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Abstract

The success of pre-trained contextualized representations has
prompted researchers to analyze them for the presence of lin-
guistic information. Indeed, it is natural to assume that these
pre-trained representations do encode some level of linguis-
tic knowledge as they have brought about large empirical im-
provements on a wide variety of NLP tasks, which suggests
they are learning true linguistic generalization. In this work,
we focus on intrinsic probing, an analysis technique where
the goal is not only to identify whether a representation en-
codes a linguistic attribute but also to pinpoint where this at-
tribute is encoded. We propose a novel latent-variable formu-
lation for constructing intrinsic probes and derive a tractable
variational approximation to the log-likelihood. Our results
show that our model is versatile and yields tighter mutual in-
formation estimates than two intrinsic probes previously pro-
posed in the literature. Finally, we find empirical evidence
that pre-trained representations develop a cross-lingually en-
tangled notion of morphosyntax.

1 Introduction

There have been considerable improvements to the qual-
ity of pre-trained contextualized representations in recent
years (e.g., Peters et al. 2018; Devlin et al. 2019; Raffel et al.
2020). These advances have sparked an interest in under-
standing what linguistic information may be lurking within
the representations themselves (Poliak et al. 2018; Zhang
and Bowman 2018; Rogers, Kovaleva, and Rumshisky 2020,
inter alia). One philosophy that has been proposed to ex-
tract this information is called probing, the task of training
an external classifier to predict the linguistic property of in-
terest directly from the representations. The hope of probing
is that it sheds light onto how much linguistic knowledge is
present in representations and, perhaps, how that informa-
tion is structured. Probing has grown to be a fruitful area of
research, with researchers probing for morphological (Tang,
Sennrich, and Nivre 2020; Acs, Kadar, and Kornai 2021),
syntactic (Voita and Titov 2020; Hall Maudslay et al. 2020;
Acs, Kadar, and Kornai 2021), and semantic (Vulié et al.
2020; Tang, Sennrich, and Nivre 2020) information.
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In this paper, we focus on one type of probing known
as intrinsic probing (Dalvi et al. 2019; Torroba Hennigen,
Williams, and Cotterell 2020), a subset of which specifi-
cally aims to ascertain how information is structured within
a representation. This means that we are not solely inter-
ested in determining whether a network encodes the tense
of a verb, but also in pinpointing exactly which neurons
in the network are responsible for encoding the property.
Unfortunately, the naive formulation of intrinsic probing
requires one to test all possible combinations of neurons,
which is intractable even for the smallest representations
used in modern-day NLP. For example, analyzing all com-
binations of 768-dimensional BERT representations would
require training 27%% probes, one for each combination of
neurons, which far exceeds the estimated number of atoms
in the observable universe.

To obviate this difficulty, we introduce a novel latent-
variable probe for intrinsic probing. Our core idea, instead
of training a different probe for each subset of neurons, is to
introduce a subset-valued latent variable. We approximately
marginalize over the latent subsets using variational infer-
ence. Training the probe in this manner results in a set of
parameters which work well across all possible subsets. We
propose two variational families to model the posterior over
the latent subset-valued random variables, both based on
common sampling designs: Poisson sampling, which selects
each neuron based on independent Bernoulli trials, and con-
ditional Poisson sampling, which first samples a fixed num-
ber of neurons from a uniform distribution and then a sub-
set of neurons of that size (Lohr 2019). Conditional Poisson
sampling offers the modeler more control over the distribu-
tion over subset sizes; they may pick the parametric distri-
bution themselves.

We compare both variants to the two main intrinsic prob-
ing approaches we are aware of in the literature (§5). To do
s0, we train probes for 29 morphosyntactic properties across
6 languages' from the Universal Dependencies (UD; Nivre
et al. 2017) treebanks. We show that, in general, both vari-
ants of our method yield tighter estimates of the mutual in-
formation, though the model based on conditional Poisson
sampling yields slightly better performance. This suggests
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that they are better at quantifying the informational content
encoded in m-BERT representations (Devlin et al. 2019).
We make two typological findings when applying our probe.
We show that there is a difference in how information is
structured depending on the language with certain language—
attribute pairs requiring more dimensions to encode relevant
information. We also analyze whether neural representations
are able to learn cross-lingual abstractions from multilingual
corpora. We confirm this statement and observe a strong
overlap in the most informative dimensions, especially for
number.”

