

Fusion Multiple Kernel K-means

Yi Zhang¹, Xinwang Liu^{*1}, Jiyuan Liu¹, Sisi Dai¹, Changwang Zhang², Kai Xu¹, En Zhu¹

¹ School of Computer, National University of Defense Technology, Changsha, China, 410073

² CCF Theoretical Computer Science Technical Committee, Shenzhen, China, 518064

{zhangy, xinwangliu}@nudt.edu.cn

Abstract

Multiple kernel clustering aims to seek an appropriate combination of base kernels to mine inherent non-linear information for optimal clustering. Late fusion algorithms generate base partitions independently and integrate them in the following clustering procedure, improving the overall efficiency. However, the separate base partition generation leads to inadequate negotiation with the clustering procedure and a great loss of beneficial information in corresponding kernel matrices, which negatively affects the clustering performance. To address this issue, we propose a novel algorithm, termed as *Fusion Multiple Kernel k-means* (FMKKM), which unifies base partition learning and late fusion clustering into one single objective function, and adopts early fusion technique to capture more sufficient information in kernel matrices. Specifically, the early fusion helps base partitions keep more beneficial kernel details, and the base partitions learning further guides the generation of consensus partition in the late fusion stage, while the late fusion provides positive feedback on two former procedures. The close collaboration of three procedures results in a promising performance improvement. Subsequently, an alternate optimization method with promising convergence is developed to solve the resultant optimization problem. Comprehensive experimental results demonstrate that our proposed algorithm achieves state-of-the-art performance on multiple public datasets, validating its effectiveness. The code of this work is publicly available at <https://github.com/ethan-yizhang/Fusion-Multiple-Kernel-K-means>.

Introduction

Multiple kernel clustering (MKC) aims to extract complementary information from multiple pre-specified kernels and then categorize the data with close patterns or structures into the same cluster (Zhao, Kwok, and Zhang 2009; Kloft, Rückert, and Bartlett 2010; Kloft et al. 2011; Yu et al. 2011; Huang, Chuang, and Chen 2011; Gönen and Alpaydin 2011; Zhou et al. 2015; Han et al. 2016; Wang et al. 2017b; Zhou et al. 2021a; Liu et al. 2021a). Due to the ability to mining inherent non-linear information, MKC has been intensively researched and commonly applied to various applications (Liu et al. 2016; Li et al. 2017; Liu et al. 2017; Bhadra,

Kaski, and Rousu 2017; Liu et al. 2019; Zhou et al. 2019, 2021b).

For example, Patel and Zhou et al. take the advantage of MKC and extend it with the properties of subspace (Patel and Vidal 2014; Zhou et al. 2019). Ren et al. improve the clustering performance of MKC by preserving the global and local graph structures (Ren and Sun 2020). Liu et al. assumes that an optimal kernel is in the neighborhood of the mixed kernel to reinforce the presentation of the optimal kernel (Liu et al. 2017). Also, multiple kernel k -means (MKKM) is a popular method, which has been intensively studied and widely applied. It simultaneously learns the clustering partition matrix and the base kernel coefficient in a single objective function (Huang, Chuang, and Chen 2011). Many variants of MKKM has been proposed to improve the clustering performance (Gönen and Margolin 2014; Du et al. 2015; Liu et al. 2016; Wang et al. 2017a; Bang, Yu, and Wu 2018; Liu et al. 2019; Yao et al. 2020; Liu, Zhu, and Liu 2020). For example, the research (Gönen and Margolin 2014) improves the representation ability of MKKM through generating locally adaptive mixed kernels so as to mine the sample features in depth. By considering the relationship among kernels, Liu et al. propose MKKM with matrix-induced regularization to reduce the redundancy while enhancing the diversity of selected kernels (Liu et al. 2016).

Late fusion algorithm, as a typical MKC approach, substantially reduces the computational cost while achieves encouraging clustering performance by maximally aligning weighted base partitions with the consensus one (Wang et al. 2019; Liu et al. 2018, 2020; Zhang et al. 2020; Kang et al. 2020; Liu et al. 2021b). For an instance, Liu et al. develop a late fusion method to handle incomplete data by jointly optimizing the imputation and clustering tasks (Liu et al. 2020). Liu et al. propose to directly learn the clustering labels and avoid the two-stage learning procedure, further improving the computational efficiency and clustering performance (Liu et al. 2021b).

Although clustering algorithm with late fusion manner shows the above advantages, we observe that base partition generation by eigenvalue decomposition is regarded as a pre-process, which may cause a significant loss of the crucial information in corresponding kernel matrices. Furthermore, since it is performed separately from late fusion clus-

^{*}Corresponding Author

Copyright © 2022, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

tering, the two independent procedures cannot guide each other and lack necessary negotiation. Thus, the initial quality of base partitions becomes the bottleneck, limiting the clustering performance.

To address the above issues, this paper proposes a novel multiple kernel clustering algorithm, termed as *Fusion Multiple Kernel k-means* (FMKKM). It unifies the base partition learning and late fusion clustering into a single optimization objective function and incorporates the early fusion technique to capture more sufficient information for the downstream clustering. Specifically, these three procedures, the base partitions learning, the early fusion, and the late fusion, are unified into one optimization objective. This enables them to negotiate with each other so as to achieve optimal clustering performance. Afterwards a six-step alternating optimization method with guaranteed convergence is developed to effectively solve the resultant optimization problem.

The main contributions of this paper are summarized as follows,

- This paper, for the first time, integrates the base partition learning and late fusion clustering into a unified optimization objective. In this way, they can positively guide each other and avoid the bottleneck caused by not “ideal” initial partitions, leading to better clustering performance.
- This paper, for the first time, proposes a novel overall process fusion manner, which unifies the early fusion and the late fusion. This allows the algorithm to bring their respective advantages and strengths into play, thus fully excavating the beneficial information in kernel matrices.
- We introduce a curvilinear search algorithm and develop it to solve the difficult optimization problem with orthogonality constraint. Then we carefully design a six-step alternate optimization method and discuss its convergence, computational complexity, and extension.
- Comprehensive experiments are conducted on multiple benchmark datasets to evaluate the effectiveness of our proposed algorithm. As demonstrated, FMKKM dramatically outperforms state-of-the-art competitors, validating its effectiveness.

Related Work

In this section, we provide a brief review of MKKM and LFMVC, and then introduce the motivation of our work.

Multiple Kernel K-means

Given $\mathbf{X} \in \mathbb{R}^{n \times d}$, k-means clustering aims to group \mathbf{X} into k clusters, where n is the number of samples and d denotes feature dimensions. Let $\mathbf{Z} \in \{0, 1\}^{n \times k}$ be a clustering assignment, where $Z_{iq} = 1$ if sample \mathbf{x}_i belongs to the q -th cluster. Its objective can be presented as

$$\min_{\mathbf{Z}, \mathbf{c}} \frac{1}{n} \sum_{i=1}^n \sum_{q=1}^k Z_{iq} \|\mathbf{x}_i - \mathbf{c}_q\|^2 \text{ s.t. } \mathbf{Z}\mathbf{1} = \mathbf{1}. \quad (1)$$

The samples can be mapped into a reproducing kernel Hilbert space (RKHS) (Scholkopf and Smola 2001) by kernel tricks and then taken as the input of k -means to deal

with non-linear features. Note that, the kernel matrices can be constructed as $K_{i,j} = \phi_i^\top \phi_j$ with a mapping function $\varphi(\cdot)$. Based on this, the objective can be rewritten as

$$\min_{\mathbf{H}} \text{Tr}(\mathbf{K}(\mathbf{I} - \mathbf{H}\mathbf{H}^\top)) \text{ s.t. } \mathbf{H}^\top \mathbf{H} = \mathbf{I}, \quad (2)$$

where $\mathbf{H} \in \mathbb{R}^{n \times k}$ denotes clustering partition matrix.

