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Abstract

Adversarial training is so far the most effective strategy in
defending against adversarial examples. However, it suffers
from high computational costs due to the iterative adversar-
ial attacks in each training step. Recent studies show that it
is possible to achieve fast Adversarial Training by perform-
ing a single-step attack with random initialization. However,
such an approach still lags behind state-of-the-art adversar-
ial training algorithms on both stability and model robust-
ness. In this work, we develop a new understanding towards
Fast Adversarial Training, by viewing random initialization
as performing randomized smoothing for better optimization
of the inner maximization problem. Following this new per-
spective, we also propose a new initialization strategy, back-
ward smoothing, to further improve the stability and model
robustness over single-step robust training methods. Experi-
ments on multiple benchmarks demonstrate that our method
achieves similar model robustness as the original TRADES
method while using much less training time (∼3x improve-
ment with the same training schedule).

1 Introduction
Deep neural networks are well known to be vulnerable to ad-
versarial examples (Szegedy et al. 2013), i.e., a small pertur-
bation on the original input can lead to misclassification or
erroneous prediction. Many defense methods have been de-
veloped to mitigate the disturbance of adversarial examples
(Guo et al. 2018; Xie et al. 2018; Song et al. 2018; Ma et al.
2018; Samangouei, Kabkab, and Chellappa 2018; Dhillon
et al. 2018; Madry et al. 2018; Zhang et al. 2019), among
which robust training methods, such as adversarial training
(Madry et al. 2018) and TRADES (Zhang et al. 2019), are
currently the most effective strategies. Specifically, adver-
sarial training method (Madry et al. 2018) trains a model
on adversarial examples by solving a min-max optimization
problem:

min
θ

1

n

n∑
i=1

max
x′i∈Bε(xi)

L(fθ(x′i), yi), (1.1)

where {(xi, yi)}ni=1 is the training dataset, f(·) denotes the
logits output of the neural network, Bε(xi) := {x : ‖x −
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xi‖∞ ≤ ε} denotes the ε-perturbation ball, and L is the
cross-entropy loss.

On the other hand, instead of directly training on adversar-
ial examples, TRADES (Zhang et al. 2019) further improves
model robustness with a trade-off between natural accuracy
and robust accuracy, by solving the empirical risk minimiza-
tion problem with a robust regularization term:

min
θ

1

n

n∑
i=1

[
L(fθ(xi), yi)

+ β max
x′i∈Bε(xi)

KL
(
s(fθ(xi)), s(fθ(x′i))

)]
, (1.2)

where s(·) denotes the softmax function, and β > 0 is a reg-
ularization parameter. The goal of this robust regularization
term (i.e., KL divergence term) is to ensure the outputs are
stable within the local neighborhood. Both adversarial train-
ing and TRADES achieve good model robustness, as shown
on recent model robustness leaderboards1 (Croce and Hein
2020b; Chen and Gu 2020). However, a major drawback lies
in that both are highly time-consuming for training, limiting
their usefulness in practice. This is largely due to the fact
that both methods perform iterative adversarial attacks (i.e.,
Projected Gradient Descent) to solve the inner maximization
problem in each outer minimization step.

Recently, (Wong, Rice, and Kolter 2020) shows that it is
possible to use single-step adversarial attacks to solve the in-
ner maximization problem, which previously was believed
impossible. The key ingredient in their Fast AT approach
is adding a random initialization step before the single-step
adversarial attack. This simple change leads to a reason-
ably robust model that outperforms other fast robust train-
ing techniques, e.g., (Shafahi et al. 2019). However, the sim-
ple change also has its downsides: 1) random initialization
makes single-step robust training possible yet it can be quite
unstable (Li et al. 2020); 2) compared to state-of-the-art ro-
bust training models (Madry et al. 2018; Zhang et al. 2019),
Fast AT still lags behind on model robustness. Besides these,
It also remains a mystery in (Wong, Rice, and Kolter 2020)
on why random initialization is empirically effective.