2 Intrinsic Probing

The success behind pre-trained contextual representations
such as BERT (Devlin et al. 2019) suggests that they may
offer a continuous analogue of the discrete structures in lan-
guage, such as morphosyntactic attributes number, case, or
tense. Intrinsic probing aims to recognize the parts of a net-
work (assuming they exist) which encode such structures.
In this paper, we operate exclusively at the level of the
neuron—in the case of BERT, this is one component of the
768-dimensional vector the model outputs. However, our ap-
proach can easily generalize to other settings, e.g., the layers
in a transformer or filters of a convolutional neural network.
Identifying individual neurons responsible for encoding lin-
guistic features of interest has previously been shown to in-
crease model transparency (Bau et al. 2019). In fact, knowl-
edge about which neurons encode certain properties has also
been employed to mitigate potential biases (Vig et al. 2020),
for controllable text generation (Bau et al. 2019), and to an-
alyze the linguistic capabilities of language models (Lakretz
et al. 2019).

To formally describe our intrinsic probing framework, we
first introduce some notation. We define II to be the set of
values that some property of interest can take, e.g., II =
{SINGULAR, PLURAL} for the morphosyntactic number at-
tribute. Let D = {(7(™, h(™)}Y_, be a dataset of label—
representation pairs: 7(™ e II is a linguistic property and
h™ cReisa representation. Additionally, let D be the set
of all neurons in a representation; in our setup, it is an inte-
ger range. In the case of BERT, we have D = {1,...,768}.
Given a subset of dimensions C' C D, we write h¢ for the
subvector of h which contains only the dimensions present
in C.

Let po(r(™ | h(C")) be a probe—a classifier trained to
predict (™ from a subvector hgl). In intrinsic probing, our
goal is to find the subset of neurons C' C D of size k£ which
are most informative about a property of interest. This may
be written as the following combinatorial optimization prob-
lem (Torroba Hennigen, Williams, and Cotterell 2020):

(#19)

To exhaustively solve Eq. (1), we would have to train a

C* = argmax lo (1)
s

Cl=k

n=1

The code necessary to replicate our experiments is available at
http://https://github.com/copenlu/flexible-probing.
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probe pg (7 | h¢) for every one of the exponentially many
subsets C' C D of size k. Thus, exactly solving Eq. (1)
is infeasible, and we are forced to rely on an approximate
solution, e.g., greedily selecting the dimension that maxi-
mizes the objective. However, greedy selection alone is not
enough to make solving Eq. (1) manageable; because we
must retrain pg(m | h¢) for every subset C' C D considered
during the greedy selection procedure, i.e., we would end
up training O(k |D|) classifiers. As an example, consider
what would happen if one used a greedy selection scheme
to find the 50 most informative dimensions for a property on
768-dimensional BERT representations. To select the first
dimension, one would need to train 768 probes. To select
the second dimension, one would train an additional 767,
and so forth. After 50 dimensions, one would have trained
37893 probes. To address this problem, our paper introduces
a latent-variable probe, which identifies a 8 that can be used
for any combination of neurons under consideration allow-
ing a greedy selection procedure to work in practice.

3 A Latent-Variable Probe

The technical contribution of this work is a novel latent-
variable model for intrinsic probing. Our method starts with
a generic probabilistic probe pg (7w | C, h) which predicts a
linguistic attribute 7 given a subset C' of the hidden dimen-
sions; C' is then used to subset h into h¢. To avoid training a
unique probe pg (7 | C, h) for every possible subset C' C D,
we propose to integrate a prior over subsets p(C) into the
model and then to marginalize out all possible subsets of
neurons:
po(m | k)= pa(r|C,h)p(C)

cCD

2

Due to this marginalization, our likelihood is not dependent
on any specific subset of neurons C. Throughout this pa-
per, we opted for a non-informative, uniform prior p(C'), but
other distributions are also possible.