Due to the fact that the choice of kernel matrix severely influences the performance of kernel k -means, we usually assume the optimal kernel \mathbf{K}_γ can be written as a combination of base kernel matrices. The objective can be extended as follows,

$$\min_{\mathbf{H}, \gamma} \text{Tr}(\mathbf{K}_\gamma(\mathbf{I} - \mathbf{H}\mathbf{H}^\top)) \text{ s.t. } \mathbf{H}^\top \mathbf{H} = \mathbf{I}, \gamma \in \nabla_1, \quad (3)$$

where $\nabla_1 = \{\gamma \in \mathbb{R}^m \mid \sum_{p=1}^m \gamma_p = 1, \gamma_p \geq 0, \forall p\}$, $\mathbf{K}_\gamma = \sum_{p=1}^m \gamma_p^2 \mathbf{K}_p$ and m represents the number of data views. In literature (Huang, Chuang, and Chen 2011), γ and \mathbf{H} can be jointly solved by an alternate optimization. Then a common k -means clustering algorithm is applied to the obtained partition matrix \mathbf{H} for the final cluster assignments.

Late Fusion Multi-view Clustering

Late fusion algorithm substantially reduces the computational cost and achieves encouraging clustering performance by maximally aligning weighted base partitions with the consensus partition (Wang et al. 2019). Given n samples in k clusters with m kernels, its objective function can be mathematically presented as follows,

$$\begin{aligned} \max_{\mathbf{H}^*, \mathbf{W}, \boldsymbol{\beta}} \quad & \text{Tr}(\mathbf{H}^{*\top} \sum_{p=1}^m \beta_p \mathbf{H}_p \mathbf{W}_p) + \lambda \text{Tr}(\mathbf{H}^{*\top} \hat{\mathbf{H}}) \\ \text{s.t.} \quad & \mathbf{H}^{*\top} \mathbf{H}^* = \mathbf{I}_k, \mathbf{W}_p^\top \mathbf{W}_p = \mathbf{I}_k, \forall p, \boldsymbol{\beta} \in \nabla_2, \end{aligned} \quad (4)$$

where $\nabla_2 = \{\boldsymbol{\beta} \in \mathbb{R}^m \mid \sum_{p=1}^m \beta_p^2 = 1, \beta_p \geq 0, \forall p\}$, \mathbf{H}_p denotes the p -th pre-calculated base partitions from multiple kernels, and \mathbf{W}_p is the p -th linear transformation matrix. The latter $\text{Tr}(\mathbf{H}^{*\top} \hat{\mathbf{H}})$ is a regularization term on the consensus partition to prevent \mathbf{H}^* from being too far away from prior average partition $\hat{\mathbf{H}}$, and λ is a trade-off parameter. According to the literature (Wang et al. 2019), a three-step alternate optimization is developed to solve Eq. (4) and the computational complexity of LFMVC is $O(nk^2 + mk^3)$ per iteration. After obtaining the consensus partition matrix \mathbf{H} , a common k -means clustering algorithm is applied to obtain the final cluster assignments.

In existing late fusion clustering algorithms (Wang et al. 2019; Liu et al. 2020, 2021b), base partitions used for clustering are pre-calculated and remain unchanged. They are independent of the final learning of consensus partition and calculated separately without negotiation. As a result, unsatisfying base partitions would directly lead to poor clustering results. In other words, the pre-calculated base partitions limit the performance of the whole clustering algorithm and become a performance bottleneck. In the following part of the paper, we develop FMKKM to deal with this problem.

Fusion Multiple Kernel K-means

In this section, we firstly give out the objective formulation of our proposed FMKKM and then develop a six-step alternate optimization algorithm. Next, the convergence, computational complexity, and extension of our proposed FMKKM are discussed.

Proposed Formulation

Eq.(4), a widely used formula for reducing the computational complexity of MKC, is to align the weighted base partitions with the consensus partition instead of fusing the base kernel matrices. It performs fusion in the partition layer, so it is called late fusion multi-view clustering, which has shown its feasibility and efficiency in many fields. Despite achieving encouraging clustering performance, we observe that it has two disadvantages: 1) The base partition generation is a pre-process, while late fusion clustering is separately performed and lacks negotiation, resulting in that the clustering performance is directly determined by the initial quality of base partitions. 2) Base partitions can be regarded as the low-dimensional data features extracted by eigenvalue decomposition of the corresponding kernel matrices, thus this single feature extraction process will cause the omission of some crucial information in kernels.

To overcome these shortcomings, we propose a novel fusion multiple kernel k -means algorithm, which unifies the base partitions learning and late fusion clustering into a single optimization objective function and incorporates the early fusion of kernel matrices to capture more sufficient and beneficial information. Then we derive the objective formulation of our proposed FMKKM as follows.

$$\begin{aligned} & \min_{\mathbf{H}^*, \{\mathbf{H}_p\}_{p=1}^m, \{\mathbf{W}_p\}_{p=1}^m, \alpha, \beta, \gamma} \text{Tr}(\mathbf{K}_\alpha(\mathbf{I} - \mathbf{H}^*\mathbf{H}^{*\top})) \\ & + \lambda_1 \sum_{p=1}^m \beta_p^2 \text{Tr}(\mathbf{K}_p(\mathbf{I} - \mathbf{H}_p\mathbf{H}_p^\top)) - \lambda_2 \text{Tr}(\mathbf{H}^{*\top}\mathbf{B}_\gamma) \\ & \text{s.t. } \mathbf{H}^{*\top}\mathbf{H}^* = \mathbf{I}, \mathbf{H}_p^\top\mathbf{H}_p = \mathbf{I}, \mathbf{W}_p^\top\mathbf{W}_p = \mathbf{I}, \forall p, \\ & \alpha, \beta \in \nabla_1, \gamma \in \nabla_2, \end{aligned} \quad (5)$$

where $\mathbf{B}_\gamma = \sum_{p=1}^m \gamma_p \mathbf{H}_p \mathbf{W}_p$, $\mathbf{H}^* \in \mathbb{R}^{n \times k}$ and $\mathbf{H}_p \in \mathbb{R}^{n \times k}$ denote the consensus partition and the p -th base partition, $\mathbf{W}_p \in \mathbb{R}^{k \times k}$ is the p -th transformation matrix, and n, m, k represent the numbers of samples, kernels, and clusters respectively. As seen from Eq.(5), our proposed algorithm integrates the early fusion and the late fusion, forming a new paradigm for further clustering. In this way, their respective advantages and strengths can be brought into play. Moreover, the base partitions are learnable rather than fixed in LFMVC. As a result, the fusion of the partition layer and the base partition learning can negotiate with each other to obtain the optimal clustering performance.

Alternate Optimization

There are six variables in Eq.(5) to optimize, therefore, jointly optimizing them is difficult. In order to solve the optimization, we design a six-step alternate algorithm with proved convergence. In each step, one variable is optimized while the others are fixed.

