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Abstract

Despite that convolution neural networks (CNN) have re-
cently demonstrated high-quality reconstruction for video
super-resolution (VSR), efficiently training competitive VSR
models remains a challenging problem. It usually takes an or-
der of magnitude more time than training their counterpart
image models, leading to long research cycles. Existing VSR
methods typically train models with fixed spatial and tempo-
ral sizes from beginning to end. The fixed sizes are usually
set to large values for good performance, resulting to slow
training. However, is such a rigid training strategy necessary
for VSR? In this work, we show that it is possible to gradu-
ally train video models from small to large spatial/temporal
sizes, i.e., in an easy-to-hard manner. In particular, the whole
training is divided into several stages and the earlier stage has
smaller training spatial shape. Inside each stage, the tempo-
ral size also varies from short to long while the spatial size
remains unchanged. Training is accelerated by such a multi-
grid training strategy, as most of computation is performed on
smaller spatial and shorter temporal shapes. For further accel-
eration with GPU parallelization, we also investigate the large
minibatch training without the loss in accuracy. Extensive ex-
periments demonstrate that our method is capable of largely
speeding up training (up to 6.2× speedup in wall-clock train-
ing time) without performance drop for various VSR models.

Introduction
Video super resolution (VSR) (Kappeler et al. 2016; Liu
et al. 2020; Chan et al. 2021b; Liang et al. 2022; Wang
et al. 2021, 2019; Tian et al. 2020) aims to recover a high-
resolution (HR) video from a low-resolution (LR) input,
which has gained increasing attention in computer vision
community. However, training VSR models is much slower
than training image SR models due to the additional tem-
poral dimension. The slow training leads to long research
cycles, which impedes the development of VSR models.

Existing VSR models (Wang et al. 2019; Liu et al. 2021;
Zhu et al. 2019; Yan, Lin, and Tan 2019; Chan et al. 2021a)
are typically trained with fixed spatial and temporal sizes.
The sizes are usually set to large values to achieve good per-
formance. Larger sizes require the models to process more
spatial and temporal information, which is time-consuming.
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Figure 1: Wall-clock training time speedup and performance
comparisons on REDS4 with the BasicVSR-M model. Our
method significantly accelerates training (i.e., 6.2×) while
maintaining baseline accuracy (30.90 vs. 30.91).

Whereas, training on small sizes is relatively easier and
faster, but less accurate. It is a natural idea to gradually train
VSR models from small to large spatial/temporal sizes, i.e.,
in an easy-to-hard manner. Specifically, in the early stage
of training, the VSR models can be trained with small spa-
tial and temporal sizes, which are relatively easier to learn.
When the models perform well on small sizes, we then grad-
ually enlarge the spatial and temporal shapes, making the
models focus on reconstructing finer details. Such a learn-
ing strategy imitates the way we learn new skills, starting
from learning the simple tasks, and then gradually learning
the complex and challenging ones. In such a way, the train-
ing time is largely reduced, as most of computation is per-
formed on small spatial and short temporal shapes.

Directly applying the above easy-to-hard training strategy
to VSR models leads to inferior performance. The reasons
are two-fold. Firstly, the spatial and temporal dimensions in
videos are highly correlated. Changing the spatial size will
affect the learning on the temporal dimension, and altering
temporal size affects that of spatial. Thus, simultaneously
varying the spatial and temporal sizes from small to large
is not optimal. Secondly, the learning rate in VSR models
usually starts at a large value and then gradually decays to a
small one. With such a learning rate scheduler, the learning
rate is relatively small when the spatial and temporal sizes
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are switched to large ones, hindering the learning ability of
the models.

In this paper, we propose a simple yet effective multigrid
training strategy that learns to reconstruct in an easy-to-hard
manner. The strategy adopts a hierarchical design for alter-
ing the spatial and temporal sizes with two cycles. Specifi-
cally, we first employ a spatial cycle that varies the spatial
size from small to large. Then, inside each spatial stage with
fixed spatial size, we further employ a temporal cycle that
moves the temporal size from short to long. In order to fit
the different degrees of task difficulty when switching spa-
tial and temporal sizes, we introduce a dynamic learning rate
scheduler, where the learning rate is re-started with a large
value when the spatial or temporal size changes. Large learn-
ing rate enhances the exploration ability of the VSR models
in transferring from easy tasks (small spatial and short tem-
poral sizes) to harder ones (large spatial and long tempo-
ral sizes). Experiments demonstrate that our multigrid train-
ing strategy in this easy-to-hard manner achieves significant
speedup in wall-clock training time without losing accuracy.