Although some attempts have been made trying to ex-
plain the role of random initialization and further improve

1https://github.com/fra31/auto-attack and https://github.com/
uclaml/RayS.
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Fast AT (Andriushchenko and Flammarion 2020; Li et al.
2020), in this work, we aim to understand the role of ran-
dom initialization in (Wong, Rice, and Kolter 2020) from a
new perspective and further improve the model robustness-
efficiency trade-off over previous fast robust training meth-
ods. Specifically, We propose a new principle towards under-
standing Fast AT - that random initialization can be viewed
as performing randomized smoothing for better optimiza-
tion of the inner maximization problem. In order to further
improve the robustness-efficiency trade-off of fast robust
training techniques, we propose a new initialization strat-
egy, backward smoothing, which strengthens the smoothing
effect within the ε-perturbation ball. The resulting method
significantly improves both stability and model robustness
over the single-step random initialization strategies. More-
over, even comparing with full-step robust training methods
such as TRADES (Zhang et al. 2019), our proposed back-
ward smoothing strategy achieves similar model robustness
while consuming much less training time (∼ 3x improve-
ment with the same training schedule).

The remainder of this paper is organized as follows: in
Section 2, we briefly review existing literature on adversar-
ial attacks, robust training as well as randomized smooth-
ing technique. We present our new understanding of random
initialization in Section 3. We present our proposed method
in Section 4. In Section 5, we empirically evaluate our pro-
posed method with other state-of-the-art baselines. Finally,
we conclude this paper in Section 6.

2 Related Work
There exists a large body of literature on adversarial attacks
and defenses. In this section, we only review the most rele-
vant work to ours.
Adversarial Attack The concept of adversarial examples
was first proposed in (Szegedy et al. 2013). Since then, many
methods have been proposed, such as Fast Gradient Sign
Method (FGSM) (Goodfellow, Shlens, and Szegedy 2015),
and Projected Gradient Descent (PGD) (Kurakin, Goodfel-
low, and Bengio 2016; Madry et al. 2018). Later on, various
attacks (Papernot et al. 2016; Moosavi-Dezfooli, Fawzi, and
Frossard 2016; Carlini and Wagner 2017; Athalye, Carlini,
and Wagner 2018; Chen et al. 2020; Croce and Hein 2020a;
Sriramanan et al. 2020; Tashiro, Song, and Ermon 2020)
were also proposed for better effectiveness or efficiency.

There are also many attacks focused on different attack
settings. (Chen et al. 2017) proposed a black-box attack
where the gradient is not available, by estimating the gra-
dient via finite-differences. Various methods (Ilyas et al.
2018; Al-Dujaili and O’Reilly 2020; Moon, An, and Song
2019; Andriushchenko et al. 2020; Tashiro, Song, and Er-
mon 2020) have been developed to improve the query ef-
ficiency of (Chen et al. 2017). Other methods (Brendel,
Rauber, and Bethge 2018; Cheng et al. 2019, 2020) focused
on the more challenging hard-label attack setting, where
only the prediction labels are available. On the other hand,
there is recent work (Croce and Hein 2020b; Chen and Gu
2020) that aims to accurately evaluate the model robustness
via an ensemble of attacks or effective hard-label attack.

Robust Training Many heuristic defenses (Guo et al. 2018;
Xie et al. 2018; Song et al. 2018; Ma et al. 2018; Saman-
gouei, Kabkab, and Chellappa 2018; Dhillon et al. 2018)
were proposed when the concept of adversarial examples
was first introduced. However, they are later shown by
(Athalye, Carlini, and Wagner 2018) as not truly robust.
Adversarial training (Madry et al. 2018) is the first effec-
tive method towards defending against adversarial exam-
ples. Various adversarial training variants (Wang et al. 2019,
2020; Zhang et al. 2019; Wu, Xia, and Wang 2020; Srira-
manan et al. 2020; Zhang et al. 2020) were later proposed to
further improve the adversarially trained model robustness.
A line of researches focus on studying various others fac-
tors affecting model robustness such as early-stopping (Rice,
Wong, and Kolter 2020), model width (Wu et al. 2021), loss
landscape (Liu et al. 2020) and parameter tuning (Pang et al.
2021; Gowal et al. 2020). Another line of research utilizes
extra information (e.g., pre-trained models (Hendrycks, Lee,
and Mazeika 2019) or extra unlabeled data (Carmon et al.
2019; Alayrac et al. 2019)) to further improve robustness.