Optimization \mathbf{H}^* Fixing $\{\mathbf{H}_p\}_{p=1}^m$, $\{\mathbf{W}_p\}_{p=1}^m$, α , β and γ , the optimization in Eq. (5) w.r.t \mathbf{H}^* is transformed to

$$\begin{aligned} \min_{\mathbf{H}^*} & -\text{Tr}(\mathbf{H}^{*\top}\mathbf{K}_\alpha\mathbf{H}^* + \lambda_2\mathbf{H}^{*\top}\mathbf{B}_\gamma) \\ \text{s.t. } & \mathbf{H}^{*\top}\mathbf{H}^* = \mathbf{I}, \end{aligned} \quad (6)$$

where $\mathbf{B}_\gamma = \sum_{p=1}^m \gamma_p \mathbf{H}_p \mathbf{W}_p$. Due to the orthogonality constraint of \mathbf{H}^* , we develop a curvilinear search algorithm to optimize \mathbf{H}^* according to the literature (Wen and Yin 2013). We first define $\mathcal{F}(\mathbf{H}^*) := -\text{Tr}(\mathbf{H}^{*\top}\mathbf{K}_\alpha\mathbf{H}^* + \lambda_2\mathbf{H}^{*\top}\mathbf{B}_\gamma)$ and rewrite the optimization in Eq.(6) as

$$\min_{\mathbf{H}^*} \mathcal{F}(\mathbf{H}^*) \text{ s.t. } \mathbf{H}^{*\top}\mathbf{H}^* = \mathbf{I}. \quad (7)$$

Since $\mathbf{H}^{*\top}\mathbf{H}^*$ is a symmetric matrix, the Lagrangian multiplier $\mathbf{\Lambda}$ corresponding to $\mathbf{H}^{*\top}\mathbf{H}^* = \mathbf{I}$ is also symmetric. The Lagrangian function of Eq.(7) is

$$\mathcal{L}(\mathbf{H}^*, \mathbf{\Lambda}) = \mathcal{F}(\mathbf{H}^*) - \frac{1}{2}\text{Tr}(\mathbf{\Lambda}(\mathbf{H}^{*\top}\mathbf{H}^* - \mathbf{I})). \quad (8)$$

Suppose that \mathbf{H}^* is a local minimizer of Eq.(7), then \mathbf{H}^* satisfies $\mathcal{D}_{\mathbf{H}^*}\mathcal{L}(\mathbf{H}^*, \mathbf{\Lambda}) = \mathcal{L}(\mathbf{H}^*, \mathbf{\Lambda}) = \mathbf{G} - \mathbf{H}^*\mathbf{G}^\top\mathbf{H}^*$ and $\mathbf{H}^{*\top}\mathbf{H}^* = \mathbf{I}$ with the associated Lagrangian multiplier $\mathbf{\Lambda} = \mathbf{G}^\top\mathbf{H}^*$, where \mathbf{G} is the derivative of $\mathcal{F}(\mathbf{H}^*)$ w.r.t \mathbf{H}^* .

We define $\mathbf{A} := \mathbf{G}\mathbf{H}^{*\top} - \mathbf{H}^*\mathbf{G}^\top$ and the differential operator $\nabla\mathcal{L} := \mathbf{A}\mathbf{H}^* = \mathcal{L}(\mathbf{H}^*, \mathbf{\Lambda}) = \mathbf{G} - \mathbf{H}^*\mathbf{G}^\top\mathbf{H}^*$. Note that $\nabla\mathcal{L} = 0$ if and only if $\mathbf{A} = 0$.

To preserve the orthogonality constraint, the next iteration of \mathbf{H}^* can be calculated as follows.

$$\hat{\mathbf{H}}^*(\tau) = \mathbf{H}^* - \tau\mathbf{A} \left(\frac{\mathbf{H}^* + \hat{\mathbf{H}}^*(\tau)}{2} \right), \quad (9)$$

where τ is a step size. From Eq.(9), we can easily obtain

$$\hat{\mathbf{H}}^*(\tau) = \left(\mathbf{I} + \frac{\tau}{2}\mathbf{A} \right)^{-1} \left(\mathbf{I} - \frac{\tau}{2}\mathbf{A} \right) \mathbf{H}^*. \quad (10)$$

Theorem 1 The $\hat{\mathbf{H}}^*(\tau)$ computed by Eq.(10) satisfies $\hat{\mathbf{H}}^*(\tau)^\top\hat{\mathbf{H}}^*(\tau) = \mathbf{H}^{*\top}\mathbf{H}^* = \mathbf{I}$ for any skew-symmetric \mathbf{A} and $\tau \in \mathbb{R}$.

Because the matrix inversion in Eq.(10) seems computationally expensive, it is not a good option to directly compute. We suppose $\mathbf{U} = [\mathbf{G}, \mathbf{H}^*]$ and $\mathbf{V} = [\mathbf{H}^*, \mathbf{G}]$, then $\mathbf{A} = \mathbf{G}\mathbf{H}^{*\top} - \mathbf{H}^*\mathbf{G}^\top$ can be rewritten as $\mathbf{A} = \mathbf{U}\mathbf{V}^\top$. After that, we apply the SMW formula to $\mathbf{I} + \frac{\tau}{2}\mathbf{A} = \mathbf{I} + \frac{\tau}{2}\mathbf{U}\mathbf{V}^\top$ and obtain $(\mathbf{I} + \frac{\tau}{2}\mathbf{A})^{-1} = \mathbf{I} - \frac{\tau}{2}\mathbf{U}(\mathbf{I} + \frac{\tau}{2}\mathbf{V}^\top\mathbf{U})^{-1}\mathbf{V}^\top$. Finally we have the expression of next iteration of \mathbf{H}^* with cheaper cost as follows.

$$\hat{\mathbf{H}}^*(\tau) = \mathbf{H}^* - \tau\mathbf{U} \left(\mathbf{I} + \frac{\tau}{2}\mathbf{V}^\top\mathbf{U} \right)^{-1} \mathbf{V}^\top\mathbf{H}^*. \quad (11)$$

Note that, τ can be selected by a one-dimensional line search strategy, such as Armijo-Wolfe's rule. Obtaining $\mathbf{V}^\top\mathbf{U} = \mathbf{A}^\top = (\mathbf{G}\mathbf{H}^{*\top} - \mathbf{H}^*\mathbf{G}^\top)^\top$ needs $2nk^2$ flops and the inversion takes $\mathcal{O}(k^3)$ due to turning inverting $\mathbb{R}^{n \times n}$ to inverting $\mathbb{R}^{2k \times 2k}$. The final computational complexity of solving \mathbf{H}^* is $4nk^2 + \mathcal{O}(k^3)$ per iteration. The curvilinear search algorithm procedure to solve Eq.(6) is outlined in Algorithm 1.