In order to further accelerate the training of VSR, we
resort to making full use of the GPU parallelism by large
minibatch training. It has been widely explored in high-
level vision tasks to accelerate training without accuracy
loss (Krizhevsky 2014; Goyal et al. 2017; Chen et al. 2016).
However, large minibatch training is still under investigation
in VSR. In this paper, we revisit the training of VSR and
study how larger minibatch sizes affect the training of VSR.
Similar to (Goyal et al. 2017), we apply a linear scaling rule
to adjust the learning rate according to minibatch sizes. In
addition, it is necessary to have a warmup phase that trains
the network with a small learning rate early in training. As
a result, each training iteration can process more samples,
leading to faster training (see Figure 1).

In summary, we make the following contributions:
• We propose a multigrid training strategy for efficient

VSR training. This strategy trains the VSR models in an
easy-to-hard manner by varying the spatial and temporal
sizes from small to large.

• Large minibatch training is investigated in VSR to effec-
tively accelerate the training of VSR models.

• Extensive experiments on various VSR models demon-
strate the effectiveness and generalization of multigrid
training and large minibatch training. Especially, our
method is capable of achieving up to 6.2× speedup in
wall-clock training time while maintaining accuracy for
recently VSR models.

Related Works
Video Super Resolution. Existing VSR methods can be
roughly classified into two types: sliding-window-based
methods (Wang et al. 2019; Caballero et al. 2017; Tao et al.
2017; Xue et al. 2019a; Tian et al. 2020; Jo et al. 2018),
and recurrent-based methods (Chan et al. 2021a; Isobe et al.
2020a,b; Cao et al. 2021). Sliding-window methods tend
to restore a single frame using several neighboring frames
within a temporal window. Several sliding-window meth-
ods (Caballero et al. 2017; Tao et al. 2017; Xue et al. 2019a)

adopt optical flow between frames to guide the spatial warp-
ing for temporal alignment. EDVR (Wang et al. 2019) fur-
ther designs a pyramid alignment module to perform align-
ment in a coarse-to-fine manner and a fusion module to fuse
the features of different frames.

As one of the representative recurrent-based methods,
RSDN (Isobe et al. 2020a) proposes a structure-detail block
and a hidden state adaptation module to exploit previous
frames to super-resolve the LR frame. BasicVSR (Chan
et al. 2021a) adopts a bidirectional recurrent design to prop-
agate the information in videos and employs a simple flow-
based alignment to align the features, achieving state-of-the-
art performance. Despite their promising performance, the
long training time hinders the development of VSR models.
In this paper, we aim at accelerating the training of VSR
models without a performance drop. We evaluate the effec-
tiveness of the proposed training strategy on both the sliding-
window-based (i.e., EDVR) and the recurrent-based (i.e.,
BasicVSR) VSR methods.

Curriculum Learning. Curriculum learning is a training
strategy that trains machine learning models from easy to
hard, which imitates the learning order in human curricula.
Researchers have exploit its powers in increasing the con-
vergence speed and improving the performance over vari-
ous tasks, e.g., object detection (Chen and Gupta 2015; Li
et al. 2017; Sangineto et al. 2018) and neural machine trans-
lation (Wang, Chen, and Zhu 2021; Wang, Caswell, and
Chelba 2019; Tay et al. 2019). Among the works in curricu-
lum learning, Bengio et al. (Bengio et al. 2009) trains ma-
chine learning models by gradually increasing the complex-
ity of training samples. The work in (Karras et al. 2018) pro-
poses to gradually increase the model complexity by adding
new layers during training, which both decreases the training
time and achieves better performance. Note that, our easy-
to-hard training strategy can be treated as a type of curricu-
lum learning, which has not been investigated in VSR.

