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Abstract

We explore a fairness-related challenge that arises in genera-
tive models. The challenge is that biased training data with
imbalanced demographics may yield a high asymmetry in
size of generated samples across distinct groups. We focus
on practically-relevant scenarios wherein demographic labels
are not available and therefore the design of a fair genera-
tive model is non-straightforward. In this paper, we propose
an optimization framework that regulates the unfairness un-
der such practical settings via one statistical measure, LeCam
(LC)-divergence. Specifically to quantify the degree of un-
fairness, we employ a balanced-yet-small reference dataset
and then measure its distance with generated samples using
the LC-divergence, which is shown to be particularly instru-
mental to a small size of the reference dataset. We take a
variational optimization approach to implement the LC-based
measure. Experiments on benchmark real datasets demon-
strate that the proposed framework can significantly improve
the fairness performance while maintaining realistic sample
quality for a wide range of the reference set size all the way
down to 1% relative to training set.

Introduction

High-quality realistic samples synthesized thanks to recent
advances in generative models (Brock, Donahue, and Si-
monyan 2019; Goodfellow et al. 2014; Karras, Laine, and
Aila 2019) have played a crucial role to enrich training data
for a widening array of applications such as face recognition,
natural language processing, and medical imaging (Wang,
Wang, and Lian 2019; Chang, Chuang, and Lee 2018; Yi,
Walia, and Babyn 2019). One challenge concerning fairness
arises when generative models are built upon biased train-
ing data that preserve unbalanced representations of demo-
graphic groups. Any existing bias in the dataset can read-
ily be propagated to the learned model, thus producing bi-
ased generations towards certain demographics. The unbal-
anced generated samples may often yield undesirable per-
formances against underrepresented groups for downstream
applications. One natural way to ensure fair sample gener-
ation is to exploit demographic labels (if available) to build
a fair generative model, e.g., via conditional GANs (Mirza
and Osindero 2014; Odena, Olah, and Shlens 2017; Miyato
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and Koyama 2018) which employ such labels to easily gen-
erate an arbitrary number of samples for minority groups.
In many practically-relevant scenarios, however, such labels
are often unavailable.

To address the challenge, one pioneering work (Choi et al.
2020) develops a novel debiasing technique that employs
the reweighting idea (Ren et al. 2018; Kamiran and Calders
2012; Byrd and Lipton 2019) to put more weights to un-
derrepresented samples, thereby promoting fair sample gen-
eration across demographic groups. One key feature of the
technique is to identify the bias (reflected in the weights)
via a small and unlabelled reference dataset. While it en-
joys significant fairness performance for moderate sizes of
the reference dataset, it may provide a marginal gain for a
more practically-relevant case of a small set size where the
weight estimation is often inaccurate, as hinted by the meta-
learning literature (Ren et al. 2018; Shu et al. 2020). We also
find such phenomenon in our experiments; see Table 1 for
details.

Contribution: In this work, we take a distinct ap-
proach to address the issue w.r.t. the small reference set
size. We still rely upon a balanced unlabelled reference
dataset, yet employing a statistical notion, LeCam (LC)-
divergence (Le Cam 2012), instead of the reweighting ap-
proach. One important feature of the LC-divergence was
emphasized by Tseng et al. (2021) in the context of GANSs.
The divergence captures well the distance between real and
generated samples even in the limited size of training data,
thereby serving as a regularized loss in the design of a dis-
criminator. This robustness aspect of the divergence mo-
tivates us to incorporate the LC-divergence in quantifying
the degree of unfairness particularly when an employed ref-
erence set size is small. Specifically we compute the LC-
divergence between reference and generated samples. We
then promote fair sample generation by adding the LC-
divergence as a regularization term into conventional opti-
mization (e.g., GAN-based optimization (Goodfellow et al.
2014; Nowozin, Cseke, and Tomioka 2016; Arjovsky, Chin-
tala, and Bottou 2017)). We employ the variational optimiza-
tion technique w.r.t. the LC-divergence (Tseng et al. 2021) to
translate the regularized optimization into an implementable
form. We also conduct extensive experiments on three
benchmark real datasets: CelebA (Liu et al. 2015), UTK-
Face (Zhang, Song, and Qi 2017), and FairFace (Karkkainen



and Joo 2021). We demonstrate via simulation that the pro-
posed framework can significantly boost up the fairness per-
formance while offering high-quality realistic samples re-
flected in low Fréchet Inception Distance (Heusel et al.
2017). We also find that our approach outperforms the state
of the art (Choi et al. 2020), particularly when the balanced
reference set size is small: the significant improvements pre-
serve for a wide range of the reference set size down to 1%
relative to training data.