Our goal is to estimate the parameters €. We achieve
this by maximizing the log-likelihood of the training data
SN log Yo p po(n™, C | h™) with respect to the pa-
rameters §. Unfortunately, directly computing this involves
a sum over all possible subsets of D—a sum with an ex-
ponential number of summands. Thus, we resort to a varia-
tional approximation. Let ¢4 (C') be a distribution over sub-
sets, parameterized by parameters ¢; we will use g4 (C) to
approximate the true posterior distribution. Then, the log-
likelihood is lower-bounded as follows:

N
Z log Z pg(w(

n=1 CCD
N

Z( " [logpg ONeE h("))}—&-H( ))

m,.C | h™) 3)

which follows from Jensen’s inequality, where H(qy) is the
entropy of q¢. The derivation of the variational lower bound



is shown below:

N
log

n=1

> po(x™,C | A™)
ccp

“

&)

Our likelihood is general and can take the form of any
objective function. Thus, we can use this approach to train
intrinsic probes with any type of architecture amenable to
gradient-based optimization, e.g., neural networks. How-
ever, in this paper, we use a linear classifier unless stated
otherwise. We note that Eq. (3) is valid for any choice of gg.
We explore two variational families for ¢g, each based on
a common sampling technique. The first (herein POISSON)
applies Poisson sampling (Hajek 1964), which assumes each
neuron to be subjected to an independent Bernoulli trial. The
second one (CONDITIONAL POISSON; Aires 1999) corre-
sponds to conditional Poisson sampling, which can be de-
fined as conditioning a Poisson sample by a fixed sample
size.

In the following, we introduce in detail the model training
procedure in §3.1 and discuss our selection of the variational
family g4 (C'), in §3.2.

3.1 Parameter Estimation

As mentioned above, the exact computation of the log-
likelihood is intractable due to the sum over all possible sub-
sets of D. Thus, we optimize the variational bound presented
in Eq. (3). We optimize the bound through stochastic gradi-
ent descent with respect to the model parameters € and the
variational parameters ¢, a technique known as stochastic
variational inference (Hoffman et al. 2013). However, one
final trick is necessary, since the variational bound still in-
cludes a sum over all subsets in the first term:

Vo, [logpo(r"), C | )] ©

- ]Eq¢ |:v0 IOgPB(ﬂ-(n)a C | h’(n)):|

M
= Z |:Ve logpe(ﬂ(n)7c(m) | h(n)):|

m=1

where we take M Monte Carlo samples to approximate the
sum. In the case of the gradient with respect to ¢, we also
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have to apply the REINFORCE trick (Williams 1992):

VEq, [logpo(r™,C | B™)] ™

=Eg, [logpg(w(”), C | h(”))V¢ log q¢(0)}
M
~ 3" [log (™), C™ | BV 4 log 44(C)]
m=1
where we again take M Monte Carlo samples. This proce-

dure leads to an unbiased estimate of the gradient of the vari-
ational approximation.

3.2 Choice of Variational Family ¢,(C)

We consider two choices of variational family g4(C'), both
based on sampling designs (Lohr 2019). Each defines a pa-
rameterized distribution over all subsets of D.

Poisson Sampling. Poisson sampling is one of the sim-
plest sampling designs. In our setting, each neuron d is given
a unique non-negative weight wy = exp(¢4). This gives us
the following parameterized distribution over subsets:
1
74(C) = -
del_]C:’ 1+ wy dl;£ 1+ wyq
The formulation in Eq. (8) shows that taking a sample
corresponds to |D| independent coin flips—one for each
neuron—where the probability of heads is 7°¢-. The en-

tropy of a Poisson sampling may be computed in O(|D|)
time:

(®)

| D]

d
Higg) =logZ = < o los wa
d=1

w

(©))

where log Z = Zlﬂl log(1 + wq). The gradient of Eq. (9)
may be computed automatically through backpropagation.