Efficient training. Recently has witnessed great success in
accelerating training in high-level vision tasks (Wu et al.
2020; Goyal et al. 2017; Huang et al. 2019; Mostafa and
Wang 2019; Jeong, Park, and Ha 2018; Wu et al. 2019; Qin
et al. 2018) (e.g., image classification, object detection). The
work in (Goyal et al. 2017) presents a linear scaling rule that
speeds up training by using large minibatches. Wu et al. (Wu
et al. 2020) propose to accelerate the training of video action
recognition models with variable minibatch shapes, which
achieves a significant speedup in wall-clock training time.
The work in (You et al. 2020) designs a layer-wise train-
ing framework for graph convolution networks (Kipf and
Welling 2016) that disentangles the feature aggregation and
feature transformation during training, leading to a great re-
duction of time and memory consumption.

Despite the success of the above-mentioned works, how to
accelerate the training of VSR models has still barely been
investigated. This paper revisits the training of VSR mod-
els and presents two effective techniques to speed up VSR
training while maintaining accuracy.
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Figure 2: Training process of the proposed multigrid training strategy vs. baseline training. (a) Baseline training typically adopts
a constant and large spatial/temporal size during the whole training process. (b) Multigrid training first varies the spatial size
from small to large as the training processes. Then, for each stage with fixed spatial size, the temporal size moves from small
to large as well. Yellow, pink, and green indicate temporal sizes T

2 , 3T
4 , and T , respectively.

Method
In this section, we first present our multigrid training strat-
egy. Then, we introduce how to train VSR models with large
minibatches.

Multigrid Training
Despite the success of image SR methods, directly apply-
ing image models to videos leads to inferior performance, as
they process each frame separately and thus ignore the rich
information among frames. A common practice to improve
the accuracy of VSR is to train the SR methods with multiple
frames (i.e., large temporal size). However, as the number of
frames grows, training becomes slower (Figure 3(a)), as the
models need to process more temporal information in one
forward. Similarly, larger spatial size yields better VSR per-
formance but long training time (Figure 3(b)). It is natural
to raise the question: is it necessary to keep the spatial and
temporal sizes large and fixed during the whole training pro-
cess? In this paper, we show that the answer is No. An intu-
itive idea is to first train the VSR models at small spatial and
temporal sizes, and then gradually switch to larger ones, i.e.,
in an easy-to-hard manner. Specifically, in the early stage of
training, the network is trained with small spatial and tem-
poral sizes, which is relatively easier and faster. However,
it suffers from limited information contained in small sizes,
leading to inferior performance. One can improve the per-
formance by increasing the spatial and temporal sizes, due
to larger sizes make the network focus on fusing more infor-
mation and reconstructing finer details. In such a way, most
of the training iterations are conducted with smaller spatial
and shorter temporal sizes, leading to faster training.
Multigrid Training Strategy. Motivated by the above dis-
cussions, we propose a multigrid VSR training strategy that
varies the spatial and temporal sizes from small to large
throughout training. Figure 2 illustrates the overview of our
multigrid training strategy. This strategy adopts a hierarchi-
cal design with two cycles for altering spatial and tempo-
ral sizes. Specifically, the whole training is divided into sev-
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Figure 3: PSNR performance vs. different temporal size (a),
and different spatial size (b). ‘·×’ indicates the relative wall-
clock time speedup compared to baseline (1.00×). The re-
sults are obtained with the BasicVSR-M model.

eral stages and the earlier stage has smaller training spatial
shapes. Inside each stage, the temporal size also varies from
short to long while spatial size remains unchanged. Next, we
will introduce the details of the proposed spatial cycle and
temporal cycle.
Spatial Cycle. For the spatial cycle, there exists large de-
sign space for 1) different spatial sizes, and 2) duration of
each spatial stage. Intuitively, the training will be faster if the
spatial size starts at smaller values. However, training with a
very small spatial size (e.g., 16 × 16) leads to a large accu-
racy drop. The reason might be the unsatisfying optical flow
estimation due to the insufficient information produced by
such small patches. Therefore, the spatial sizes in the spatial
cycle should not be too small. Moreover, in order to achieve
baseline accuracy, we set the spatial size in the last spatial
stage to the default size (H × W ) used in the baseline. For
simplicity, we equally divide the whole training process into
s spatial stages, each trained with a fixed spatial size.
Temporal Cycle. Similarly, the challenge of designing a
temporal cycle lies in two aspects: 1) different temporal
sizes, and 2) duration of each temporal stage. As larger tem-
poral sizes yield longer training time, a natural desire is to
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start training with a smaller temporal size. However, the per-
formance of VSR drops a lot with a very small temporal
size (e.g., 3), as too few adjacent frames could not provide
enough complementary information. Therefore, we start the
temporal cycle with a temporal size not less than 6 and grad-
ually enlarge it until reaches the original temporal size T in
the baseline. We equally divide each temporal cycle into f
temporal stages.