Related works: After firstly explored in Choi et al. (2020),
fairness of representations in a generative model has been
investigated under a number of different scenarios (Tan,
Shen, and Zhou 2020; Yu et al. 2020; Jalal et al. 2021; Lee
et al. 2021). For instance, Tan, Shen, and Zhou (2020) pro-
pose a different way that promotes fair sample generation
by smartly perturbing the input distribution of a pre-trained
generative model with the help of a classifier for sensitive
attributes. The key distinction w.r.t. ours is that it relies upon
the additional classifier. Another notable work that bears an
intimate connection to our setting is due to Yu et al. (2020).
The authors in Yu et al. (2020) employ demographic la-
bels for minority groups to generate a wide variety of sam-
ples with improved data coverage by harmonizing GAN and
MLE ideas. A distinction w.r.t. ours is that it requires the
knowledge on demographic labels.

Another line of fair generative modeling focuses on label
bias, instead of representation bias (Xu et al. 2018, 2019a,b;
Sattigeri et al. 2019; Jang, Zheng, and Wang 2021; Kyono
et al. 2021). The goal therein is to develop a generative
model such that the generated decision labels are statisti-
cally independent of the given demographic labels. Again,
these are not directly comparable to ours, as they require the
use of demographic labels.

The variational optimization technique w.r.t. the LC-
divergence that gives an inspiration to our work has origi-
nated from Tseng et al. (2021). The authors in Tseng et al.
(2021) showed that a properly weighted LC-divergence can
well represent the distance between real and generated sam-
ples, thereby serving to improve the generalization per-
formance in the scarce training data. This finding forms
the basis of our proposed framework that incorporates the
weighted LC-divergence to promote the fairness reflected in
a small divergence. On a different note, the LC-divergence
has also been instrumental in bounding some important
quantities that arise in diverse contexts such as communica-
tion complexity in theoretical computer science (Yehudayoff
2020) and growth rate in group theory (Ozawa 2015).

Problem Formulation

Setup: Figure 1 illustrates the problem setting for a fair
generative model that we focus on herein. We consider a
challenging yet practically-relevant scenario wherein demo-
graphic information (or that we call sensitive attribute), say
z € Z, is not available. Under this blind setting, the goal
is to construct a fair generative model so as to ensure the
produced samples with the same size (as much as possi-
ble) across distinct demographics. We assume that there are
two types of data given in the problem: (i) training data
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Figure 1: Part of a fair generative model that intends to yield
generated samples with the equal size over demographic

groups. We employ training data {xblas (potentially bi-
ased) and balanced reference data {acref}m’ef See Figure 2
for the entire structure of the proposed model. Here mpias

(or myef) denotes the number of training samples (or refer-
ence samples).

{x
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Since training data is potentially biased, we use the word
“bias” in the associated notations. Here my,;,s denotes the

number of training examples. Let Py;,s be the probability

distribution which each training data xﬁfls € X is drawn
from. In a biased scenario having female-vs-male sensitive
attribute, e.g., z = 0 (female) and z = 1 (male), we may
have Ppias(Z = 0) > Puias(Z = 1). For the purpose of
promoting fair sample generation, we employ a balanced
yet small reference dataset. As mentioned in Choi et al.
(2020), one can obtain such balanced reference dataset with-
out access to demographic labels (23&me 2016; Hong 2016;

Yoshida 2014); see the supplementary for details. Let Pef

be the distribution w.r.t. a reference sample a:féz € X where
Pef(Z = 0) = Pres(Z = 1). In practice, the number of the
reference samples is often much smaller than that of train-
ing examples: My < Mpias. Denote by & := G(w) € X
the generated sample fed by a random noise input w € W.
Let P¢ and Py be distributions w.r.t. the generated samples
and the random noise input respectively.