Algorithm 1: Solving \mathbf{H} with orthogonality constraint via curvilinear search algorithm

```

1: Input:  $\mathbf{H}$ ,  $\mathcal{F}(\mathbf{H})$  and  $\epsilon$ .
2: Output:  $\mathbf{H}$ .
3: Initialize  $t = 0$  and  $\mathbf{G} = \mathcal{D}\mathcal{F}(\mathbf{H})$ .
4: repeat
5:    $\mathbf{U} \leftarrow [\mathbf{G}, \mathbf{H}]$  and  $\mathbf{V} \leftarrow [\mathbf{H}, \mathbf{G}]$ .
6:   Select  $\tau_t$  according to the Armijo-Wolfe's rule.
7:    $\mathbf{H}_{t+1} \leftarrow \mathbf{H} - \tau \mathbf{U} (\mathbf{I} + \frac{\tau}{2} \mathbf{V}^\top \mathbf{U})^{-1} \mathbf{V}^\top \mathbf{H}$ .
8:    $t \leftarrow t + 1$ .
9: until  $\|\nabla \mathcal{L}_t\| \leq \epsilon$ 

```

Optimization $\{\mathbf{H}_p\}_{p=1}^m$ Fixing \mathbf{H}^* , $\{\mathbf{W}_p\}_{p=1}^m$, α , β and γ , the optimization in Eq. (5) w.r.t each \mathbf{H}_p can be rewritten as,

$$\begin{aligned} \min_{\mathbf{H}_p} \quad & -\text{Tr}(\lambda_1 \beta_p^2 \mathbf{H}_p^\top \mathbf{K}_p \mathbf{H}_p + \lambda_2 \gamma_p \mathbf{H}^{*\top} \mathbf{H}_p \mathbf{W}_p) \\ \text{s.t.} \quad & \mathbf{H}_p^\top \mathbf{H}_p = \mathbf{I}. \end{aligned} \quad (12)$$

Like \mathbf{H}^* , the optimization of \mathbf{H}_p can be solved by Algorithm 1 with computational complexity $4nk^2 + \mathcal{O}(k^3)$ per iteration.

Optimization $\{\mathbf{W}_p\}_{p=1}^m$ Fixing \mathbf{H}^* , $\{\mathbf{H}_p\}_{p=1}^m$, α , β and γ , the optimization in Eq. (5) w.r.t each \mathbf{W}_p is reduced to

$$\max_{\mathbf{W}_p} \quad \text{Tr}(\mathbf{W}_p^\top \mathbf{H}_p^\top \mathbf{H}^*) \quad \text{s.t.} \quad \mathbf{W}_p^\top \mathbf{W}_p = \mathbf{I}. \quad (13)$$

Eq. (13) can be efficiently solved by SVD with computational complexity $\mathcal{O}(nk^2)$.

Optimization α Fixing \mathbf{H}^* , $\{\mathbf{H}_p\}_{p=1}^m$, $\{\mathbf{W}_p\}_{p=1}^m$, β and γ , the optimization in Eq. (5) is equivalent to the optimization problem as follows

$$\min_{\alpha} \quad \sum_{p=1}^m \alpha_p^2 \delta_p \quad \text{s.t.} \quad \alpha \in \nabla_1, \quad (14)$$

where $\delta_p = \text{Tr}(\mathbf{K}_p (\mathbf{I} - \mathbf{H}^* \mathbf{H}^{*\top}))$ and the computational complexity of calculating δ_p is $\mathcal{O}(n^2 k)$. This could be easily solved as follows

$$\alpha_p = \frac{1}{\delta_p} \sqrt{\sum_{q=1}^m \frac{1}{\delta_q}}. \quad (15)$$

Optimization β Fixing \mathbf{H}^* , $\{\mathbf{H}_p\}_{p=1}^m$, $\{\mathbf{W}_p\}_{p=1}^m$, α and γ , it could be solved just like optimizing α and the optimal solution is

$$\beta_p = \frac{1}{\zeta_p} \sqrt{\sum_{q=1}^m \frac{1}{\zeta_q}}, \quad (16)$$

where $\zeta_p = \text{Tr}(\mathbf{K}_p (\mathbf{I} - \mathbf{H}_p \mathbf{H}_p^\top))$.

Optimization γ Fixing \mathbf{H}^* , $\{\mathbf{H}_p\}_{p=1}^m$, $\{\mathbf{W}_p\}_{p=1}^m$, α and β , the optimization in Eq. (5) is equivalently rewritten as follows

$$\max_{\gamma} \quad \sum_{p=1}^m \gamma_p \theta_p \quad \text{s.t.} \quad \gamma \in \nabla_2, \quad (17)$$

Algorithm 2: Fusion Multiple Kernel K-means

```

1: Input:  $\{\mathbf{H}_p\}_{p=1}^m$ ,  $k$ ,  $\lambda_1$ ,  $\lambda_2$  and  $\epsilon$ .
2: Initialize  $\alpha = 1/m$ ,  $\beta = 1/m$ ,  $\gamma = 1/\sqrt{m}$ ,  $\mathbf{H}^*$ ,  $\{\mathbf{H}_p\}_{p=1}^m$ ,  $\{\mathbf{W}_p\}_{p=1}^m$  and  $t = 0$ .
3: repeat
4:   Update  $\mathbf{H}^*$  with fixed  $\{\mathbf{H}_p\}_{p=1}^m$ ,  $\{\mathbf{W}_p\}_{p=1}^m$ ,  $\alpha$ ,  $\beta$  and  $\gamma$  via Algorithm 1.
5:   Update  $\{\mathbf{H}_p\}_{p=1}^m$  with fixed  $\mathbf{H}^*$ ,  $\{\mathbf{W}_p\}_{p=1}^m$ ,  $\alpha$ ,  $\beta$  and  $\gamma$  via Algorithm 1.
6:   Update  $\{\mathbf{W}_p\}_{p=1}^m$  with fixed  $\mathbf{H}^*$ ,  $\{\mathbf{H}_p\}_{p=1}^m$ ,  $\alpha$ ,  $\beta$  and  $\gamma$  by optimizing Eq. (13).
7:   Update  $\alpha$  with fixed  $\mathbf{H}^*$ ,  $\{\mathbf{H}_p\}_{p=1}^m$ ,  $\{\mathbf{W}_p\}_{p=1}^m$ ,  $\beta$  and  $\gamma$  by solving Eq. (15).
8:   Update  $\beta$  with fixed  $\mathbf{H}^*$ ,  $\{\mathbf{H}_p\}_{p=1}^m$ ,  $\{\mathbf{W}_p\}_{p=1}^m$ ,  $\alpha$  and  $\gamma$  by solving Eq. (16).
9:   Update  $\gamma$  with fixed  $\mathbf{H}^*$ ,  $\{\mathbf{H}_p\}_{p=1}^m$ ,  $\{\mathbf{W}_p\}_{p=1}^m$ ,  $\alpha$  and  $\beta$  by solving Eq. (18).
10:   $t \leftarrow t + 1$ .
11: until  $(\text{obj}^{(t-1)} - \text{obj}^{(t)})/\text{obj}^{(t)} \leq \epsilon$ 

```

where $\theta_p = \text{Tr}(\mathbf{H}^{*\top} \mathbf{H}_p \mathbf{W}_p)$. We can easily obtain the optimal closed-form solution as follows

$$\gamma_p = \theta_p \sqrt{\sum_{q=1}^m \theta_q^2}. \quad (18)$$

The whole algorithm optimizing Eq. (5) is outlined in Algorithm 2, where $\text{obj}^{(t)}$ denotes the objective loss value at the t -th iteration.

Discussion and Extension

Convergence Note that the objective loss value in Eq.(2) is monotonically decreased when one variable is optimized with the others fixed and the objective function is lower-bounded. Therefore, the whole optimization algorithm is proved to converge to a local optimum, as validated by our experimental results in Figure (1).

Computational Complexity As seen from the optimization procedure in Algorithm 2, the computational complexity of our proposed FMKKM at each iteration is $\mathcal{O}(mn^2 k + tmnk^2 + tmk^3)$, where n , m and k represent the numbers of samples, kernels, and clusters, respectively, and t denotes the maximum number of iterations in the optimization of \mathbf{H}^* and $\{\mathbf{H}_p\}_{p=1}^m$.