Moreover, our experiments suggest that directly increas-
ing the spatial and temporal sizes at the same time leads to
sub-optimal results. Thus, rather than changing them syn-
chronously, we adopt a hierarchical design with two cycles
for altering spatial and temporal sizes. In particular, for each
spatial stage, the temporal sizes will also be varied through
a complete temporal cycle, leading to a total of p = s × f
spatial-temporal stages in the whole training process.
Dynamic Learning Rate Scheduler. Simply applying the
multigrid strategy to VSR training causes an accuracy drop.
The devil is the learning rate scheduler. Typically, the learn-
ing rate in VSR training is initialized with a relatively large
value and then decayed as training progresses. If we apply
the multigrid training into a baseline VSR network using the
original learning rate scheduler, the learning rate in training
larger spatial and temporal sizes will be smaller. The small
learning rate hinders the exploration ability of the network
when spatial and temporal sizes are switched to larger ones.

In this paper, we propose a dynamic learning rate sched-
uler, which adjusts the learning rate to fit the different
degrees of task difficulty when switching spatial/temporal
sizes. Specifically, the scheduler re-starts the learning rate
with large values when the spatial or temporal size changes.
Following previous practice (Wang et al. 2019; Chan et al.
2021a), we apply the cosine annealing strategy for better
convergence. In the multigrid training, the learning rate ηt
at iteration t is formulated as follows:

ηt =

 cos(
t−

∑s(t)−1
j=1 Pj

Itotal
)× η, 0 < s(t) ≤ p− 1

cos(
t−

∑p−1
j=1 Pj

Pp
)× η, s(t) = p− 1

,

(1)
where, η indicates the initial learning rate used in baseline.
Pj represents the number of training iterations for spatial-
temporal stage j, and Itotal is the total training iterations,
satisfying:

∑p
j=1 Pj = Itotal. s(t) ∈ {1, 2, ..., p} indicates

the iteration t belongs to the s(t) spatial-temporal stage, i.e.,
when 0 ≤ t < P1, s(t) = 1. Since the total iterations Itotal
is always larger than t −

∑s(t)−1
j Pj , the learning rate ηt

will never decay to zero for P1, P2, ..., Pp−1, which avoids
wasting training iterations with too small learning rates.

Large Minibatch Training
Recently, researchers have made significant developments in
accelerating training by increasing minibatch sizes in high-
level vision tasks (Goyal et al. 2017; Krizhevsky 2014) (e.g.
image classification, object detection). Increasing minibatch
sizes enables a network to process more samples in paral-
lel, thus they can train the same number of epochs faster.
However, how to train VSR networks faster by using larger
minibatch sizes while maintaining accuracy has barely been

investigated. In this paper, we investigate the large mini-
batch training for VSR. Similar to the practice developed in
high-level tasks (Goyal et al. 2017), we conclude two impor-
tant rules for accelerating training with large minibatches.
1) Linearly scale the learning rate when the minibatch size
changes. 2) Warmup the network with a smaller learning rate
at the beginning.

Next, we will review the training of VSR networks to dis-
cuss why the above-mentioned rules are effective. Consider-
ing a typical VSR training with minibatch using a loss L(w):

L(w) =
1

n

∑
x∈X

l(x,w), (2)

where X is a minibatch and n = |X| indicates the number
of samples in X (i.e., minibatch size). w is the weights of
a VSR network. l(·, ·) is the loss between the output of the
network and ground truth.