As a fairness measure that will be employed for the pur-
pose of evaluating our framework to be presented in the next
section, we consider fairness discrepancy proposed by Choi
et al. (2020). It quantifies how P¢ differs from Pes w.rt. a
certain sensitive attribute, formally defined below.

Definition 1 (Fairness Discrepancy (Choi et al. 2020)).
Fairness discrepancy between Pt and P w.rt. a sensitive
attribute z € {z1,...,2|z|} is defined as:

]:(]P)refaPG) = ||pref(z) - pG(Z)HQ (1
where
Pref(2) i= [Pref(Z = 21) -+ Pref(Z = 2)2))]";
pc(2) == Pe(Z=2) - Pa(Z=2z)]".

Here Z denotes the prediction of the sensitive attribute

w.r.t. a generated sample. We assume that Z is available
from a pre-trained attribute classifier. As in Choi et al.



(2020), the attribute classifier is employed only for the pur-
pose of evaluation, and is trained based on another real
dataset, e.g., like the one mentioned in Choi et al. (2020): the
standard train and validation splits of CelebA. For faithful
evaluation, we employ a reliable attribute classifier, which
provides a sufficiently high accuracy, say 98%, for gender
classification.

As a measure for the quality of generated samples that
may compete with the fairness measure, we employ a well-
known measure: Fréchet Inception Distance (FID) (Heusel
et al. 2017). It is defined as the Fréchet distance (Fréchet
1957) (also known as the second-order Wasserstein dis-
tance (Wasserstein 1969)) between real and generated sam-
ples approximated via the Gaussian distribution. The lower
FID, the more realistic and diverse the generated sam-
ples are. For a more precise measure that represents sam-
ple quality of each sensitive group, we consider FID com-
puted within each demographic, called intra FID (Miyato
and Koyama 2018; Zhang et al. 2019; Wang et al. 2020).
Computing intra FID requires the knowledge on group iden-
tities of generated samples. Since demographic labels are not
available in our setting, again we rely upon the attribute clas-
sifier (that we introduced above) for predicting demographic
information of the generated samples.

GAN-based generative model: Our framework (to be pre-
sented soon) builds upon one powerful generative model:
Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014). The GANs comprise two competing players: (i)
discriminator D(-) that wishes to discriminate real samples
against generated samples; and (ii) generator G(-) that in-
tends to fool the discriminator by producing realistic gener-
ated samples. As our base framework, we consider a promi-
nent f-GAN (Nowozin, Cseke, and Tomioka 2016), which
subsumes many divergence-based GANs as a special case.
For a convex function f satisfying f(1) = 0, the f-GAN
optimization w.r.t. the training data distribution Py;,s reads:

minmax Br,,, [D(X)] - Ere[f"(D(X)] @

where f* is the Fenchel-conjugate of f: f*(¢t) = sup, {ut —
f(u)}. One can recover the original GAN optimiza-
tion (Goodfellow et al. 2014) via f(u) = ulogu — (u +
1) log (u + 1)+2log 2. One important property of the above
optimization is that solving the inner problem induces the
discriminator to learn the density ratio between training and
generated data distributions (Song and Ermon 2020). It has
been shown in Nowozin, Cseke, and Tomioka (2016) that
plugging the optimal discriminator having such knowledge
on the densities into (2) yields the following equivalent op-
timization:

m(%n D (Pbias||[Pcr) 3)
where D ¢(Ppias||P;) indicates the f-divergence between
training and generated data distributions: D ;s (Ppias||Pg) =
> wex Pa(x)f (Poias(z)/Pa(x)). Notice that minimizing
the f-divergence in (3) encourages generated samples to re-
spect the biased distribution Py;,s, aggravating the fairness
performance. In the next section, we will present a gener-
alized framework that intends to equip (3) with a fairness
aspect.
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Proposed Framework
Divergence-Based Fairness Regularization

One conventional approach to impose a fairness constraint
is to incorporate a fairness-associated-regularization term.
Here a natural question arises. What is a proper regulariza-
tion term that can well capture the unfairness of a model?