Conditional Poisson Sampling. We also consider a vari-
ational family that factors as follows:

46(C) = g (C | O] = k) a3 (k)
—_———
Conditional Poisson
In this paper, we take qf;ze(k) = Uniform(D), but a more
complex distribution, e.g., a Categorical, could be learned.
We define qu(C’ | |C] = k) as a conditional Poisson
sampling design. Similarly to Poisson sampling, conditional
Poisson sampling starts with a unique positive weight asso-
ciated with every neuron wy = exp(¢4). However, an addi-

tional cardinality constraint is introduced. This leads to the
following distribution:

(10)

w

() =10 =myllecte gy
A more elaborate dynamic program which runs in O(k | D)
may be used to compute ZF efficiently (Aires 1999). We
may further compute the entropy H(ge) and its the gradi-
ent in (9(|D|2) time using the expectation semiring (Eisner
2002; Li and Eisner 2009). Sampling from qu can be done
efficiently using quantities computed when running the dy-
namic program used to compute Z¥ (Kulesza 2012).3

3We use the semiring implementation by Rush (2020).



4 Experimental Setup

Our setup is virtually identical to the morphosyntactic
probing setup of Torroba Hennigen, Williams, and Cot-
terell (2020). This consists of first automatically mapping
treebanks from UD v2.1 (Nivre et al. 2017) to the Uni-
Morph (McCarthy et al. 2018) schema.* Then, we com-
pute multilingual BERT (m-BERT) representations® for ev-
ery sentence in the UD treebanks. After computing the m-
BERT representations for the entire sentence, we extract rep-
resentations for individual words in the sentence and pair
them with the UniMorph morphosyntactic annotations. We
estimate our probes’ parameters using the UD training set
and conduct greedy selection to approximate the objective in
Eq. (1) on the validation set; finally, we report the results on
the test set, i.e., we test whether the set of neurons we found
on the development set generalizes to held-out data. Addi-
tionally, we discard values that occur fewer than 20 times
across splits. When feeding h¢ as input to our probes, we
set any dimensions that are not present in C' to zero. We se-
lect M = 5 as the number of Monte Carlo samples since we
found this to work adequately in small-scale experiments.
We compare the performance of the probes on 29 language—
attribute pairs.

Since the performance of a probe on a specific subset of
dimensions is related to both the subset itself (e.g., whether
it is informative or not) and the number of dimensions being
evaluated (e.g., if a probe is trained to expect 768 dimensions
as input, it might work best when few or no dimensions are
filled with zeros), we sample 100 subsets of dimensions with
5 different possible sizes (we considered 10, 50, 100, 250,
500 dim.) and compare every model’s performance on each
of those subset sizes.

4.1 Baselines

We compare our latent-variable probe against two other re-
cently proposed intrinsic probing methods as baselines.

e Torroba Hennigen, Williams, and Cotterell (2020):
Our first baseline is a generative probe that models the
joint distribution of representations and their properties
p(h, ) = p(h | 7) p(7), where the representation distri-
bution p(h | 7) is assumed to be Gaussian. Torroba Hen-
nigen, Williams, and Cotterell (2020) report that a major
limitation of this probe is that if certain dimensions of the
representations are not distributed according to a Gaus-
sian distribution, then probe performance will suffer.

Dalvi et al. (2019): Our second baseline is a linear clas-
sifier, where dimensions not under consideration are ze-
roed out during evaluation (Dalvi et al. 2019; Durrani
et al. 2020).° Their approach is a special case of our pro-
posed latent-variable model, where g4 is fixed so that

*We adopt the code available at: https:/github.com/unimorph/
ud-compatibility.

SWe use the implementation by Wolf et al. (2020).

SWe note that they do not conduct intrinsic probing via di-
mension selection: Instead, they use the absolute magnitude of the
weights as a proxy for dimension importance. In this paper, we
adopt the approach of (Torroba Hennigen, Williams, and Cotterell
2020) and use the performance-based objective in Eq. (1).
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on every training iteration the entire set of dimensions
is sampled.

Additionally, we compare our methods to a naive ap-
proach, a probe that is re-trained for every set of dimensions
under consideration selecting the dimension that maximizes
the objective (herein UPPER BOUND).” Due to computa-
tional cost, we limit our comparisons with UPPER BOUND
to 6 randomly chosen morphosyntactic attributes,® each in a
different language.