We analyze the differences between training m iterations
with m small minibatches X0−m, and training a single iter-
ation with one large minibatch X . Each of the minibatch
X0−m holds n samples. X consists of those small mini-
batches X0−m, which means |X | = mn. According to
Eq. 2, after m iteration of training using m minibatches
X0−m, the weights are updated as follows:

wt+m = wt − η
1

n

m∑
i

∑
x∈Xi

∇l(x,wt+i), (3)

where η is the learning rate and t indicates the training iter-
ation index. ∇l is the gradient according to loss l(·, ·). Simi-
larly, when executing a single iteration with minibatch X of
size mn, the weights will be:

w′
t+1 = wt − η′

1

mn

∑
x∈X

∇l(x,wt). (4)

Note that if we assume for i < m, wi ≈ wi+m, then:
m∑
i

∑
x∈Xi

∇l(x,wt+i) ≈
∑
x∈X

∇l(x,wt). (5)

Thus, when the learning rate is η′ = mη, we will have
wt+m ≈ w′

t+1. This indicates that we can train the network
with larger minibatch sizes and fewer iterations to approxi-
mate the baseline training with linear scaled learning rate.

Besides, this linear scaling rule relies on the assumption
that wi ≈ wi+m. This assumption might fail when the
weights change rapidly. Since the rapid changing of weights
usually occurs in the early stages of training, we apply a
warmup strategy that gradually increases the learning rate
from a small value to a large one to alleviate this issue.

Experiments
Implementation Details
Spatial Cycle. We equally divide the training process into
s = 2 spatial stages. The spatial sizes in these two stages
are set to max(32× 32, H

2 × W
2 ) and H ×W , respectively.

Training samples with different spatial sizes are generated
by randomly cropping the original frames.
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model id minibatch multi speedup PSNR SSIM
average clip 00 clip 11 clip 15 clip 20 average clip 00 clip 11 clip 15 clip 20

BasicVSR-M ① 16 - - 30.91 28.12 31.78 33.50 30.23 0.8824 0.8337 0.8885 0.9148 0.8927
Large-Batch ② 64 - 3.9× 30.93 28.13 31.82 33.53 30.24 0.8824 0.8344 0.8885 0.9137 0.8930
Multi-S ③ 64 S 4.9× 30.89 28.11 31.77 33.47 30.23 0.8822 0.8337 0.8881 0.9146 0.8926
Multi-T ④ 64 T 5.0× 30.93 28.13 31.83 33.56 30.22 0.8830 0.8342 0.8889 0.9161 0.8928
ours ⑤ 64 S&T 6.2× 30.90 28.10 31.72 33.58 30.20 0.8820 0.8328 0.8871 0.9160 0.8921
BasicVSR* ⑤ 32 - - 31.42 28.40 32.47 30.63 30.63 0.8909 0.8434 0.8979 0.9224 0.9000
BasicVSR (our impl.) ⑥ 32 - - 31.58 28.48 32.74 34.33 30.78 0.8934 0.8462 0.9010 0.9239 0.9026
Large-Batch ⑦ 64 - 1.9× 31.62 28.51 32.77 34.44 30.78 0.8943 0.8467 0.9017 0.9259 0.9029
Multi-S ⑧ 64 S 2.4× 31.56 28.47 32.73 34.29 30.75 0.8932 0.8460 0.9008 0.9236 0.9023
Multi-T ⑨ 64 T 2.5× 31.61 28.50 32.76 34.41 30.76 0.8941 0.8467 0.9014 0.9257 0.9026
ours ⑩ 64 S&T 3.1× 31.54 28.46 32.65 34.32 30.72 0.8925 0.8447 0.8998 0.9237 0.9016

Table 1: Quantitative comparison on REDS4 with BasicVSR. We report the wall-clock speedup relative to baseline training (②-
⑤ vs.①, and ⑦-⑩ vs.⑥, respectively). * means the results are collect from the original paper. Best performance is highlighted
with bold. ‘S’ and ‘T’ denote spatial and temporal, respectively.

model id minibatch multi speedup PSNR SSIM
average clip 00 clip 11 clip 15 clip 20 average clip 00 clip 11 clip 15 clip 20

EDVR-M* ① 32 - - 30.46 27.70 31.19 33.41 29.53 0.8684 0.8134 0.8716 0.9123 0.8762
EDVR-M (our impl.) ② 32 - - 30.45 27.70 31.19 33.40 29.52 0.8687 0.8141 0.8718 0.9125 0.8763
Large-Batch ③ 64 - 1.9× 30.46 27.70 31.21 33.39 29.54 0.8689 0.8140 0.8723 0.9126 0.8768
ours ④ 64 S 2.3× 30.44 27.68 31.16 33.41 29.51 0.8685 0.8137 0.8715 0.9128 0.8762

Table 2: Quantitative comparison on REDS4 with EDVR-M. We report the wall-clock speedup relative to baseline training
(③-④ vs.②). * means the results are collect from the original paper. Best performance is highlighted with bold. ‘S’ and ‘T’
denote spatial and temporal, respectively.