Since we are interested in minimizing the fairness metric
(fairness discrepancy, defined in (1)), one may want to di-
rectly use it as a regularization term. However, this approach
is not permissible in our setting, as the computation of fair-
ness discrepancy requires the knowledge of demographic la-
bels which are assumed to be unavailable.

Here we propose a different regularization term for fair-
ness which is tractable to compute. Remember our frame-
work employs a balanced reference dataset with Ps. For
fairness, we want to make Pg as similar as possible to Py,
so a divergence measure between P and P can serve to
quantify the degree of unfairness. Taking such measure as a
regularization term, we obtain:

min (1 =X) - D (Puias||Pc) + A - Dgair (Pref||Pc)  (4)
where Dg,j; (Pref||Pe) indicates a divergence measure for
fairness (subject to our choice), and A € [0, 1] denotes a nor-
malized regularization factor that balances the sample qual-
ity against the fairness constraint. Notice that the regulariza-
tion term introduced above is indeed computable, e.g., via
empirical versions of Ps and P constructed from given
data samples.

Robust Regularization via LeCam Divergence

One challenge that arises in (4) is that in practice, the size
of reference dataset is often very small relative to training
dataset, i.e., Myef <K Mpias, SO0 measuring Dy (Pref||Pe)
may often be highly inaccurate, thereby degrading the fair-
ness performance.

We address this challenge by employing one diver-
gence measure in the f-divergence family, LeCam (LC)-
divergence (a.k.a. triangular discrimination) (Le Cam 2012).
This choice is inspired by a recent study (Tseng et al. 2021)
in which a properly-weighted version of LC-divergence is
shown to be robust to the size of data, thus GAN training
based on such weighted divergence yields little performance
degradation in small-sized datasets. Replacing the existing
regularization term in (4) with the weighted LC-divergence,
we get:

méﬂ (1 =X) - D (Puias||Pc) + A - uDA(Pret||Pg)  (5)
where p denotes a non-negative weight (another hyperpa-
rameter of which the role will be explained in detail shortly),
and Da (Pef||P¢) indicates the LC-divergence between Pref
and Pg:

(Pus(z) ~ Pe(@))*

DaPurlPa) = > 5 o3 Boa)

TeEX

Now the question is how to express uDa (Prf||Pa) in
terms of an optimization variable G. To this end, we in-
voke a variational optimization technique (Tseng et al. 2021)



that allows us to translate uD A (Pyef||P¢) into a function op-
timization with a regularized objective. In our framework,
the existing discriminator function D is dedicated for ex-
pressing D ¢ (Ppias||P¢ ), so we introduce another discrimina-
tor function D for expressing uDa (Pref||Pe). Employing
the translation technique (Tseng et al. 2021), one can show
that (5) is equivalent to the following nested optimization
(see the proof of Proposition 1 below for derivation):

max Ep,,, [D(X)] — Ep, [f*(D(X))]

1
2(u + @)
min (1~ \) Er, [f*(D(X))] - ABzq [Dyer(X)]

max E]}»ref [Dref(X)] - ]EIP’G [Dref(X)] -

ref

Ra

(6)
where o denotes an exponential moving average of D s

w.r.t. reference samples (see the supplementary for details),
and R indicates a regularization term for D, defined as:

Ra = Bp,, [\ Drer(X) + 2] + g [[| Deer(X) — P

We see that the hyperparameter p serves as a regulariza-
tion factor (together with «) in the D,f optimization. No-
tice that the optimization for D is the same as that in (2),
which serves to implement D ¢ (Pyias||P¢). The new regular-
ized optimization w.r.t. D, together with the second term
in the generator objective yields uDa (Pyef||P¢ ). The trans-
lated three-player optimization can then be implemented.
For instance, we parameterize (D, Dy, G) with three neu-
ral networks and then employ three-way alternating gradi-
ent descent (Goodfellow et al. 2014) for the parameterized
neural networks; see Algorithm 1 in the supplementary for
details. The equivalence between (5) and the translated op-
timization (6) can be readily shown via the proof technique
used in Tseng et al. (2021). See Proposition 1 below for the
formal statement of the equivalence and the proof.