Recently, many focus on improving the training efficiency
of adversarial training based algorithms, such as free adver-
sarial training (Shafahi et al. 2019) and Fast AT (Wong, Rice,
and Kolter 2020), which uses single-step attack (FGSM)
with random initialization. (Li et al. 2020) proposed a hy-
brid approach for improving Fast AT which is orthogonal to
ours. (Andriushchenko and Flammarion 2020) proposed a
new regularizer promoting gradient alignment for more sta-
ble training. Yet, its model robustness still falls behind the
state-of-the-arts.
Randomized Smoothing (Duchi, Bartlett, and Wainwright
2012) proposed the randomized smoothing technique and
proved variance-based convergence rates for non-smooth
optimization. Later on, this technique was applied to cer-
tified adversarial defenses (Cohen, Rosenfeld, and Kolter
2019; Salman et al. 2019) for building robust models with
certified robustness guarantees. In this paper, we are not tar-
geting certified defenses. Instead, we use the randomized
smoothing concept in optimization to explain Fast AT.

3 Pros and Cons of Random Initialization
In this section, we analyze the pros and cons of random ini-
tialization in Fast AT (Wong, Rice, and Kolter 2020). First,
let us explain why random initialization in Fast AT is ef-
fective by looking into why one-step AT would fail without
random initialization.

What Caused the Failure of One-step AT Without
Random Initialization?
(Wong, Rice, and Kolter 2020) has already shown that with-
out random initialization, one-step AT would almost surely
fail in the training procedure due to catastrophic overfit-
ting, i.e., the robust accuracy w.r.t. a PGD adversarial sud-
denly drops to near 0 even on training data. However, it is
not clear what exactly causes this phenomenon. One natural
conjecture is that perhaps the one-step attack is not effec-
tive enough for adversarial training purposes. Recall that the
perturbation is obtained by solving the following inner max-
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Figure 1: Loss increment after attack, i.e., L(fθ(x +
δ∗), y) − L(fθ(x), y), along the training trajectory for dif-
ferent methods on training ResNet-18 on CIFAR-10 dataset.

imization problem in adversarial training:

δ∗ = argmax
δ∈Bε(0)

L(fθ(x + δ), y). (3.1)

To figure out whether the attack effectiveness is the key
cause for the poor performance of the plain one-step AT
without random initialization, we conduct the following
simple experiments by observing the loss increment after at-
tack in each training step, i.e.,

∆L = L(fθ(x + δ∗), y)− L(fθ(x), y),

where {(x, y)} is the clean training example and δ∗ is the
solution from (3.1). Since (3.1) aims at maximizing the loss
value, this loss increment term ∆L should always be positive
along the entire training trajectory.

In Figure 1, we plot the loss increment ∆L for three dif-
ferent training trajectories: Fast AT without random initial-
ization, Fast AT with random initialization, as well as stan-
dard AT. We observe that with the random initialization, Fast
AT’s loss increment is quite close to standard AT (although
it still can go wrong from time to time). However, without
random initialization, the loss value after the attack is actu-
ally worse than before, suggesting the algorithm completed
failed in solving (3.1). Since Fast AT has only one step bud-
get for the attack, this further implies the attack step size is
too large to cause divergence in the gradient descent pro-
cedure. Yet on the other hand, due to the one step attack
budget, the attack step size has to be chosen close to ε for
better defense purposes2. This dilemma explains the cause
of failure for one-step AT without random initialization.

Why Random Initialization Helps?
Now let us talk about random initialization. It is well known
from optimization theory (Boyd, Boyd, and Vandenberghe
2004) that, for gradient descent-based algorithms, the maxi-
mum allowed step size (in order to guarantee convergence) is

2With a much smaller attack step size to ε and only one step at-
tack budget, the generated adversarial examples during the training
phase can never reach the magnitude of ε. Therefore, when facing
perturbations of the magnitude of ε during the testing phase, the
model stands little chance defending against them.

directly related to the smoothness of the optimization objec-
tive function. Specifically, the smoother the objective func-
tion is, the larger the gradient step size is allowed. Here
we argue that random initialization works just as the ran-
domized smoothing technique (Duchi, Bartlett, and Wain-
wright 2012), which makes the overall optimization objec-
tive more smooth via random perturbations of the optimiza-
tion variable3. Note that this randomized smoothing is an op-
timization technique that is different from the Randomized
Smoothing method in certified defenses (Cohen, Rosenfeld,
and Kolter 2019), although the names are the same.