Temporal Cycle. For each spatial stage in the spatial cycle,
we further equally divide it into f = 3 temporal stage. The
temporal sizes (i.e., number of consecutive frames fed into
VSR models) in these three temporal stages are set in an
increasing way: max(6, T

2 ),
3T
4 and T . These three temporal

sizes cover an intuitive range and work well in practice. By
doing so, there will be p = 2×3 = 6 spatial-temporal stages
in total during the whole training process.
Learning Rate Scheduler. Our dynamic learning rate
scheduler consists of p periods, which are synchronized with
the above-mentioned p spatial-temporal stages. For each pe-
riod, the learning rate begins at a large value (the initial
learning rate used in baseline) and then decays following the
cosine annealing (Loshchilov and Hutter 2016).
Datasets and Evaluation Metrics. We conduct our experi-
ments on the REDS (Nah et al. 2019) and Vimeo-90K (Xue
et al. 2019b) datasets, which are widely-used and challeng-
ing datasets for VSR. REDS contains 300 video clips with
a total of 300, 000 frames. Following (Chan et al. 2021a;
Wang et al. 2019), we adopt REDS4 as our test set, and use
the left as training set. Vimeo-90K contains 64, 612 training,
and 7, 824 testing 7-frame video sequences. All the datasets
are commonly used in VSR and licensed for research pur-
poses. The performance is measured in terms of PSNR and
SSIM. As we use remote data access, the unstable data load-
ing highly affects the measure of wall-clock training time.
Thus, we report the wall-clock training time without the data
loading time.
Training and Inference Details. We adopt two VSR mod-
els to evaluate the effectiveness of the proposed method:

BasicVSR-M (Chan et al. 2021a), BasicVSR (Chan et al.
2021a), and EDVR-M (Wang et al. 2019) (M denotes the
medium size). For BasicVSR-M and BasicVSR, the spatial
sizes used in the spatial cycle are: 32×32 and 64×64 on both
REDS and Vimeo-90K. The temporal sizes in the temporal
cycle are {7, 11, 15} and {6, 10, 14} on REDS and Vimeo-
90K, respectively. Note that EDVR-M adopts a sliding win-
dow design, where the temporal size is determined by its
model architecture, and usually cannot be changed for both
training and testing. Thus, we only apply the spatial cycle to
it. The spatial sizes for EDVR-M are 32 × 32 and 64 × 64
on both REDS and Vimeo-90K. The learning rate of training
on 32 × 32 spatial size begins at 2e − 4, as too large learn-
ing rate may cause severe performance drop for EDVR-M.
In addition, we train these models with linear learning rate
warmup for the first 5, 000 iterations. The training and anal-
yses are performed with PyTorch on NVIDIA V100 GPUs
in an internal cluster.

Experiments on REDS
Results on BasicVSR-M and BasicVSR. The quantitative
results obtained by BasicVSR-M and BasicVSR are sum-
marized in Table 1. Applying multigrid training and large
minibatch training to BasicVSR-M and BasicVSR achieves
significant speedup (i.e., 6.2×, 3.1× for BasicVSR-M and
BasicVSR, respectively) without losing accuracy. Specifi-
cally, 1) the training becomes 3.9× and 1.9× faster when
training BasicVSR-M and BasicVSR with 4× and 2× larger
minibatches. The speedup can be attributed to that large
minibatch sizes enable better GPU parallelization. 2) The
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Figure 4: Qualitative results on REDS4 for 4× VSR on BasicVSR-M, BasicVSR, and EDVR-M. The methods with our multi-
grid training and large minibatch training achieve comparable visual results to the baselines. Zoom in for best view.

model id speedup PSNR SSIM
Baseline (BasicVSR*) ① - 37.18 0.9450
ours ② 3.2× 37.32 0.9462
Baseline (EDVR-M) ③ - 35.10 0.9426
ours ④ 2.3× 35.22 0.9437