4.2 Metrics

We compare our proposed method to the baselines above
under two metrics: accuracy and mutual information (MI).
We report mutual information, which has recently been pro-
posed as an evaluation metric for probes (Pimentel et al.
2020). Here, mutual information (MI) is a function between
a IT-valued random variable P and a RI¢l-valued random
variable H over masked representations:

MI(P;He) = H(P) ~H(P | Ho)  (12)

where H(P) is the inherent entropy of the property being
probed and is constant with respect to Ho; H(P | H¢)
is the entropy over the property given the representations
Hc. Exact computation of the mutual information is in-
tractable; however, we can lower-bound the MI by approxi-
mating H(P | H¢) using our probe’s average negative log-
likelihood: —+ SN logpe (7™ | C,h™) on held-out
data. See Brown et al. (1992) for a derivation. We normalize
the mutual information (NMI) by dividing the MI by the en-
tropy which turns it into a percentage and is, arguably, more
interpretable. We refer the reader to Gates et al. (2019) for a
discussion of the normalization of MI.

We also report accuracy which is a standard measure for
evaluating probes as it is for evaluating classifiers in general.
However, accuracy can be a misleading measure, especially
on imbalanced datasets since it considers solely correct pre-
dictions.

4.3 What Makes a Good Probe?

Since we report a lower bound on the mutual information
(§4), we deem the best probe to be the one that yields the
tightest mutual information estimate, or, in other words, the
one that achieves the highest mutual information estimate;
this is equivalent to having the best cross-entropy on held-
out data, which is the standard evaluation metric for lan-
guage modeling.

However, in the context of intrinsic probing, the topic of
primary interest is what the probe reveals about the structure
of the representations. For instance, does the probe reveal

"The UPPER BOUND yields the tightest estimate on the mutual
information, however as mentioned in §2, this is unfeasible since it
requires retraining for every different combination of neurons. For
comparison, in English number, on an Nvidia RTX 2070 GPU, our
POI1SSON, GAUSSIAN and LINEAR experiments take a few minutes
or even seconds to run, compared to UPPER BOUND which takes
multiple hours.

8English-Number, Portuguese-Gender and Noun Class,
Polish-Tense, Russian—Voice, Arabic—Case, Finnish—Tense



that the information encoded in the embeddings is focal-
ized or dispersed across neurons? Several prior works (e.g.,
Lakretz et al. 2019) focus on the single neuron setting, which
is a special, very focal case. To engage with this work, we
compare probes not only with respect to their performance
(MI and accuracy), but also with respect to the size of the
subset of dimensions being evaluated, i.e., the size of set C.

We acknowledge that there is a disparity between the
quantitative evaluation we employ, in which probes are com-
pared based on their MI estimates, and the qualitative nature
of intrinsic probing, which aims to identify the substructures
of a model that encode a property of interest. However, it is
non-trivial to evaluate fundamentally qualitative procedures
in a large-scale, systematic, and unbiased manner. There-
fore, we rely on the quantitative evaluation metrics presented
in §4.2, while also qualitatively inspecting the implications
of our probes.

4.4 Training and Hyperparameter Tuning

We train our probes for a maximum of 2000 epochs using
the Adam optimizer (Kingma and Ba 2015). We add early
stopping with a patience of 50 as a regularization technique.
Early stopping is conducted by holding out 10% of the train-
ing data; our development set is reserved for the greedy se-
lection of subsets of neurons. Our implementation is built
with PyTorch (Paszke et al. 2019). To execute a fair compar-
ison with Dalvi et al. (2019), we train all probes other than
the Gaussian probe using ElasticNet regularization (Zou and
Hastie 2005), which consists of combining both L; and
Lo regularization, where the regularizers are weighted by
tunable regularization coefficients A\; and \,, respectively.
We follow the experimental set-up proposed by Dalvi et al.
(2019), where we set A1, Ay = 10~° for all probes. In a pre-
liminary experiment, we performed a grid search over these
hyperparameters to confirm that the probe is not very sensi-
tive to the tuning of these values (unless they are extreme)
which aligns with the claim presented in Dalvi et al. (2019).
For GAUSSIAN, we take the MAP estimate, with a weak
data-dependent prior (Murphy 2012, Chapter 4). In addi-
tion, we found that a slight improvement in the performance
of PO1SSON and CONDITIONAL POISSON was obtained by
scaling the entropy term in Eq. (3) by a factor of 0.01.