Extension Firstly, our proposed FMKKM adopts the simplest MKKM to guide the learning of \mathbf{H}^* and $\{\mathbf{H}_p\}_{p=1}^m$. Therefore, other similarity-based methods can be used to extend this work to further improve clustering performance. Secondly, our proposed FMKKM integrates two fusion stages together, forming a novel overall process fusion paradigm, thus they can give full play to their respective advantages and make up for their shortcomings. This idea can be easily extended to various fields, not only MKC, but also other machine learning tasks. Moreover, the novel overall process fusion paradigm achieves great success on clustering performance that may inspire more research on fusion algorithms.

Dataset	#Samples	#Kernels	#Clusters
Texas	187	2	5
Wisconsin	265	2	5
Football	248	9	20
BBCSport	544	2	5
Willow	911	3	7
Flower17	1360	7	17
Flower102	8189	4	102
ALOI-100	10800	4	100
Reuters	18758	5	6

Table 1: Datasets used in our experiments.

Experiment and Analysis

In this section, we carry out a comprehensive experiment on multiple benchmark datasets in order to evaluate the effectiveness of our proposed FMKKM. The clustering performance, evolution of the objective value and the learned \mathbf{H}^* , parameter sensitivity, weight coefficients, and running time are carefully analyzed.

Experiment Settings

Multiple public datasets are adopted to evaluate the performance of our proposed FMKKM, including *Texas*¹, *Wisconsin*¹, *Football*², *BBCSport*³, *Willow*⁴, *Flower17*⁵, *Flower102*⁵, *ALOI-100*⁶, *Reuters*⁷. The detail information of datasets is summarized in Table 1. It can be observed that the numbers of samples vary from hundreds to nearly 20 thousand, the numbers of kernels and clusters also show considerable variation, which enables the experiment to better evaluate the performance of different clustering algorithms.

For all datasets, the true number of clusters k is prespecified and set as the input of algorithms. We apply three widely used criteria to evaluate the clustering performance, i.e. clustering accuracy (ACC), normalized mutual information (NMI), and rand index (RI). For all algorithms, we repeat each experiment 50 times with random initialization to reduce the randomness effect caused by k -means, and report their means and standard variations. All experiments are performed on a PC with Intel Core i9-10900X CPU and 64G RAM.

Along with our proposed FMKKM, we run another ten algorithms chosen from recent MKC literature for comparison. Specifically, **Avg-KKM (baseline)** obtains the consensus kernel by uniformly combines base kernels and then performs kernel k -means on it. We also select five classical algorithms, including **MKKM** (Huang, Chuang, and Chen 2011), **LMKKM** (Gönen and Margolin 2014), **MKKM-MR** (Liu et al. 2016), **LKAM** (Li et al. 2016) and **ONKC** (Liu et al. 2017). Additionally, we choose four most recent methods, i.e. **LFMVC** (Wang et al. 2019), **SMKKM** (Liu, Zhu, and Liu 2020), **NKSS** (Zhou et al. 2019) and **SPMKC**

(Ren and Sun 2020). Their source codes are publicly available and we directly use them without revision.

Experiment Results

Overall Clustering Performance Table 2 presents the ACC, NMI and RI comparison of the above algorithms. From this table, we have the following observations:

- Late fusion MVC (Wang et al. 2019), as a recent representation, does significantly improve most early-fusion MKC algorithm in term of clustering performance and complexity, yet its aforementioned shortcomings lead to poor performance in many situations. For example, other algorithms exceeds LFMVC by 4.9%, 2.9%, 0.8%, 3.3%, 0.2% and 0.3% on Texas, Wisconsin, Willow, Flower102, ALOI-100, Reuters datasets in term of ACC. Meanwhile, our proposed FMKKM dramatically improves the clustering performance and exceeds LFMVC by 12.6%, 2.7%, 7.2%, 8.7%, 2.0%, 1.0%, 4.6%, 4.0% and 0.6% on the nine datasets in term of ACC.
- Besides, the recently proposed SMKKM (Liu, Zhu, and Liu 2020) extends the widely used supervised kernel alignment criterion and achieves comparable or better clustering performance, however its improvement of performance is marginal. Meanwhile, our proposed FMKKM outperforms SMKKM significantly. For example, FMKKM exceeds it by 20%, 12.2%, 7.1%, 21.7%, 5.9%, 3.4%, 1.6%, 7.3% and 0.8% on nine benchmark datasets in term of ACC.
- In recent works, NKSS (Zhou et al. 2019) adopts the neighbour kernel and subspace technique, yet SPMKC (Ren and Sun 2020) attempts preserving the global and local graph structures. Although they have achieved encouraging clustering performance, our proposed FMKKM outperforms these recent work. Specifically, FMKKM exceeds NKSS and SPMKC by 18.2%, 31.8%, 5.4%, 21.2%, 2.8%, 19.4%, 1.3%, 7.0% and 19.6%, 25.7%, 19.7%, 34%, 1.9%, 32.9%, 17.4%, 20.2%, 19.5% in term of ACC on all datasets, respectively.

In summary, FMKKM shows superior clustering performance on all datasets compared with other algorithms, validating the effectiveness of the proposed overall process fusion manner. We expect that its novel paradigm and superior performance will attract intensive research and common application in community. In addition, we point out that ‘-’ in Table 2 indicates that the results are unavailable due to out-of-memory error, non convergence or too long execution time, which is caused by cubic computational and memory complexity.

Convergence and Evolution As discussed above, our proposed FMKKM is theoretically guaranteed to converge into a local optimum. To show this point in practice, we plot the objective value curves of FMKKM w.r.t. the number of iterations on Wisconsin and ALOI-100 datasets, as shown in Figure 1. It can be seen that the objective value monotonically decreases and the algorithm quickly converges.

