Intel Core i7 and 16 GB 3733 MHz LPDDR4).

Task Details
In this section we provide additional experimental details
for all tasks and show DeepStochLog programs for selected
tasks. The full implementation of these tasks and data are
also available on the DeepStochLog repository: https://github.
com/ML-KULeuven/deepstochlog/tree/main/examples.

MNIST Digit Addition For the MNIST addition problem,
we trained the model for 25 epochs using the Adam optimizer
with a learning rate of 0.001 and used 32 training terms in
each batch for each digit length. It is modeled in Listing 1 for
single-digit numbers and Listing 2 for any number of digits.

Handwritten Mathematical Expressions For the Hand-
written Mathematical Expression problem, we trained the
model for 20 epochs using the Adam optimizer with a learn-
ing rate of 0.003 and a batch size of 2. We used two separate,
similar neural networks for recognising the numbers and the
operators. The encoder of the neural networks has a convolu-
tional layer with 1 input channel, 6 output channels, kernel
size 3, stride 1, padding 1, a ReLu, max pooling with kernel
size 2, a convolutional layer with 6 inputs, 16 outputs, kernel
size 3, stride 1, padding 1, a ReLu, a max pooling with ker-
nel size 2, and a 2d dropout layer with p = 0.4. They then
use two fully connected layers, one from 1936 to 128 with
a ReLu, and one linear to the number of classes (10 and 4
respectively).

Well-Formed Parentheses We ran the well-formed paren-
thesis problem for 1 epoch using the Adam optimizer with a
learning rate of 0.001 and a batch size of 4. This problem is
modelled in Listing 3.

Listing 1: DeepStochLog program for single-digit numbers
1 digit(Y) :- member(Y

,[0,1,2,3,4,5,6,7,8,9]).
2 nn(number, [X],[Y],[digit]) ::
3 number(Y) --> [X].
4 addition(N) --> number(N1), number(N2),
5 {N is N1+N2}.

Listing 2: DeepStochLog program for L-long digits numbers
1 digit(Y) :- member(Y

,[0,1,2,3,4,5,6,7,8,9]).
2 nn(number, [X],[Y],[digit]) ::
3 number(Y) --> [X].
4 addition(N) --> number(N1), number(N2),
5 {N is N1+N2}.
6 0.5::multi_addition(N,1)-->addition(N).
7 0.5::multi_addition(N,L)-->{L>1, L2 is L

-1}, addition(N1), multi_addition(N2,
L2), {N is N1*(10**L2) + N2}.

Listing 3: DeepStochLog program for well-formed parenthe-
ses
1 bracket_d(Y) :- member(Y,["(",")"]).
2 s_switch_d(Y) :- member(Y,[0,1,2]).
3
4 nn(bracket_nn,[X], [Y], [bracket_d]) ::
5 bracket(Y) --> [X].
6 nn(s_nn,[],[Y],[s_switch_d])::
7 s --> s_switch(Y).
8 0.33 :: s_switch(0) --> s, s.
9 0.33 :: s_switch(1) -->

10 bracket("("), s, bracket(")").
11 0.33 :: s_switch(2) -->
12 bracket("("), bracket(")").

Context-Sensitive Grammar The model was trained on
the canonical context-sensitive grammar anbncn problem for
1 epoch using the Adam optimizer with a learning rate of
0.001 and batch size 4. It is modeled in Listing 4.

Semi-Supervised Classification in Citation Networks
The model was trained on the Cora and Citeseer datasets
using the Adam optimizer with a learning rate of 0.01. We
trained for 100 epochs and selected the model corresponding
to the epoch with maximum accuracy on the validation set.

The program simply states that a document X is of class
Y (and produce the terminal Y) either if a neural network
classifies it so or if it is cited by one or more documents
of the same class. Even if strange, many of these citation
networks are actually cyclic. Therefore, we limited the depth
of the derivations to a maximum value to avoid having a
cyclical program. We also experimented with a variant of the
program in which the probabilities of the rules expanding the

Listing 4: DeepStochLog program for the anbncn problem
1 rep_d(Y):- member(Y, [a,b,c]).
2 0.5:: s(0) --> akblcm(K,L,M),
3 {K\=L; L\=M; M\=K}.
4 0.5:: s(1) --> akblcm(N,N,N).
5 akblcm(K,L,M) --> rep(K,A), rep(L,B),

rep(M,C), {A\=B, B\=C, C\=A}.
6 0.5 :: rep(s(0), C) --> terminal(C).
7 0.5 :: rep(s(N), C) --> terminal(C),
8 rep(N,C).
9 nn(mnist, [X], [C], [rep_d]) ::

10 terminal(C) --> [X].
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Task Network Architecture

T1 number MNISTConv, Lin(120), Lin(84), Lin(10)
T2 number Conv(6, 3), MaxPool(2), Conv(16,3), MaxPool(2), Dropout(0.4),

Lin(128), Lin(10)
operator Conv(6, 3), MaxPool(2), Conv(16,3), MaxPool(2), Dropout(0.4),