5 Results

In this section, we present the results of our empirical in-
vestigation. First, we address our main research question:
Does our latent-variable probe presented in §3 outperform
previously proposed intrinsic probing methods (§5.1)? Sec-
ond, we analyze the structure of the most informative m-
BERT neurons for the different morphosyntactic attributes
we probe for (§5.2). Finally, we investigate whether knowl-
edge about morphosyntax encoded in neural representations
is shared across languages (§5.3).

5.1 How Do Our Methods Perform?

To investigate how the performance of our models compares
to existing intrinsic probing approaches, we compare the
performance of the POISSON and CONDITIONAL POISSON

13595

Dalvi Poisson
0.8 Cond. Poisson Gaussian
. 06
Z
0.4
0.2
0
20 40 60 80 100
Number of sampled dimensions
1
0.9
>
§ 0.8
=
Q
<07
0.6
0.5
20 40 60 80 100

Number of sampled dimensions

Figure 1: Comparison of the POISSON, CONDITIONAL
POISSON, LINEAR (Dalvi et al. 2019) and GAUSSIAN (Tor-
roba Hennigen, Williams, and Cotterell 2020) probes. We
use the greedy selection approach in Eq. (1) to select
the most informative dimensions, and average across all
language—attribute pairs we probe for.

probes to LINEAR (Dalvi et al. 2019) and GAUSSIAN (Tor-
roba Hennigen, Williams, and Cotterell 2020). We refer to
§4.3 for a discussion of the limitations of our method.

In general, CONDITIONAL POISSON tends to outperform
POISSON at lower dimensions, however, POISSON tends to
catch up as more dimensions are added. Our results sug-
gest that both variants of our latent-variable model from §3
are effective and generally outperform the LINEAR baseline
as shown in Tab. 1. The GAUSSIAN baseline tends to per-
form similarly to CONDITIONAL POISSON when we con-
sider subsets of 10 dimensions, and it outperforms POIS-
SON substantially. However, for subsets of size 50 or more,
both CONDITIONAL POISSON and POISSON are preferable.
We believe that the robust performance of GAUSSIAN in the
low-dimensional regimen can be attributed to its ability to
model non-linear decision boundaries (Murphy 2012, Chap-
ter 4).

The trends above are corroborated by a comparison of
the mean NMI (Tab. 2, top) achieved by each of these
probes for different subset sizes. Notwithstanding, GAUS-
SIAN’s performance (in terms of NMI) is not stable and



Number of dimensions

10 50 100 250 500
GAUSSIAN
C.PoissoN 050 0.58 0.70 0.99 1.00
POISSON 021 049 0.66 0.98 1.00
LINEAR
C.PoissoN 099 1.00 1.00 1.00 0.98
POISSON 095 099 1.00 1.00 0.97

Table 1: Proportion of experiments where CONDITIONAL
PoO1SSON (C. PoIssON) and POISSON beat the benchmark
models LINEAR and GAUSSIAN in terms of NMI. For each
of the subset sizes, we sampled 100 different subsets of
BERT dimensions at random.

can yield low or even negative mutual information estimates
across all subsets of dimensions. Adding a new dimension
can never decrease the mutual information, so the observ-
able decreases occur because the generative model deterio-
rates upon adding another dimension, which validates Tor-
roba Hennigen, Williams, and Cotterell’s claim that some
dimensions are not adequately modeled by the Gaussian as-
sumption. While these results suggest that GAUSSIAN may
be preferable if performing a comparison based on accuracy,
the instability of GAUSSIAN when considering NMI sug-
gests that this edge in terms of accuracy comes at a hefty
cost in terms of calibration (Guo et al. 2017).°

Further, we compare the POISSON and CONDITIONAL
POISSON probes to the UPPER BOUND baseline. This is ex-
pected to be the highest performing since it is re-trained for
every subset under consideration and indeed, this assump-
tion is confirmed by the results in Tab. 2 (bottom). The dif-
ference between our probes’ performance and the UPPER
BOUND baseline’s performance can be seen as the cost of
sharing parameters across all subsets of dimensions, and an
effective intrinsic probe should minimize this.