Table 3: Quantitative comparison on Vimeo-90k. We report
the wall-clock speedup relative to baseline training (② vs.①,
and ④ vs.③). * means the results are collect from the original
paper. Best performance is highlighted with bold.

training time can be further reduced by employing the pro-
posed multigrid training strategy (see Table 1 ③-⑤, ⑧-⑩).
Table 1 shows that both the spatial cycle and temporal cy-
cle bring consistent speedup to BasicVSR with different
model sizes. Moreover, combining them together (i.e., the
proposed multigrid training strategy) achieves the fastest
training while maintaining accuracy. These results suggest
that a VSR model can be efficiently trained in an easy-to-
hard manner (i.e., from small spatial/temporal sizes to larger
ones), and finally reach the baseline performance.
Results on EDVR-M. Next, we apply the proposed tech-
niques to a sliding-window-based method EDVR-M. As
shown in Table 2, training EDVR-M with the multigrid train-
ing strategy and large minibatch leads to a significant 2.3×
speedup. We observe that the speedup is consistent with the
recurrent-based method BasicVSR. These results demon-
strate that the two proposed strategies are robust and can be
easily generalized to different VSR models.
Qualitative Results. We also present some qualitative re-
sults obtained by our method and baseline in Figure 4. The
methods with our multigrid training and large minibatch
training obtain comparable visual results to the baselines.

Experiments on Vimeo-90K
Next, we evaluate the proposed method over BasicVSR and
EDVR-M on Vimeo-90K to investigate its generalization to-
ward different VSR datasets.
Results on BasicVSR. As in Table 3 (② vs.①), applying the
proposed multigrid training and large minibatch training to

BasicVSR leads to a significant speedup (i.e., 3.2×) while
maintaining baseline accuracy.
Results on EDVR-M. As in Table 3 (④ vs.③), our strategies
bring a significant speedup (i.e., 2.3×) for EDVR-M without
performance drop.

The speedups on the Vimeo-90K dataset are consistent
with that on the REDS dataset mentioned in last subsection
for those two VSR methods. These results demonstrate that
the proposed multigrid training and large minibatch training
are robust and can be easily generalized to both different
VSR methods and different VSR datasets.

Ablation Studies and Analysis
Learning Rate Scaling. As shown in Tabel 4(a), directly
increasing the minibatch size leads to a performance drop.
Whereas, when conducting learning rate scaling, large mini-
batch training (with warmup) achieves comparable perfor-
mance to baseline. This suggests that, with the linear scaled
learning rate, the total gradient of large minibatch is roughly
equal to that of small ones.
Warmup. As in Tabel 4(b), directly applying the linear scal-
ing rule without warmup results in inferior performance.
This is probably due to that the network changes rapidly in
the early stage of training. Thus the approximation between
a single step on a large minibatch, and several steps on small
minibatches may fail. As Tabel 4(b) shows, with the help of
the warmup phase, the performance of training with a large
minibatch can achieve baseline performance.

Moreover, we train BasicVSR-M with different minibatch
sizes to evaluate the robustness of large minibatch train-
ing. As shown in Tabel 4(c), increasing the minibatch sizes
provides a solid and significant speedup while maintaining
baseline accuracy. In addition, we observe that the speedup
factors almost match the minibatch scaling factors, thanks to
the GPU parallelism.
Spatial Cycle. We evaluate the performance of the proposed
spatial cycle with different combinations of dynamic spatial
sizes in Tabel 5(a). All the variances of Multi-S are trained
with the baseline temporal size (i.e., 15) and the proposed
learning rate scheduler. As shown in Table 5(a), varying spa-
tial size from small to large always achieves the baseline
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model minibatch lr iteration PSNR
baseline 16 2e-4 300k 30.91
w/o lr scaling 64 2e-4 75k 30.64
w lr scaling 64 8e-4 75k 30.93

(a) learning rate scaling

model minibatch warmup PSNR
baseline 16 - 30.91
w/o warmup 64 - 30.81

w warmup 64 constant 30.91
64 linear 30.93

(b) warmup phase

model minibatch speedup PSNR
baseline 16 - 30.91

variants
32 2.0× 30.92
48 2.9× 30.95
64 3.9× 30.93

(c) large minibatch size vs. baseline

Table 4: Ablation study of Minibatch size vs. Performance. We evaluate the impact of learning rate scaling (a), warmup phase
(b), and different minibatch size(c) . All the results are obtained by BasicVSR-M on REDS4. Each GPU holds 4 samples.