Proposition 1. Consider a three-player optimization in (6).
Assume that given a fixed generator G, an exponential mov-
ing average of Dt W.L.t. reference data samples converges
to a stationary value o« > 0. Then, under the optimal dis-
criminators D* and D}, the optimization for generator G
is equivalent to (5).

Proof. Since Ep,, [D(X)] and Ep,,[Dref(X)] are irrelevant
to G, the optimization for GG in (6) can be written as:

min — (1= X) Epg [f*(D(X))] = A Epg [ Dref(X)]
= min (1= A){Eg,,, [D(X)] - Bz [ (D(X))]}

+ )\{E]Pref [Dref(X)] — Epg [Dref(X)]}-
(N
The optimization for D in (6) is the same as that in (2), so
it yields the same optimal function D* as (2). Plugging D*
into the terms associated with (1 — \) in (7), we obtain the
first term in the desired formula (5): (1 — \) - D (Ppias||Pc)-

For D, the optimization in (6) yields the following (Tseng
et al. 2021):

. P
ref(x) M P
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Figure 2: The architecture of the proposed three-player op-
timization, reflected in (6).

*

Plugging Dy into the terms associated with A in (7), we get
the desired LeCam divergence term (Tseng et al. 2021). This
completes the proof. O

For the assumption w.r.t. the convergence of an expo-
nential moving average, we found the same justification
in Tseng et al. (2021) can carry over our framework. More
precisely, we empirically observed that the output values of
Dys w.r.t. reference samples converge to a stationary point
in most of our experiments. In some rare cases where such
convergence may not be naturally attained, one may arti-
ficially implement the convergence by making the moving
average stop updating after a sufficient number of training
iterations (Tseng et al. 2021).

Remark 1 (How to implement LC-divergence?). For im-
plementing the LC-divergence, we adopt the same methods
as Tseng et al. (2021) which we found empirically more ben-
eficial in our framework. As described in Algorithm I (in the
supplementary), we apply the hinge loss (Lim and Ye 2017;
Tran, Ranganath, and Blei 2017) for D, which encourages
Di\ef to constrain its output value, thus improving the train-
ing stability. Also, we introduce an additional moving aver-
age w.r.t. generated samples, say ag, and incorporate it in
Ra: Ra = Ep, [ Dret(X) =)+ Eeg [ Drer(X)—al ).
We found that the use of the two moving averages offers
greater performances relative to the single moving-average
counterpart. In addition, we found fixing the weight of Ra
enables more stabilized training, yielding the performance
gain compared to the one with a variable weight in (6), i.e.,
—1/{2(p+a)}.

Remark 2 (Three-way battles). Figure 2 illustrates the en-
tire architecture of the translated three-level optimization.
Here we see interesting three-way battles. The first is a well-
known battle between the generator G and the st discrim-
inator D. Remember D* acts as a density ratio estima-
tor between Py;ys and Pg. So one can interpret D* as the
strength of distinguishing real (potentially biased) samples
against generated samples. On the other hand, the gener-
ator intends to fool D, thus promoting realistic samples.
The second battle is in between the generator and the 2nd
discriminator Dys. The same interpretation can be made
from D ((z) = p - % (the ability to distinguish
balanced reference samples against the generated samples).



This way, the generator G is encouraged to produce bal-
anced yet less realistic (due to the small-sized reference set)
samples, thus pitting the Ist discriminator against the 2nd
discriminator indirectly. The last battle is in between the st
and 2nd discriminators. This tension is directly controlled
by the fairness tuning knob \; see corresponding tradeoff
curves presented in Figure 4 in the next section. It turns out
the three-way tradeoff relationships established via our LC-
based framework are greatly balanced, thus achieving sig-
nificant performances both in fairness and sample quality.
This is empirically demonstrated in the next section; see Ta-
ble 1 for details.

Experiments

We conduct experiments on three benchmark real datasets:
CelebA (Liu et al. 2015), UTKFace (Zhang, Song, and Qi
2017), and FairFace (Karkkainen and Joo 2021). We imple-
ment our algorithm in PyTorch (Paszke et al. 2019), and all
experiments are performed on servers with TITAN RTX and
Quadro RTX 8000 GPUs. For our algorithm, all the simula-
tion results (to be reported) are the ones averaged over five
trials with distinct seeds in training.