To see why random initialization works as randomized
smoothing in Fast AT, let us apply randomized smoothing
to (3.1) and we have:

δ∗ = argmax
δ+uξ∈Bε(0)

Eξ∼U(−1,1)L(fθ(x + δ + uξ), y), (3.2)

where ξ is the perturbation vector for randomized smooth-
ing, u controls the smoothing effect, and δ is the adversarial
perturbation vector (initialized as zero). Suppose we have
u = ε and solve (3.2) in a stochastic fashion (i.e., sample a
random perturbation ξ instead of computing the expectation
over ξ), and using only one step gradient update, it reduces
to the Fast AT formulation. This suggests that Fast AT can
be viewed as performing stochastic single-step attacks on a
randomized smoothed objective function which allows the
use of larger step size. This explains why random initial-
ization helps Fast AT in Figure 1: as it makes the loss ob-
jective smoother, thus become easier to optimize with large
step sizes and avoid possible divergence cases.

It is worth noting that (Andriushchenko and Flammarion
2020) also provided an explanation of random initialization:
it reduces the magnitude of the perturbation and thus the net-
work becomes more linear and fits better toward single-step
attack. In fact, our argument is more general and can cover
theirs, because if the loss function is approximately linear,
then it will be very smooth, i.e., the second-order term in the
Taylor expansion is small. And their observations that Fast
AT using smaller attack step size can succeed without ran-
dom initialization actually also validate our analysis above.

Drawbacks of Random Initialization
Although the random initialization effectively helps Fast
AT avoid the catastrophic overfitting from happening in the
most time, it still exposes several major weaknesses.
Performance Stability Fast AT can still be highly unsta-
ble (i.e., catastrophic overfitting can still occur from time to
time). This is also observed in (Li et al. 2020). In Figure 1,
we also observe that Fast AT could still fail in solving the
inner maximization problem (especially when using a dras-
tically large attack step size). It can be imagined that with
some bad luck, the training procedure of Fast AT could still
fall apart even with random initialization.

3Instead of using only the gradient at the original iterate, ran-
domized smoothing proposes to randomly generate perturbed iter-
ates and use their gradients for the optimization procedure. More
details about the randomized smoothing technique are provided in
the Appendix.
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Method Nat (%) Rob (%)

AT 82.36 51.14
Fast AT 84.79 46.30
TRADES 82.33 52.74
Fast TRADES 83.39 46.98

*Nat: accuracy evaluated on the clean test examples;
*Rob: accuracy evaluated on adversarial examples of the test set.

Table 1: Model robustness comparison among AT, Fast AT,
TRADES and Fast TRADES, using ResNet-18 model on
CIFAR-10 dataset.

Unfortunately, to get the best from Fast AT, it usually re-
quires a larger attack step size. We run Fast AT on CIFAR-
10 using ResNet-18 model (He et al. 2016) for 10 times4.
For the best attack step size of 10/255 (according to (Wong,
Rice, and Kolter 2020)), the best run achieves 46.30% robust
accuracy, however, the average is only 42.11% since many
runs actually failed.
Further Robustness Improvement Fast AT uses standard
adversarial training (Madry et al. 2018) as the baseline, and
can obtain similar robustness performance. However, later
work (Rice, Wong, and Kolter 2020) shows that original
adversarial training’s performance is deteriorated by robust
overfitting, while simply using early stopping can largely
improve its robustness. (Zhang et al. 2019) further achieves
even better model robustness that is much higher than what
Fast AT obtains. From Table 1, we observe that there exists
a 6% robust accuracy gap on the CIFAR-10 dataset between
Fast AT and TRADES. This indicates that Fast AT is still far
from optimal, and there is still big room for further robust-
ness improvement.