model spatial size speedup PSNR
baseline 64 - 30.91

Multi-S
32/64 4.9× 30.89

32/48/64 5.0× 30.89
32/40/48/64 5.1× 30.89

(a) spatial cycle

model temporal size speedup PSNR
baseline 15 - 30.91

Multi-T
7/15 5.0× 30.92

7/11/15 5.0× 30.93
7/9/11/15 5.2× 30.91

(b) temporal cycle

Table 5: Ablation study of spatial and temporal cycles. We evaluate the impact of different spatial cycle (a), and temporal cycle
(b) designs. The sizes are presented according to their orders in training. For example, ‘32/64’ indicates the spatial size begins
at 32× 32 and then is switched to 64× 64. Our learning rate scheduler is used in all settings. We report the wall-clock speedup
relative to baseline.

model spatial & temporal size speedup PSNR
baseline 64&15 - 30.91

Multi-S&T
32&7 / 64&15 5.8× 30.81

32&7 / 48&11 / 64&15 6.0× 30.83

(a) synchronous

model spatial & temporal size speedup PSNR
baseline 64&15 - 30.91

Multi-S&T
32&7 / 32&15 / 64&7 / 64&15 6.3× 30.86

32&7/32&11/32&15/64&7/64&11/64&15 6.2× 30.90

(b) hierarchical

Table 6: Ablation study of different combinations of spatial and temporal cycles. We combine the proposed spatial and temporal
cycles in two different ways: (a) synchronous: change spatial and temporal sizes at the same time; (b) hierarchical: place the
temporal cycle into each spatial stage in the spatial cycle. The sizes are presented according to their orders in training. For
example, ‘32&7/64&15’ indicates that the training beings with a spatial size of 32 × 32 and a temporal size of 7, and then is
switched to a spatial size of 64× 64 and a temporal size of 15. The proposed learning rate scheduler is used in all settings. We
report the wall-clock speedup relative to baseline.

performance for different spatial size schemes. These results
show the robustness of changing spatial size during training.
In addition, more spatial sizes yield slightly faster training,
while having slightly lower performance. In order to get a
better trade-off between high performance and faster train-
ing, we adopt the ‘32/64’ scheme as our default setting.
Temporal Cycle. The performance of different combina-
tions of temporal sizes is summarized in Table 5(b). All
the variances of Multi-T are trained with the baseline spa-
tial size (i.e., 64 × 64) and the proposed dynamic learning
rate scheduler. Similar to the spatial cycle, training with dif-
ferent combinations of temporal sizes can always acceler-
ate training while maintaining baseline accuracy. We employ
the ‘7/11/15’ scheme in our temporal cycle, which is a good
trade-off between effectiveness and efficiency.
Mulitigrid. As shown in Table 6(a), simply combining the
sizes in spatial and temporal cycles in a synchronous way
(i.e., change the spatial and temporal size at the same time)
causes a performance drop. We conjecture that the large
magnitude of information change brought by simultaneously
varied spatial/temporal sizes might hinder the learning pro-
cess. Table 6(b) shows that combining the spatial and tem-

poral cycles in a hierarchical way (i.e., the proposed multi-
grid training strategy which places the temporal cycle into
each spatial stage in the spatial cycle) leads to 6.2× speedup
without losing accuracy. These results demonstrate the ef-
fectiveness of our multigrid design.

Conclusion
In this paper, we propose to accelerate the training of VSR
methods with multigrid training and large minibatch train-
ing. Different from existing VSR methods that are trained
with fixed spatial and temporal sizes, the proposed multigrid
training varies the spatial and temporal sizes from small to
large, i.e., in an easy-to-hard manner. The training is acceler-
ated by such a multigrid training strategy, as most of compu-
tation is performed on smaller spatial and shorter temporal
shapes. Moreover, we investigate the large minibatch train-
ing without accuracy loss for further acceleration with GPU
parallelization. Extensive experiments on different methods
and datasets demonstrate the effectiveness and generaliza-
tion of the proposed multigrid training and large minibatch
training in VSR.
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