Setup

Datasets: Our construction of Dy;,s and D,s respects the
method described in Choi et al. (2020). Only for the pur-
pose of data construction, we have an access to sensitive at-
tributes z, so as to control the ratio of demographic group
sizes. For CelebA, we consider two scenarios depending on
the number of focused attributes: (i) CelebA-single (gender);
(i) CelebA-multi (two attributes: gender and hair color).
Training data Dy,,s is constructed to have 9 : 1 ratio (fe-
male vs. male) samples where mpi,s = 67507. We take bal-
anced samples for Dy (1 : 1 ratio). For CelebA-multi, we

have four groups: (i) (female, non-black); (ii) (male, non-
black); (iii) (female, black); (iv) (male, black). For Dy;,s, we
take 85 : 15 ratio samples (non-black hair vs. black hair)
where mp;ss = 60000. For UTKFace dataset, we consider
a race attribute: white vs. non-white. We take 9 : 1 ratio
biased samples with mp;,s =~ 10000. For FairFace dataset,
we consider another type of race categorized as white vs.
black. We also take the 9 : 1 ratio biased samples yet with
Mpias ~ 20000. Additionally, we consider different settings
of sensitive attributes and bias ratio that are more difficult to
work on; see the supplementary for details. A wide range of
the reference set size is taken into consideration. We focus
mainly on two sizes: (1) 10% (Mmyef == 0.1mpias); (il) 25%
(Myef = 0.25Mmpias). To demonstrate the robustness of our
proposed approach to the reference set size, we also con-
sider small sizes of the reference set all the way down to
1%. See the supplementary for more details.

Baselines: We consider three baselines. The first baseline,
say Baseline I, is a non-fair algorithm trained on the aggre-
gated dataset Dpizs U Dyes. The second baseline, say Base-
line 11, is the same non-fair algorithm yet trained only with a
small balanced reference set D,s. The last is the state of the
art, Choi et al. (2020). For all three baselines, we employ the
hinge loss optimization (Lim and Ye 2017; Tran, Ranganath,
and Blei 2017).

Attribute classifiers: As mentioned in the second section
(near Definition 1), we employ attribute classifiers, only
for the purpose of evaluating our twin measures: (i) fair-
ness discrepancy (defined in (1)); (ii) intra FID. We intro-
duce four different attribute classifiers for predicting sen-
sitive attributes in the following scenarios: (i) gender for
CelebA-single; (ii) gender and hair-color for CelebA-multi;
(iii) white-vs-non-white race for UTKFace; (iv) white-vs-
black race for FairFace. For all the classifiers, we use a vari-
ant of ResNet18 (He et al. 2016). CelebA and FairFace clas-

Reference set size 25% 10% 5% 2.5% 1%
Baseline I Intra FID  12.00 + 0.069 12.73 +0.053 13.54 +0.074 13.79 + 0.072 15.89 + 0.094
aseline Fairness  0.495 + 0.001 0.554 +0.002 0.559 + 0.001  0.566 + 0.002  0.576 + 0.002
Baseline II Intra FID 23.81 +£0.118 32.31 £0.109 40.07 +0.062 67.70 £0.112  92.34 + 0.131
aseline Fairness  0.093 4+ 0.002 0.11540.002 0.120 + 0.003 0.150 + 0.003  0.455 + 0.002
Choi ctal, (2020) 1MEaFID 20680076 25.74£0.079 30.15+0037 30.4040.041 3149 +0.074
retal Fairness  0.065 +0.002  0.104 +0.002 0.126 +0.001  0.237 + 0.003  0.344 + 0.002
P q Intra FID 11.48 + 0.814 14.50 + 0.996 14.64 +0.626 17.16 & 1.607 23.11 & 0.797
ropose Fairness  0.037 = 0.007 0.039 = 0.013 0.118 = 0.007 0.129 = 0.010  0.146 = 0.022