We also conduct a direct comparison of LINEAR, GAUS-
SIAN, POI1SSON and CONDITIONAL POISSON when used to
identify the most informative subsets of dimensions. The av-
erage MI and accuracy reported by each model across all
29 morphosyntactic language—attribute pairs is presented in
Fig. 1. On average, CONDITIONAL POISSON offers compa-
rable performance to GAUSSIAN at low dimensionalities for
both NMI and accuracy, though the latter tends to yield a
slightly higher (and thus a tighter) bound on the MI. How-
ever, as more dimensions are taken into consideration, our
models vastly outperform GAUSSIAN. Our models perform
comparably at high dimensions, but CONDITIONAL POIS-
SON performs slightly better for 1-20 dimensions. POIS-
SON outperforms LINEAR at high dimensions, and CONDI-
TIONAL POISSON outperforms LINEAR for all dimensions
considered. These effects are less pronounced for accuracy,

“While accuracy only cares about whether predictions are cor-
rect, NMI penalizes miscalibrated predictions since it is propor-
tional to the negative log likelihood (Guo et al. 2017).
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Figure 2: Comparison of the average NMI for gender di-
mensions in BERT for each of the available languages. We
use the greedy selection approach in Eq. (1) to select the
most informative dimensions, and average across all lan-
guage—attribute pairs we probe for.

which we believe to be due to accuracy’s insensitivity to
a probe’s confidence in its prediction. Finally, while CON-
DITIONAL POISSON achieves a tighter bound on NMI than
PoOI1SSON, we recommend the POISSON probe for larger ex-
perimental setups due to its computational efficiency.

5.2 Information Distribution

We compare the performance of the CONDITIONAL POIS-
SON probe for each attribute for all available languages in
order to better understand the relatively high NMI variance
across results (see Tab. 2). In Fig. 2, we plot the average
NMI for gender and observe that languages with two gen-
ders present (Arabic and Portuguese) achieve higher perfor-
mance than languages with three genders (Russian and Pol-
ish) which is an intuitive result due to increased task com-
plexity. Further, we see that the slopes for both Russian and
Polish are flatter, especially at lower dimensions. This im-
plies that the information for Russian and Polish is more
dispersed and more dimensions are needed to capture the
typological information.

5.3 Cross-Lingual Overlap

We compare the most informative m-BERT dimensions re-
covered by our probe across languages and find that, in many
cases, the same set of neurons express the same morphosyn-
tactic phenomena across languages. For example, we find
that Russian, Polish, Portuguese, English and Arabic have
statistically significant overlap in the top 30 most infor-
mative neurons for number (Fig. 3). These results indicate
that BERT may be leveraging data from other languages
to develop a cross-lingually entangled notion of morpho-
syntax (Torroba Hennigen, Williams, and Cotterell 2020)
and that this effect may be particularly strong between ty-
pologically similar languages.'”

19Recently, both Staficzak et al. (2022), who utilize the POISSON
probe, and Antverg and Belinkov (2021) find evidence supporting
a similar phenomenon.



Probe 10 50 100 250 500 768
CoND. PoissoN  0.04+0.03 0.18+0.10 0.31+0.14 0.54£0.17 0.69 £0.15 0.71£0.15
POISSON —0.18 £0.28 0.03£0.24 0.22+£0.21 0.53 £0.17 0.69£0.16 0.71£0.19
LINEAR —-0.28+£0.35 —-0.18£0.36 —0.06=£0.35 0.24 £0.33 0.59 £0.21 0.78 £0.14
GAUSSIAN —0.15£043 —-1.204+282 -—-3.97+£8.62 —61.70+186.15 —413.80£1175.31 —1067.08 & 2420.08
COND. POISSON 0.04 £0.03 0.21£0.11 0.35£0.16 0.58 £0.2 0.77£0.19 0.74 £0.16
PoOISSON —0.10£0.10 0.11+£0.13 0.28 £0.17 0.57+0.20 0.73+£0.20 0.76 £0.18
UPPER BOUND 0.10£0.06 0.36+0.16 0.52+0.19 0.70 £ 0.20 0.79+0.17 0.81+£0.13