4 Proposed Approaches
A Naive Try: Randomized Smoothing for TRADES
In the previous section, we show that objective smoothness
plays a key role in the success of single-step adversarial
training. Note the TRADES (Zhang et al. 2019) method
naturally promotes the objective smoothness in its train-
ing formula (by minimizing the output discrepancy of in-
put examples within the perturbation ball). From this per-
spective, it should be more fit to single-step robust training
than AT. Therefore we try to apply randomized smoothing
to TRADES and see if this leads to a better robust training
method. Let us recall the inner maximization formulation for
TRADES:

max
δ∈Bε(0)

KL
(
s(fθ(x)), s(fθ(x + δ))

)
, (4.1)

where s(·) denotes the softmax function. Similarly, we can
further apply randomized smoothing technique on this ob-
jective and obtain:

max
δ+uξ∈Bε(0)

Eξ∼U(−1,1)KL
(
s(fθ(x)), s(fθ(x + δ + uξ))

)
.

(4.2)

4Here we exclude the additional acceleration techniques in
(Wong, Rice, and Kolter 2020) and apply standard piecewise learn-
ing rate decay as in (Madry et al. 2018; Zhang et al. 2019).

Figure 2: A sketch of our proposed method.

Then we can apply the same stochastic single step attack
and u = ε for solving this problem, i.e., first do random
initialization and then perform single-step projected gradi-
ent ascent on TRADES loss. We refer to this strategy as Fast
TRADES. We experimentally test Fast TRADES by training
the ResNet-18 model on the CIFAR-10 dataset. From Table
1, we can see that Fast TRADES indeed achieves slightly
better performance than Fast AT. Yet it still falls far be-
hind the original TRADES method. This inspires us to study
how to design a better strategy for more significant improve-
ments.

Note that our best performing Fast TRADES model in Ta-
ble 1 is obtained with attack step size 6/255 (in contrast to
10/255 for Fast AT). According to our previous analysis in
Section 3, if we can make the loss objective even smoother, it
is possible to utilize an even larger attack step size for better
robust training performances. However, unlike the general
randomized smoothing setting, where we can simply use a
larger value of u for a smoother objective, in the adversarial
setting, the random perturbation on the input vector is sub-
ject to the ε-ball constraint. This means that simply using
larger u cannot bring us a smoother loss objective, instead,
we need to find new ways for better smoothing effects.

Backward Smoothing
Now we introduce our proposed method to further boost the
smoothing effect without violating the ε-ball constraint. Let
us denote the input domain x ∈ Rd as the input space, and
their corresponding neural network output fθ(x) ∈ Rc as
the output space, where c is the number of classes for the
classifier. Note that if we have random samples in the in-
put space, the corresponding output is actually quite close
(Tashiro, Song, and Ermon 2020) as in the first row of Fig-
ure 2. Imagine that if we are allowed to use a larger u, the
output space would be more diverse as in the second row of
Figure 2. This inspires us to generate the initialization point
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in a backward fashion. We first generate random points in
the output space just as randomized smoothing does in the
input space (see third row of Figure 2, lower right plot), i.e.,
fθ(x) + γψ, where ψ ∼ U(−1, 1) is the random variable
and γ is a small number. Then we find the corresponding
input perturbation in a backward fashion and use it as our
initialization. An illustrative sketch of our proposed method
is provided in Figure 2. In summary, we aim to find the input
perturbation ξ such that:

fθ(x + ξ) = fθ(x) + γψ. (4.3)

In order to find the best ξ∗ to satisfy (4.3), we turn to solve
the following problem:

ξ∗ = argmin
ξ∈Bε(0)

KL
(
s(fθ(x) + γψ), s(fθ(x + ξ))

)
. (4.4)

Note that ξ is initialized as a zero vector. For the sake of
computational efficiency, we solve (4.4) using single-step
PGD in practice. Then, similar to (Wong, Rice, and Kolter
2020), we use single-step gradient update for the inner max-
imization problem:

δ∗ = argmax
δ+ξ∗∈Bε(0)

KL
(
s(fθ(x)), s(fθ(x + δ + ξ∗))

)
.

(4.5)

Finally, we update the neural network parameter θ using
stochastic gradients at x + ξ∗ + δ∗. A summary of our pro-
posed algorithm is provided in Algorithm 1.