¹<https://linqs-data.soe.ucsc.edu/public/lbc/>

²<http://mlg.ucd.ie/aggregation/>

³<http://mlg.ucd.ie/datasets/>

⁴<http://www.di.ens.fr/willow/research/stillactions/>

⁵<https://www.robots.ox.ac.uk/~vgg/data/flowers/>

⁶<http://elki.dbs.ifi.lmu.de/wiki/DataSets/MultiView/>

⁷<https://kdd.ics.uci.edu/databases/reuters21578/>

Algrithmn	Texas	Football	Wisconsin	BBCSport	Willow	Flower17	Flower102	ALOI-100	Reuters
ACC									
Avg-KKM	46.7 ± 1.2	72.4 ± 2.4	52.9 ± 0.4	63.5 ± 1.5	22.2 ± 0.3	51.2 ± 2.2	26.6 ± 0.6	64.8 ± 1.3	45.5 ± 1.5
MKKM	58.9 ± 1.4	74.3 ± 1.8	54.1 ± 2.8	63.8 ± 1.6	22.2 ± 0.4	44.7 ± 1.4	22.5 ± 0.5	6.4 ± 0.1	45.4 ± 1.5
LMKKM	51.0 ± 1.7	52.0 ± 2.2	46.0 ± 0.7	64.0 ± 1.3	22.5 ± 0.2	37.7 ± 2.1	-	-	-
ONKC	54.9 ± 0.5	77.7 ± 3.3	56.5 ± 0.3	63.6 ± 1.4	22.5 ± 0.5	54.1 ± 1.6	39.5 ± 1.0	68.0 ± 1.2	41.8 ± 1.2
MKKM-MR	54.4 ± 0.4	77.3 ± 2.2	55.8 ± 0.6	63.6 ± 1.4	22.7 ± 0.4	58.3 ± 1.3	40.2 ± 0.9	68.3 ± 1.0	46.2 ± 1.4
LKAM	51.8 ± 0.2	76.8 ± 2.3	56.7 ± 0.2	73.7 ± 0.5	27.0 ± 0.2	49.8 ± 1.2	41.2 ± 0.9	64.2 ± 0.7	45.5 ± 0.0
LFMVC	54.0 ± 0.9	78.4 ± 2.6	53.6 ± 0.5	76.6 ± 2.8	26.2 ± 0.5	61.3 ± 1.0	38.4 ± 1.1	68.1 ± 1.0	45.7 ± 1.6
RMKKM	46.4 ± 1.0	72.4 ± 1.9	53.7 ± 0.6	63.6 ± 1.5	22.2 ± 0.4	52.9 ± 2.1	30.6 ± 1.0	-	45.5 ± 1.5
SMKKM	46.6 ± 1.2	68.9 ± 2.6	53.7 ± 0.6	63.6 ± 1.4	22.3 ± 0.6	58.9 ± 1.0	41.4 ± 1.2	64.8 ± 1.3	45.5 ± 0.7
NKSS	48.4 ± 0.7	49.3 ± 2.0	55.4 ± 0.1	64.1 ± 1.2	25.4 ± 0.4	42.9 ± 1.0	41.7 ± 0.8	65.1 ± 1.2	-
SPMKC	47.0 ± 0.6	55.4 ± 2.5	41.1 ± 1.0	51.3 ± 1.9	26.3 ± 0.2	29.4 ± 0.9	25.6 ± 0.4	51.9 ± 1.5	26.8 ± 0.0
FMKKM	66.6 ± 1.0	81.1 ± 2.7	60.8 ± 1.1	85.3 ± 0.3	28.2 ± 0.4	62.3 ± 1.2	43.0 ± 1.4	72.1 ± 1.3	46.3 ± 2.4
NMI									
Avg-KKM	30.2 ± 0.6	77.9 ± 1.4	34.2 ± 0.8	43.7 ± 1.2	5.7 ± 0.2	49.7 ± 1.6	45.9 ± 0.4	77.6 ± 0.6	27.4 ± 0.4
MKKM	11.6 ± 0.6	79.1 ± 0.8	28.2 ± 2.3	44.0 ± 1.3	5.7 ± 0.1	44.5 ± 1.2	42.7 ± 0.2	22.3 ± 0.2	27.3 ± 0.4
LMKKM	13.5 ± 1.4	59.6 ± 1.5	15.1 ± 1.5	44.0 ± 0.9	5.7 ± 0.2	38.9 ± 1.5	-	-	-
ONKC	31.6 ± 1.0	80.4 ± 1.8	31.9 ± 0.2	43.9 ± 0.7	6.0 ± 0.4	52.7 ± 0.7	56.1 ± 0.4	79.7 ± 0.5	22.3 ± 0.4
MKKM-MR	31.4 ± 0.5	79.9 ± 1.5	32.7 ± 0.3	43.7 ± 1.1	6.2 ± 0.3	56.6 ± 0.7	56.7 ± 0.4	80.7 ± 0.4	25.3 ± 0.7
LKAM	29.2 ± 0.5	79.6 ± 1.3	36.2 ± 0.1	65.3 ± 1.1	8.3 ± 0.3	49.6 ± 0.5	56.8 ± 0.4	77.8 ± 0.3	29.9 ± 0.0
LFMVC	28.4 ± 0.8	83.0 ± 2.3	32.4 ± 0.6	59.1 ± 2.8	7.7 ± 0.5	59.1 ± 0.5	54.9 ± 0.5	79.5 ± 0.4	27.4 ± 0.4
RMKKM	30.4 ± 0.3	77.7 ± 1.0	31.1 ± 0.6	43.8 ± 1.2	5.7 ± 0.2	51.9 ± 0.9	48.8 ± 0.5	-	27.4 ± 0.4
SMKKM	27.4 ± 1.4	75.8 ± 1.6	31.2 ± 0.6	44.0 ± 0.9	5.8 ± 0.4	57.2 ± 0.7	58.2 ± 0.5	77.6 ± 0.6	27.7 ± 0.2
NKSS	19.7 ± 0.5	57.7 ± 1.1	32.8 ± 0.1	51.1 ± 0.4	5.8 ± 0.3	46.0 ± 0.5	58.6 ± 0.2	78.4 ± 0.5	-
SPMKC	10.2 ± 1.0	57.8 ± 1.1	4.0 ± 0.8	29.9 ± 3.1	7.1 ± 0.1	27.5 ± 0.4	42.3 ± 0.2	69.4 ± 1.0	0.6 ± 0.0
FMKKM	32.9 ± 2.1	85.0 ± 1.8	39.5 ± 0.5	69.2 ± 0.5	8.2 ± 0.2	59.7 ± 0.9	58.3 ± 0.5	82.2 ± 0.5	27.6 ± 0.4
RI									
Avg-KKM	20.4 ± 0.6	59.8 ± 2.6	28.1 ± 0.7	39.6 ± 2.0	3.1 ± 0.1	32.4 ± 1.8	15.1 ± 0.5	50.9 ± 1.5	21.8 ± 1.4
MKKM	14.1 ± 0.6	61.0 ± 1.3	24.8 ± 2.2	40.0 ± 2.1	3.2 ± 0.1	27.6 ± 1.3	12.0 ± 0.4	1.9 ± 0.1	21.8 ± 1.4
LMKKM	11.8 ± 1.0	31.9 ± 2.6	7.1 ± 0.5	40.4 ± 1.4	3.2 ± 0.2	20.7 ± 1.5	-	-	-
ONKC	24.0 ± 0.9	65.1 ± 3.3	26.9 ± 0.4	39.9 ± 1.4	3.2 ± 0.2	35.4 ± 0.9	25.0 ± 0.6	55.2 ± 1.3	20.3 ± 0.3
MKKM-MR	23.5 ± 0.7	64.0 ± 2.3	26.6 ± 0.4	39.7 ± 1.9	3.4 ± 0.2	40.2 ± 0.9	25.6 ± 0.7	56.0 ± 1.5	23.1 ± 0.6
LKAM	21.6 ± 0.2	63.6 ± 2.0	31.8 ± 0.3	62.2 ± 1.2	4.6 ± 0.2	31.2 ± 0.9	27.2 ± 0.7	52.8 ± 0.7	24.1 ± 0.0
LFMVC	22.1 ± 1.0	66.8 ± 3.7	27.9 ± 0.8	57.5 ± 3.8	4.5 ± 0.3	44.3 ± 0.7	25.4 ± 1.1	53.8 ± 1.0	22.1 ± 1.6
RMKKM	20.7 ± 0.5	59.4 ± 1.9	23.6 ± 0.7	39.8 ± 2.0	3.1 ± 0.1	34.8 ± 1.3	18.1 ± 0.8	-	21.8 ± 1.4
SMKKM	18.1 ± 1.4	56.1 ± 2.9	23.6 ± 0.7	40.1 ± 1.6	3.2 ± 0.2	40.9 ± 1.1	27.5 ± 0.9	51.0 ± 1.5	22.1 ± 0.8
NKSS	17.0 ± 0.6	30.2 ± 1.5	29.3 ± 0.1	44.2 ± 0.6	3.4 ± 0.3	24.1 ± 0.8	27.5 ± 0.5	54.3 ± 1.3	-
SPMKC	7.8 ± 2.0	26.7 ± 1.7	-0.8 ± 0.6	21.8 ± 3.5	4.6 ± 0.1	12.4 ± 0.4	14.5 ± 0.4	32.2 ± 2.4	0.1 ± 0.0
FMKKM	35.6 ± 2.3	69.8 ± 3.3	36.9 ± 1.3	68.9 ± 0.5	5.3 ± 0.2	45.4 ± 1.2	29.6 ± 1.0	56.3 ± 1.6	22.5 ± 1.8

Table 2: Aggregated ACC, NMI and RI comparison (mean \pm std) of different clustering algorithms on all benchmark datasets. Best results are marked in bold.