Table 1: Performance comparison on CelebA dataset. We provide the results for CelebA-single in which a single attribute
(gender) is employed. See the supplementary for the results on CelebA-multi concerning two attributes: gender and hair color.
Baseline I is a non-fair algorithm with the hinge loss (Lim and Ye 2017; Tran, Ranganath, and Blei 2017), and trained with the
aggregated data Dy,s U Dyes. Baseline II is the same non-fair algorithm yet trained only with the small yet balanced reference
dataset D,es. Choi et al. (2020) is the state of the art. “Intra FID” refers to Fréchet Inception Distance (Heusel et al. 2017)
computed within each group (Miyato and Koyama 2018; Zhang et al. 2019). We provide Intra FIDs for the minority group (i.e.,
male) herein and leave results for the majority group in the supplementary. The lower intra FID, the more realistic and diverse
samples. “Fairness” is fairness discrepancy introduced by Choi et al. (2020); see (1) for the definition. The lower, the fairer.
For each measure, we mark the best result in bold and the second-best with underline. The reference set size indicates a ratio

relative to training data.
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sifiers are trained over the standard train and validation splits
of CelebA and FairFace, respectively. For training the UTK-
Face classifier, we use 8 : 1 : 1 splits of UTKFace dataset.
We found that our evaluation is often sensitive to the perfor-
mances of the attribute classifiers; see the supplementary for
a detailed discussion.

Hyperparameter search: For implementation of all three
baselines (Baseline I, Baseline II, and Choi et al. (2020))
and the proposed framework, we all employ the BigGAN ar-
chitecture (Brock, Donahue, and Simonyan 2019). In other
words, we parameterize G, D, and D, with the neural-net

architecture introduced in Brock, Donahue, and Simonyan
(2019). We leave details in the supplementary. We also con-
duct a complexity analysis of our algorithm with a compari-
son to the state of the art (Choi et al. 2020); see the supple-
mentary for details.

Results

Table 1 provides performance comparison with the three
baselines on CelebA dataset. For a wide range of the ref-
erence set size, our approach outperforms the state of the
art (Choi et al. 2020) both in fairness (“Fairness discrep-

UTKFace FairFace

Reference set size 25% 10% 25% 10%
Baseline I Intra FID 18.86 = 0.117 19.89 & 0.119 22.96 & 0.047 25.76 & 0.068
Fairness  0.400 = 0.003 0.453 +0.002 0.386 4= 0.003 0.434 4 0.002
Baseline IT Intra FID 35.73 £0.077 83.51 &£0.071 45.20 4+ 0.055 83.76 :=0.118
! Fairness  0.007 &= 0.003  0.010 & 0.003  0.009 & 0.002 0.105 & 0.002
Choi et al. (2020) Intra FID 35.04 =0.103 36.43 +0.231 32.82 +£0.073 33.33 & 0.076
) Fairness  0.178 &= 0.003 0.285 4+ 0.003 0.213 &0.002 0.317 4 0.002
Proposed Intra FID 20.62 +1.294 27.24 +4.125 24.24 4+0.228 30.76 & 2.072
P Fairness  0.072 = 0.010 0.091 4 0.022 0.078 & 0.005 0.094 + 0.014

Table 2: Performance comparison on UTKFace and FairFace datasets. All the settings and baselines are the same as those in
Table 1, except for different datasets. For each measure, we mark the best result in bold and the second-best with underline.

31

Figure 3: (Top) Generated samples by Choi et al. (2020) trained on CelebA-single with 10% reference set size. Faces above the
yellow line are female (57 pictures), while the rest are male (43). Intra FIDs are around 21.07 (female) and 25.74 (male); (Bot-
tom) Generated samples by the proposed approach under the same setting. We obtain 54 females and 46 males, yet producing
more realistic sample images, reflected in much lower intra FIDs, around 9.31 (female) and 14.50 (male).
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Figure 4: Fairness-quality tradeoff curves evaluated on
CelebA-single with a 10%-sized reference set. Each point
is obtained with a particular )\, the fairness tuning knob in
our framework. Blue dot points indicate performances for
female group, and green triangles are for male group.

ancy”) and sample quality (“Intra FID”). The lower, the
better for all the measures. Notice even for the 1% refer-
ence set size, our algorithm offers still respectable fairness
performance. This corroborates the robustness aspect of the
LC-divergence to the small reference dataset, which we em-
ploy for encouraging fair sample generation. On the other
hand, Choi et al. (2020) suffers from fairness degradation
starting from 2.5%, exhibiting its sensitivity to the size of
the reference data.