Table 2: Mean and standard deviation of NMI for the POISSON, CONDITIONAL POISSON, LINEAR (Dalvi et al. 2019) and
GAUSSIAN (Torroba Hennigen, Williams, and Cotterell 2020) probes for all language—attribute pairs (top) and mean NMI
and standard deviation for the CONDITIONAL POISSON, POISSON and UPPER BOUND for 6 selected language—attribute pairs
(bottom). For each subset size considered, we take our averages over 100 randomly sampled subsets of BERT dimensions.

rus

Uralic fin
IE (Slavic)
pol

1
09
us 0.8
ara eng por  pol rus fin

IE (Romance) por
IE (Germanic) eng
Afro-Asiatic ara

Figure 3: The percentage overlap between the top 30 most
informative number dimensions in BERT for the probed
languages. Statistically significant overlap, after Holm—
Bonferroni family-wise error correction (Holm 1979), with
o = 0.05, is marked with an orange square.

6 Related Work

A growing interest in interpretability has led to a flurry of
work in assessing what pre-trained representations know
about language. To this end, diverse methods have been
employed, such as the construction of challenge sets that
evaluate how well representations model particular phe-
nomena (Linzen, Dupoux, and Goldberg 2016; Gulordava
et al. 2018; Goldberg 2019; Goodwin, Sinha, and O’Donnell
2020), and visualization methods (Kadar, Chrupata, and
Alishahi 2017; Rethmeier, Saxena, and Augenstein 2020).
Work on probing comprises a major share of this en-
deavor (Belinkov and Glass 2019; Belinkov 2021). This
has taken the form of focused studies on particular linguis-
tic phenomena (e.g., subject-verb number agreement, Giu-
lianelli et al. 2018) to broad assessments of contextual repre-
sentations in a wide array of tasks (Sahin et al. 2020; Tenney
et al. 2018; Conneau et al. 2018; Ravichander, Belinkov, and
Hovy 2021; Geva et al. 2022, inter alia).

Efforts have ranged widely, but most of these focus on ex-
trinsic rather than intrinsic probing. Most work on the latter
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has focused primarily on ascribing roles to individual neu-
rons through methods such as visualization (Karpathy, John-
son, and Fei-Fei 2015; Li et al. 2016) and ablation (Li, Mon-
roe, and Jurafsky 2016). For example, recently Lakretz et al.
(2019) conduct an in-depth study of how LSTMs (Hochre-
iter and Schmidhuber 1997) capture subject—verb number
agreement, and identify two units largely responsible for this
phenomenon.

More recently, there has been a growing interest in ex-
tending intrinsic probing to collections of neurons. Bau et al.
(2019) utilize unsupervised methods to identify important
neurons and then attempt to control a neural network’s out-
puts by selectively modifying them. Bau et al. (2020) pursue
a similar goal in a computer vision setting but ascribe mean-
ing to neurons based on how their activations correlate with
particular classifications in images and are able to control
these manually with interpretable results. Aiming to answer
questions on interpretability in computer vision and natu-
ral language inference, Mu and Andreas (2020) develop a
method to create compositional explanations of individual
neurons and investigate abstractions encoded in them. Vig
et al. (2020) analyze how information related to gender and
societal biases is encoded in individual neurons and how it
is being propagated through different model components.

7 Conclusion

In this paper, we introduce a new method for training intrin-
sic probes. We construct a probing classifier with a subset-
valued latent variable and demonstrate how the latent sub-
sets can be marginalized using variational inference. We
propose two variational families, based on common sam-
pling designs, to model the posterior over subsets: Poisson
and conditional Poisson sampling. We demonstrate that both
variants outperform our baselines in terms of mutual infor-
mation and that using a conditional Poisson variational fam-
ily generally gives optimal performance. Next, we investi-
gate information distribution for each attribute for all avail-
able languages. Finally, we find empirical evidence for over-
lap in the specific neurons used to encode morphosyntactic
properties across languages. Future work will focus on the
application of this method to investigate the cross-lingual
patterns in representations learned by pre-trained language
models in a typologically diverse setting.
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