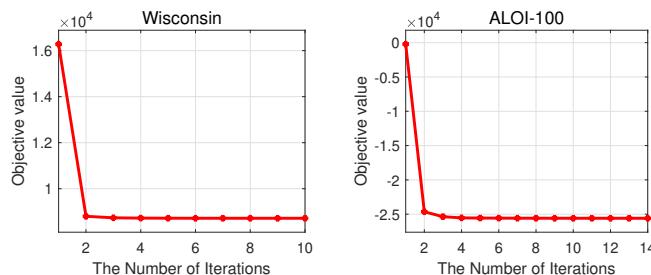


Figure 1: The objective values of FMKKM varies with iterations (left) and the evolution of the learned consensus partition matrix \mathbf{H}^* (right).

In fact, the convergence is achieved in less than 15 iterations on most cases. In addition, to show the evolution of the learned consensus partition of FMKKM, we take \mathbf{H}^* at each iteration to calculate clustering performance, and plot

them in Figure 1. As observed, the clustering performance of FMKKM usually increases and then remains stable with tiny fluctuation in most cases, which sufficiently demonstrates the effectiveness of our algorithm. These results consider-

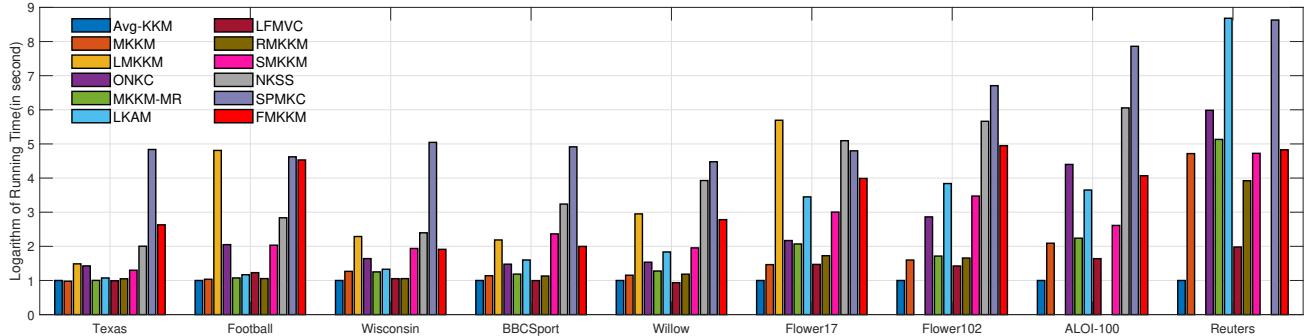


Figure 2: Running time comparison of different algorithms on nine benchmark datasets. Note that, in order to observe more clearly, we scale the values and let execution time of Avg-KKM be reference.

ably show the effectiveness and necessity of the learning procedure.

Weight Coefficients Analysis We further study the weight coefficients learned by compared algorithms on all datasets. The results are plotted in Figure 3. As seen, the kernel weights learned by many algorithms such as ONKC, MKKM-MiR, LKAM and especially NKSS are highly sparse on Wisconsin and ALOI-100 datasets. This sparsity would make algorithm focus on a certain preferred kernel matrix and may cause insufficient fusion, leading to poor performance. However, the final kernel weights γ learned by our proposed FMKKM are non-sparse on all datasets, which promotes the fusion procedure. Meanwhile, α and β , the coefficient for serving the clustering, pay more attention to a certain kernel to complementally supplement the deficiencies of the learning of γ .

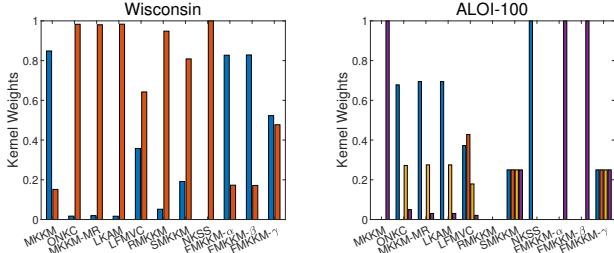


Figure 3: The kernel weights learned by various compared algorithms.

Parameter Sensitivity Analysis As can be seen in Eq. (5), FMKKM introduces the regularization parameter λ_1 and λ_2 to trade off different fusion stages. We conduct experiments to study the sensitivity and effect of these parameters on the clustering performance on all datasets. Figure 4 presents the ACC of FMKKM on Wisconsin and ALOI-100 datasets by varying λ_1 in $2^{[1:9]}$ and λ_2 in $2^{[3:10]}$, respectively. In addition, the best results of recently proposed SMKKM, NKSS and SPMKC are also provided as baselines for reference. From the observation, FMKKM achieves stable clustering performance across a wide range of λ_1 and λ_2 and there is an internal connection between λ_1 and λ_2 .

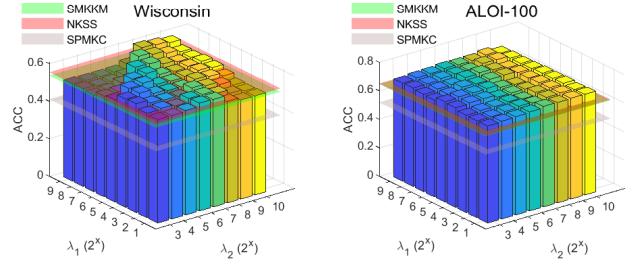


Figure 4: The sensitivity of FMKKM with the variation of λ_1 and λ_2 in term of ACC.

Running Time Comparison Finally, we report the execution time of all compared algorithms on all datasets, as plotted in Figure 2. As observed, our proposed FMKKM does not greatly increase the computational cost despite significant improvement of the clustering performance. Moreover, as discussed above, since the computational complexity is $\mathcal{O}(mn^2k + tmnk^2 + tmk^3)$ at each iteration, our proposed FMKKM may have advantages on dealing with large-scale tasks rather than those algorithms with high computational complexity of $\mathcal{O}(n^3)$.

Conclusion

In this paper, we propose a novel FMKKM algorithm, which simultaneously carries out the early fusion of base kernels and the late fusion of base partitions, and integrate the base partition learning into the clustering procedure. In this way, FMKKM enhances the mutual negotiation and positive guidance among the base partitions learning, the clustering optimization of the early fusion stage and late fusion stage. In order to solve the resultant optimization problem, we carefully develop a six-step alternate algorithm with guaranteed convergence. Comprehensive experimental results show the leading performance and the effectiveness of our proposed FMKKM.

Acknowledgements

This work was supported by the National Key R&D Program of China (project no. 2020AAA0107100) and the National Natural Science Foundation of China (project no. 61922088, 61906020, 61872371 and 62006237).

References

Bang, S.; Yu, Y.; and Wu, W. 2018. Robust Multiple Kernel k-means Clustering using Min-Max Optimization. *arXiv:1803.02458*.

Bhadra, S.; Kaski, S.; and Rousu, J. 2017. Multi-view kernel completion. *Machine Learning*, 106(5): 713–739.