Lin(128), Lin(4)
T3 bracket nn MNISTConv, Lin(120), Lin(84), Lin(2)
T4 mnist MNISTConv, Lin(120), Lin(84), Lin(3)
T5 classifier-Citeseer Lin(50), Lin(6)

classifier-Cora Lin(50), Lin(7)
T6 RNN Embedding(256), BiGRU(512), Dropout(0.5)*

nn permute Lin(6)
nn op1 Lin(4)
nn swap Lin(2)
nn op2 Lin(4)

MNISTConv: Conv(6,5), MP(2,2), Conv(16,5), MP(2,2)*
AlexNetConv: Conv(64, 11, 2,2), MP(3,2), Conv(192, 5, 2), MP(3,2), Conv(384, 3, 1), Conv(256, 3, 1), Conv(256, 3, 1), MP(3,2)*

* Does not end with a Softmax layer.

Table 8: Overview of the neural network architectures used in the experiments.

Listing 5: DeepStochLog program for semi-supervised cita-
tion classification
1 class(Y) :- member(Y,
2 [class0, class1, ..., class6]).
3 nn(classifier,[X],[Y],[class]) ::
4 doc_neural(X,Y) --> [].
5 % Ni is the number of cite(i,X).
6 1/Na :: cite(a,b) --> [].
7 1/Na :: cite(a,c) --> [].
8 1/Nb :: cite(b,d) --> [].
9 ...

10 0.5::doc(X,Y)-->doc_neural(X,Y).
11 0.5::doc(X,Y)-->cite(X, X1),doc(X1,Y).
12 s(X) --> doc(X,Y), [Y].

doc predicate are trained separately for each class Y.

Word Algebra Problem We trained the model on the
Word Algebra Problem for 40 epochs using the Adam opti-
mizer with a learning rate of 0.001 and a batch size of 32.

Neural Network Architectures Table 8 summarizes the
neural network architectures used in the experiment.
Conv(o,k) is a convolutional layer with o output channels
and kernel size k. Lin(n) is a fully-connected layer of size
n. (Bi)GRU(h) is a single-layer (bi-directional) GRU with a
hidden size h. MaxPool(k) is a max-pooling layer with kernal
size k, and Dropout(p) a dropout layer with probability p. A
layer in bold means it is followed by a ReLU activation func-
tion. All neural networks end with a Softmax layer, unless
otherwise specified.

Translation Example of Neural Definite Clause
Grammar to Prolog
The program of Listing 6 is translated to Prolog as shown
in Listing 7. Both the calls to nn and p are considered al-
ways true during logical inference. During evaluation of

Listing 6: DeepStochLog program for parsing sums and sub-
tractions
1 dig(Y):-member(Y,[0,1,2,3,4,5,6,7,8,9]).
2 op(Y) :- member(Y, [+,-]).
3 nn(mnist,[I],[N],[dig]) :: n(N)-->[I].
4 nn(operator,[I],[N],[op]) :: o(N)-->[I].
5 0.33::e(N) --> n(N).
6 0.33::e(S) --> e(E1), o(+), n(E2),
7 {S is E1 + E2}.
8 0.33::e(S) --> e(E1), o(-), n(E2),
9 {S is E1 - E2}.

Listing 7: Translated addition and substraction program to
Prolog
1 dig(Y):-member(Y,[0,1,2,3,4,5,6,7,8,9]).
2 op(Y) :- member(Y, [+,-]).
3 n(N, [I | X], [X]) :- nn(mnist,[I],[N]),
4 dig(X).
5 n(N, [I | X], [X]) :- nn(mnist,[I],[O]),
6 op(O).
7 e(N, A, B) :- n(N, A, B), p(0.33).
8 e(S, A,D) :- e(E1, A, B), o(+, B, C),
9 n(E2, C, D), S is E1 + E2, p(0.33).

10 e(S, A,D) :- e(E1, A, B), o(-, B, C),
11 n(E2, C, D), S is E1 - E2, p(0.33).

the arithmetic circuit, nn(mnist,[I],[O]) returns the
probability of the output O when provided with the image
I as input, while p(x) constantly returns the probability x.
It is easy to see that any derivation of the Prolog program
always end with either a nn or a p call, which constitute the
leaves of the correspondent arithmetic circuit.
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zoeksprogramma Artificiële Intelligentie (AI) Vlaanderen”
programme and the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and
Alice Wallenberg Foundation. Thomas Winters is a fellow
of the Research Foundation-Flanders (FWO-Vlaanderen,
11C7720N). Robin Manhaeve is a SB PhD fellow of the Re-
search Foundation-Flanders (FWO-Vlaanderen, 1S61718N).
Giuseppe Marra is a postdoctoral fellow of the Research
Foundation-Flanders (FWO-Vlaanderen, 1239422N).

References
Belkin, M.; Niyogi, P.; and Sindhwani, V. 2006. Manifold
regularization: A geometric framework for learning from
labeled and unlabeled examples. Journal of machine learning
research, 7(11).
Berg-Kirkpatrick, T.; Bouchard-Côté, A.; DeNero, J.; and
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