Algorithm 1: Backward Smoothing

1: input: The number of training iterations T , number of
adversarial perturbation steps K, maximum perturba-
tion strength ε, training step size η, adversarial pertur-
bation step size α, regularization parameter β > 0;

2: Random initialize model parameter θ0
3: for t = 1, . . . , T do
4: Sample mini-batch {xi, yi}mi=1 from training set
5: Obtain ξ∗ by solving (4.4)
6: Obtain δ∗ by solving (4.5)
7: θt = θt−1 − η/m ·

∑m
i=1∇θ

[
L(fθ(xi), yi) + β ·

KL
(
s(fθ(xi)), s(fθ(xi + ξ∗ + δ∗))

)]
8: end for

Figure 3 shows the maximum eigenvalue of Hessian of the
loss function at the original examples, randomly perturbed
examples, and backward smoothed examples along the train-
ing trajectory until Fast TRADES obtains its best robustness
(the 51st epoch). We observe that during the model train-
ing process, the randomly perturbed examples have overall
smaller Hessian maximum eigenvalue5 than that of origi-
nal examples. This suggests that random smoothing indeed
makes the loss function smoother. Moreover, the Hessian
maximum eigenvalue under backward smoothing is much
smaller than that under random smoothing, showing the in-
sufficiency of the random smoothing techniques and the ad-
vantages of our proposed backward smoothing method.

5The smaller Hessian maximum eigenvalue, the smoother the
loss function is.

Figure 3: Hessian maximum eigenvalue comparison against
training epochs.

5 Experiments
In this section, we empirically evaluate the performance
of our proposed method. We first compare our proposed
method with other robust training baselines on CIFAR-10,
CIFAR100 (Krizhevsky, Hinton et al. 2009) and Tiny Ima-
geNet (Deng et al. 2009)6 datasets. We also provide multiple
ablation studies as well as robustness evaluation with state-
of-the-art adversarial attack methods to validate that our pro-
posed method provides effective robustness improvement.

Experimental Setting

Following previous work on robust training (Madry et al.
2018; Zhang et al. 2019; Wong, Rice, and Kolter 2020), we
set ε = 0.031 for all three datasets. In terms of model archi-
tecture, we adopt standard ResNet-18 model (He et al. 2016)
for both CIFAR-10 and CIFAR-100 datasets, and ResNet-
50 model for Tiny ImageNet. We follow the standard piece-
wise learning rate decay schedule as used in (Madry et al.
2018; Zhang et al. 2019) and set decaying point at 50-th
and 75-th epochs. The starting learning rate for all meth-
ods is set to 0.1, the same as previous work (Madry et al.
2018; Zhang et al. 2019). For all methods, we tune the mod-
els for their best robustness performances for a fair com-
parison. For Adversarial Training and TRADES methods,
we adopt a 10-step iterative PGD attack with a step size of
2/255 for both. For our proposed method, we set the back-
ward smoothing parameter γ = 1 and step size as 8/255.
For other fast training methods, we use a step size of 10/255
for Fast AT/GradAlign, 6/255 for 2-step Fast AT, 6/255 for
Fast TRADES and 5/255 for 2-step Fast TRADES. For ro-
bust accuracy evaluation, we typically adopt a 100-step PGD
attack with the step size of 2/255. To ensure the validity of
the model robustness improvement is not because of the ob-
fuscated gradient (Athalye, Carlini, and Wagner 2018), we
further test our method with current state-of-the-art attacks
(Croce and Hein 2020b; Chen and Gu 2020). All the exper-
iments are conducted on RTX2080Ti GPU servers.

6We do not test on ImageNet dataset mainly due to that
TRADES does not perform well on ImageNet as mentioned in (Qin
et al. 2019).
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Method Nat (%) Rob (%) Time (m)

AT 82.36 51.14 430
Fast AT 84.79 46.30 82
Fast AT (2-step) 83.21 49.91 127
Fast AT (GradAlign) 84.37 46.99 402
TRADES 82.33 52.74 482
Fast TRADES 83.39 46.98 126
Fast TRADES (2-step) 83.51 48.78 164
Backward Smoothing 82.38 52.50 164

Table 2: Performance comparison on CIFAR-10 using
ResNet-18 model.

Figure 4: Backward Smoothing’s performance gain is not
due to robustness-accuracy trade-off.