Du, L.; Zhou, P.; Shi, L.; Wang, H.; Fan, M.; Wang, W.; and Shen, Y.-D. 2015. Robust multiple kernel k-means using l_2 -norm. In *Twenty-fourth international joint conference on artificial intelligence*.

Gönen, M.; and Alpaydin, E. 2011. Multiple kernel learning algorithms. *The Journal of Machine Learning Research*, 12: 2211–2268.

Gönen, M.; and Margolin, A. A. 2014. Localized Data Fusion for Kernel k-Means Clustering with Application to Cancer Biology. In *Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada*, 1305–1313.

Han, Y.; Yang, K.; Yang, Y.; and Ma, Y. 2016. Localized multiple kernel learning with dynamical clustering and matrix regularization. *IEEE transactions on neural networks and learning systems*, 29(2): 486–499.

Huang, H.-C.; Chuang, Y.-Y.; and Chen, C.-S. 2011. Multiple kernel fuzzy clustering. *IEEE Transactions on Fuzzy Systems*, 20(1): 120–134.

Kang, Z.; Zhao, X.; Peng, C.; Zhu, H.; Zhou, J. T.; Peng, X.; Chen, W.; and Xu, Z. 2020. Partition level multiview subspace clustering. *Neural Networks*, 122: 279–288.

Kloft, M.; Brefeld, U.; Sonnenburg, S.; and Zien, A. 2011. L_p -norm multiple kernel learning. *The Journal of Machine Learning Research*, 12: 953–997.

Kloft, M.; Rückert, U.; and Bartlett, P. L. 2010. A unifying view of multiple kernel learning. In *Joint European Conference on Machine Learning and Knowledge Discovery in Databases*, 66–81. Springer.

Li, M.; Liu, X.; Wang, L.; Dou, Y.; Yin, J.; and Zhu, E. 2016. Multiple Kernel Clustering with Local Kernel Alignment Maximization. In *Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016*, 1704–1710.

Li, T.; Dou, Y.; Liu, X.; Zhao, Y.; and Lv, Q. 2017. Multiple kernel clustering with corrupted kernels. *Neurocomputing*, 267: 447–454.

Liu, J.; Liu, X.; Yang, Y.; Wang, S.; and Zhou, S. 2021a. Hierarchical multiple kernel clustering. In *Proceedings of the Thirty-fifth AAAI Conference on Artificial Intelligence, (AAAI-21), Virtually*.

Liu, X.; Dou, Y.; Yin, J.; Wang, L.; and Zhu, E. 2016. Multiple kernel k-means clustering with matrix-induced regularization. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 30.

Liu, X.; Li, M.; Tang, C.; Xia, J.; Xiong, J.; Liu, L.; Kloft, M.; and Zhu, E. 2020. Efficient and effective regularized incomplete multi-view clustering. *IEEE transactions on pattern analysis and machine intelligence*.

Liu, X.; Liu, L.; Liao, Q.; Wang, S.; Zhang, Y.; Tu, W.; Tang, C.; Liu, J.; and Zhu, E. 2021b. One Pass Late Fusion Multi-view Clustering. In *International Conference on Machine Learning*, 6850–6859. PMLR.

Liu, X.; Zhou, S.; Wang, Y.; Li, M.; Dou, Y.; Zhu, E.; and Yin, J. 2017. Optimal neighborhood kernel clustering with multiple kernels. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 31.

Liu, X.; Zhu, E.; and Liu, J. 2020. SimpleMKKM: Simple Multiple Kernel K-means. *arXiv preprint arXiv:2005.04975*.

Liu, X.; Zhu, X.; Li, M.; Wang, L.; Tang, C.; Yin, J.; Shen, D.; Wang, H.; and Gao, W. 2018. Late fusion incomplete multi-view clustering. *IEEE transactions on pattern analysis and machine intelligence*, 41(10): 2410–2423.

Liu, X.; Zhu, X.; Li, M.; Wang, L.; Zhu, E.; Liu, T.; Kloft, M.; Shen, D.; Yin, J.; and Gao, W. 2019. Multiple kernel k-means with incomplete kernels. *IEEE transactions on pattern analysis and machine intelligence*, 42(5): 1191–1204.

Patel, V. M.; and Vidal, R. 2014. Kernel sparse subspace clustering. In *2014 ieee international conference on image processing (icip)*, 2849–2853. IEEE.

Ren, Z.; and Sun, Q. 2020. Simultaneous global and local graph structure preserving for multiple kernel clustering. *IEEE transactions on neural networks and learning systems*, 32(5): 1839–1851.

Scholkopf, B.; and Smola, A. J. 2001. *Learning with kernels: support vector machines, regularization, optimization, and beyond*. MIT press.

Wang, S.; Liu, X.; Zhu, E.; Tang, C.; Liu, J.; Hu, J.; Xia, J.; and Yin, J. 2019. Multi-view Clustering via Late Fusion Alignment Maximization. In *IJCAI*, 3778–3784.

Wang, Y.; Liu, X.; Dou, Y.; and Li, R. 2017a. Approximate Large-scale Multiple Kernel k-means Using Deep Neural Network. In *IJCAI*, 3006–3012.

Wang, Y.; Liu, X.; Dou, Y.; and Li, R. 2017b. Multiple kernel clustering framework with improved kernels. *Discover*, 1(2): 3–4.

Wen, Z.; and Yin, W. 2013. A feasible method for optimization with orthogonality constraints. *Mathematical Programming*, 142(1): 397–434.

Yao, Y.; Li, Y.; Jiang, B.; and Chen, H. 2020. Multiple kernel k-means clustering by selecting representative kernels. *IEEE Transactions on Neural Networks and Learning Systems*.

Yu, S.; Tranchevent, L.; Liu, X.; Glanzel, W.; Suykens, J. A.; De Moor, B.; and Moreau, Y. 2011. Optimized data fusion for kernel k-means clustering. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 34(5): 1031–1039.

Zhang, P.; Liu, X.; Xiong, J.; Zhou, S.; Zhao, W.; Zhu, E.; and Cai, Z. 2020. Consensus One-step Multi-view Subspace Clustering. *IEEE Transactions on Knowledge and Data Engineering*.

Zhao, B.; Kwok, J. T.; and Zhang, C. 2009. Multiple Kernel Clustering. In *SDM*, 638–649.

Zhou, P.; Du, L.; Shi, L.; Wang, H.; and Shen, Y.-D. 2015. Recovery of corrupted multiple kernels for clustering. In *Twenty-Fourth International Joint Conference on Artificial Intelligence*.

Zhou, S.; Liu, X.; Li, M.; Zhu, E.; Liu, L.; Zhang, C.; and Yin, J. 2019. Multiple kernel clustering with neighbor-kernel subspace segmentation. *IEEE transactions on neural networks and learning systems*, 31(4): 1351–1362.

Zhou, S.; Ou, Q.; Liu, X.; Wang, S.; Liu, L.; Wang, S.; Zhu, E.; Yin, J.; and Xu, X. 2021a. Multiple Kernel Clustering With Compressed Subspace Alignment. *IEEE Transactions on Neural Networks and Learning Systems*, 1–12.

Zhou, S.; Ou, Q.; Liu, X.; Wang, S.; Liu, L.; Wang, S.; Zhu, E.; Yin, J.; and Xu, X. 2021b. Multiple Kernel Clustering With Compressed Subspace Alignment. *IEEE Transactions on Neural Networks and Learning Systems*.