Table 2 concerns UTKFace and FairFace datasets. We
consider the same settings as in Table 1. One significant dis-
tinction w.r.t. CelebA dataset is that training and reference
set sizes are much smaller; see the supplementary for more
details. Hence, as expected, the overall performances are
worse than those on CelebA. Even in this small data regime,
we observe the same trends on the performance benefits of
ours relative to the baselines. Refer to the supplementary for
intra FIDs w.r.t. the majority groups.

Figure 3 visualizes generated samples on CelebA-single
with the 10% reference set size. The top figure corresponds
to Choi et al. (2020), while the bottom is due to the proposed
algorithm. For each figure, faces above the yellow lines are
female samples, while the rest are male samples. Here the
gender is predicted via the attribute classifier with around
98% accuracy. While both approaches yield well-balanced
samples (57 : 43 for Choi et al. (2020), and 54 : 46 for
ours), our algorithm produces more realistic sample images.
This is reflected in lower intra FIDs, around 9.31 (female
group) and 14.50 (male group). On the other hand, Choi
et al. (2020) offers intra FIDs of around 21.07 and 25.74 for
female and male groups, respectively. See the supplemen-
tary for the intra FID values for both groups. In the supple-
mentary, we also provide generated samples for UTKFace
and FairFace datasets.

Figure 4 demonstrates tradeoff curves between fairness
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Intra FID

Female Male Fairness
JS 12.80 +1.499 17.83 +£1.173 0.087 &+ 0.012
KL 1524 +0.371 22.47 +0.331 0.077 £ 0.019
X2 16.01 +=1.601 2525+ 1.877 0.058 +£0.019
w 16.51 +1.244 24.54 +2.731 0.047 £+ 0.033
LC 9.31 +0.825 14.50 =0.996 0.039 + 0.013

Table 3: Performance comparison with other fairness regu-
larizers on CelebA-single with the 10% reference set size.
“JS” refers to a regularization method based on Jensen-
Shannon divergence implemented via Goodfellow et al.
(2014). “KL” is the one built upon Kullback-Leibler diver-
gence (Nowozin, Cseke, and Tomioka 2016). “XQ” repre-
sents the one implementing Pearson-x? divergence (Mao
etal. 2017). “W” refers to a regularization with Wasserstein
distance (Gulrajani et al. 2017). “Female” (or “Male”) refers
to intra FID for female (or male) group. For each measure,
we mark the best result in bold and the second-best with un-
derline.

and sample quality offered by our framework. Each point
in the curves corresponds to performance with a specific
A value in {0, 0.3,0.4,0.45,0.5,0.63,0.7}. Observe that as
the fairness tuning knob A increases, fairness performance
gets improved (having lower fairness discrepancy) at the ex-
pense of the degraded sample quality, reflected in larger intra
FID. This validates the role of A as a tuning knob that con-
trols the strength of fairness.

Table 3 provides performance comparison with other fair-
ness regularizations that employ different divergence mea-
sures. Observe that among the considered regularization
methods, our LC-based approach offers the best perfor-
mances both in fairness and sample quality. It also yields the
smallest discrepancy between intra FIDs of different groups.
Another noticeable observation is that our divergence-based
regularization approach outperforms Choi et al. (2020) for a
variety of other divergence measures not limited to the LC-
divergence; also see Table 1 for detailed comparison.

Conclusion

We introduced an LC-based optimization framework for a
fair generative model that well tradeoffs the fairness per-
formance (quantified as fairness discrepancy) against sam-
ple quality (reflected in intra FID). Inspired by the equiva-
lence between the LC-divergence and function optimization,
we also developed an equivalent three-player optimization
which can readily be implemented via neural-net parameter-
ization. Our algorithm offers better performances than the
state of the art both in fairness and sample quality, exhibiting
more significant performances particularly for practically-
relevant scenarios where the access to balanced dataset is
limited. One future work of interest is to push forward for
more challenging scenarios where the reference dataset is
not available.
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