Performance Comparison with Robust Training
Baselines
We compare the adversarial robustness of Backward
Smoothing against standard Adversarial Training (Madry
et al. 2018), TRADES (Zhang et al. 2019), as well as fast
training methods such as Fast AT (Wong, Rice, and Kolter
2020) and our naive baseline Fast TRADES. We also com-
pare with recently proposed Fast AT+ (Li et al. 2020)7 and
GradAlign (Andriushchenko and Flammarion 2020)8. Since
our proposed backward smoothing initialization utilizes an
extra step of gradient back-propagation, we also compare
with Fast AT, Fast TRADES using 2-step attack for a fair
comparison.

Table 2 shows the performance comparison on the
CIFAR-10 dataset using ResNet-18 model. Our Backward
Smoothing method achieves high robust accuracy that is al-
most as good as state-of-the-art methods such as TRADES,
while consuming much less (∼3x) training time. Compared
with Fast AT, Backward Smoothing typically costs twice the
training time, yet achieving significantly higher model ro-
bustness. Notice that the GradAlign method indeed slightly
improves upon Fast AT, but it also costs much more training
time due to its double backpropagation formulation, mak-

7Since (Li et al. 2020) does not have code released yet, we only
compare with theirs in the same setting (combined with accelera-
tion techniques) using reported numbers.

8We only compare with (Andriushchenko and Flammarion
2020) in Tables 2, 3, 6 as its double backpropagation formulation
requires much larger memory usage.

Figure 5: Backward Smoothing does not suffer from the
catastrophic overfitting phenomenon.

Method Nat (%) Rob (%) Time (m)

AT 55.22 28.53 428
Fast AT 60.35 24.64 83
Fast AT (2-step) 56.00 27.84 128
Fast AT (GradAlign) 58.38 26.26 402
TRADES 56.99 29.41 480
Fast TRADES 60.26 21.33 126
Fast TRADES (2-step) 58.81 25.47 165
Backward Smoothing 56.96 30.50 164

Table 3: Performance comparison on CIFAR-100 using
ResNet-18 model.

ing it less competitive to our Backward Smoothing method.
Our method also achieves a large performance gain against
Fast TRADES. Note that even compared with Fast TRADES
using 2-step attack and Fast AT using 2-step attack, which
costs about the same training time as ours, our method still
achieves a large improvement.

Note that Zhang et al. (2019) has shown that there exists
a robustness-accuracy trade-off in robust training. In order
to make sure that our proposed method’s performance gain
is not due to this robustness-accuracy trade-off, we further
test with different choices of robust regularization parame-
ter β and plot the robust accuracy against natural accuracy
plot in Figure 4. Note that for AT and Fast AT or GradAlign
method, their formulations do not contain any tunable pa-
rameters for this robustness-accuracy trade-off, therefore,
we only plot the single point for them. From Figure 4, we
can observe that the Backward Smoothing method indeed
largely outperforms the other fast training baselines (achieve
better robustness under roughly the same natural accu-
racy), and is not due to balancing the robustness-accuracy
trade-off. In Figure 5, we further verify whether Backward
Smoothing still suffers from the catastrophic overfitting phe-
nomenon. Specifically, we plot the test accuracy against the
training epochs for Fast AT (normal), Fast AT (with catas-
trophic overfitting) and Backward Smoothing. As can be
seen from Figure 5, compared to Fast AT, the Backward
Smoothing method actually helps mitigate overfitting at the
later stage of training.

Table 3 shows the performance comparison on CIFAR-
100 using ResNet-18 model. We can observe patterns
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Method Nat (%) Rob (%) Time (m)

AT 44.50 21.34 2666
Fast AT 49.58 18.56 575
Fast AT (2-step) 45.74 20.94 817
TRADES 47.02 21.04 2928
Fast TRADES 50.36 17.22 805
Fast TRADES (2-step) 46.92 19.26 1045
Backward Smoothing 46.68 22.32 1035

Table 4: Performance comparison on Tiny ImageNet dataset
using ResNet-50 model.

similar to the CIFAR-10 experiments. Backward Smooth-
ing achieves slightly higher robustness compared with
TRADES, while costing much less training time. Compared
with Fast TRADES using 2-step attack and Fast AT using
2-step attack, our method also achieves a large robustness
improvement with roughly the same training cost. Table 4
shows that on Tiny ImageNet using the ResNet-50 model,
Backward Smoothing also achieves significant robustness
improvement over other single-step robust training methods.

Evaluation with State-of-the-art Attacks
To ensure that Backward Smoothing does not cause obfus-
cated gradient problem (Athalye, Carlini, and Wagner 2018)
or presents a false sense of security, we further evaluate
our method using state-of-the-art attacks, by considering
two evaluation methods: (i) AutoAttack (Croce and Hein
2020b), which is an ensemble of four diverse (white-box and
black-box) attacks (APGD-CE, APGD-DLR, FAB (Croce
and Hein 2020a) and Square Attack (Andriushchenko et al.
2020)) to reliably evaluate robustness; (ii) RayS attack
(Chen and Gu 2020), which only requires the prediction
labels of the target model (completely gradient-free) and
is able to detect falsely robust models. It also measures
another robustness metric, average decision boundary dis-
tance (ADBD), defined as examples’ average distance to
their closest decision boundary. ADBD reflects the overall
model robustness beyond ε constraint. Both evaluations pro-
vide online robustness leaderboards for public comparison
with other models.

Method AutoAttack RayS
Metric Rob (%) Rob (%) ADBD

AT (original, no early-stop) 44.04 50.70 0.0344
AT 49.10 54.00 0.0377
Fast AT 43.21 50.10 0.0334
TRADES 53.08 57.30 0.0403
Fast TRADES 43.84 52.05 0.0348
Fast TRADES (2-step) 48.20 54.43 0.0383
Backward Smoothing 51.13 55.08 0.0403

Table 5: Performance comparison with SOTA robust models
on CIFAR-10 evaluated by AutoAttack and RayS.

We train our method with WideResNet-34-10 model
(Zagoruyko and Komodakis 2016) and evaluate via AutoAt-
tack and RayS. Table 5 shows that under state-of-the-art at-
tacks, Backward Smoothing still holds high robustness com-
parable to TRADES. Specifically, in terms of robust accu-

racy, Backward Smoothing is only 2% behind TRADES,
while significantly higher than AT (Madry et al. 2018) and
Fast AT (Wong, Rice, and Kolter 2020). In terms of ADBD
metric, Backward Smoothing achieves the same level of
overall model robustness as TRADES, much higher than
the other two methods. Note that the gap between Back-
ward Smoothing and TRADES is larger than that in Table
2. We want to emphasize that this is not mainly due to the
stronger attacks but the fact that we are using larger model
architectures. Intuitively speaking, larger models have larger
capacities and may need stronger attacks to reach some dark
spot in the area.

Method Nat (%) Rob (%) Time (m)

AT 81.48 50.32 62
Fast AT 83.26 45.30 12
Fast AT+ 83.54 48.43 28
Fast AT (GradAlign) 81.80 46.90 54
TRADES 79.64 50.86 88
Fast TRADES 84.40 45.96 18
Fast TRADES (2-step) 81.37 47.56 24
Backward Smoothing 78.76 50.58 24

Table 6: Performance comparison on CIFAR-10 using
ResNet-18 model combined with cyclic learning rate and
mix-precision training.

Combining with Other Acceleration Techniques
Aside from random initialization, (Wong, Rice, and Kolter
2020) also adopts two additional acceleration techniques to
further improve training efficiency with a minor sacrifice on
robustness performance: cyclic learning rate decay sched-
ule (Smith 2017) and mix-precision training (Micikevicius
et al. 2018). We show that such strategies are also appli-
cable to Backward Smoothing. Table 6 provides the results
when these acceleration techniques are applied. We can ob-
serve that both work universally well for all methods, signif-
icantly reducing training time (in comparison with Table 2).
Yet it does not alter the conclusions that Backward Smooth-
ing achieves similar robustness to TRADES with much less
training time. Also when compared with the recent proposed
Fast AT+ method, Backward Smoothing achieves higher ro-
bustness and training efficiency. Note that the idea of the
Fast AT+ method is orthogonal to ours and can be adopt to
ours for further reduction on training time.

6 Conclusions
In this paper, we analyze the reason why single-step robust
training without random initialization would fail and pro-
pose a new understanding towards Fast Adversarial Training
by viewing random initialization as performing randomized
smoothing for the inner maximization problem. Following
this new perspective, we further propose a new initializa-
tion strategy, Backward Smoothing. The resulting method
avoids the catastrophic overfitting problem and improves the
robustness-efficiency trade-off over previous single-step ro-
bust training methods.
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