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Abstract

Multi-agent reinforcement learning (MARL) suffers from the
non-stationarity problem, which is the ever-changing targets
at every iteration when multiple agents update their policies at
the same time. Starting from first principle, in this paper, we
manage to solve the non-stationarity problem by proposing
bidirectional action-dependent Q-learning (ACE). Central to
the development of ACE is the sequential decision making
process wherein only one agent is allowed to take action at
one time. Within this process, each agent maximizes its value
function given the actions taken by the preceding agents at
the inference stage. In the learning phase, each agent mini-
mizes the TD error that is dependent on how the subsequent
agents have reacted to their chosen action. Given the design
of bidirectional dependency, ACE effectively turns a multi-
agent MDP into a single-agent MDP. We implement the ACE
framework by identifying the proper network representation
to formulate the action dependency, so that the sequential de-
cision process is computed implicitly in one forward pass. To
validate ACE, we compare it with strong baselines on two
MARL benchmarks. Empirical experiments demonstrate that
ACE outperforms the state-of-the-art algorithms on Google
Research Football and StarCraft Multi-Agent Challenge by
a large margin. In particular, on SMAC tasks, ACE achieves
100% success rate on almost all the hard and super hard maps.
We further study extensive research problems regarding ACE,
including extension, generalization and practicability.

Introduction

Cooperative multi-agent reinforcement learning (MARL)
aims to learn a good policy that controls multiple agents
and maximizes the cumulative return in a given task. It has
great potential in various real-world tasks, such as robot
swarm control 2017, autonomous driving 2020; 2016 and
multi-player games 2019; 2021. A major challenge of MARL
is the complex joint action space. In multi-agent tasks, the
joint action space increases exponentially with the number
of agents. Hence, for the sake of scalability, existing MARL
algorithms usually learn an individual policy to select the
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action for every single agent. In MARL algorithms, the re-
ward signal is affected by other agents’ behavior. However,
the environment of multi-agent task is non-stationary 2019;
2021 to every single agent, where the policies of agents keep
changing during the learning process. This non-stationary
problem breaks the Markov assumption in single-agent RL
algorithms and causes endless adaptation of multiple agents
according to each other’s change of policy. In value-based
methods, the non-stationary problem shows up as that the
value of the individual action can not be estimated accurately.

To solve the non-stationary problem, we introduce bidirec-
tional action-dependency to estimate the action value of every
single agent accurately. We cast multi-agent decision-making
process as a sequential decision-making process, where only
one agent makes a decision at a time. In this sequential pro-
cess, the bidirectional action-dependency is embodied in two
aspects. In the forward direction, the evaluation of an agent’s
action value is dependent on the preceding agents’ actions in
the decision-making sequence. While in the backward direc-
tion, the target to update an agent’s action value is dependent
on how subsequent agents react to the preceding actions. We
formulate this bidirectional dependence by transforming a
multi-agent Markov Decision Process (MMDP) 1994 into a
single-agent Markov Decision Process (MDP), called sequen-
tially expanded MDP (SE-MDP). In SE-MDP, a decision a'
based on a state s is expanded to multiple intermediate states
st ,...,s%, ], named SE-state. The SE-state s, _is defined
as the state s? in the original MMDP along with the decisions
a1.; made by the preceding agents. Only one agent makes a
decision at each SE-state. After each agent makes the deci-
sion, the state transits to the next one. This transformation
validates that the proposed bidirectional action-dependency
does circumvent the non-stationary problem.

With the introduced bidirectional dependency, we propose
a simple but powerful method, called bidirectional ACtion-
dEpendent deep Q-learning (ACE). ACE is compatible with
the abundant Q-learning methods for single-agent tasks, and
naturally inherits their theoretical guarantee of convergence
and performance. For practical implementation, we identify
an efficient and effective network representation of the SE-
state. We first generate the embeddings for all units in the
task as well as the embeddings for their available actions.
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Figure 1: Comparison between the original MMDP (above) and the transformed SE-MDP (below). A single transition in MMDP

is expanded to n sequentially expanded states in SE-MDP.

Then, we combine the embedding of each unit with the cor-
responding action embedding to construct the embedding for
every SE-state. This design is quite efficient, because the em-
beddings of all SE-states along a sequential decision-making
process are constructed with additive combination among the
same set of unit and action embeddings. This set is computed
only once before every sequential decision-making process,
and the additive combination brings in negligible cost. More-
over, an interaction-aware action embedding is developed to
describe the interaction among units in the multi-agent task,
which further improves the performance of ACE.

We evaluate the performance of ACE on both a toy
case and complex cooperative tasks. In the toy case, ACE
demonstrates its advantage in converging to the optimal
policy against the popular value-factorization methods. Be-
cause it bridges the gap of the optimal actions between
the joint and individual Q-function, which widely exists in
value-factorization methods. For complex tasks, we choose
two benchmark scenarios in Google Research Football
(GRF) 2020 environment and eight micromanagement tasks
in StarCraft Multi-Agent Challenge (SMAC) 2019. Empirical
results show that ACE significantly outperforms the state-
of-the-art algorithms on GRF, and achieves higher sample
efficiency by up to 500%. On SMAC, ACE achieves 100%
win rates in almost all the hard and super-hard maps. Other
advantages of ACE are verified with comprehensive experi-
ments, including generalization, extension and practicability.
Surprisingly, ACE also indicates better generalization perfor-
mance compared with other baselines when transferred to a
new map with a different number of agents in SMAC.

Related Work

To solve the widespread cooperation tasks, many multi-agent
reinforcement learning (MARL) algorithms have been pro-
posed recently. According to the extent of centralization,
these works can be divided into two categories, independent
learning scheme and action-dependent learning scheme.
First, many works consider a fully independent learning
scheme 2022, where agents make decisions with their inde-
pendent value functions or policies. One typical category as-
signs independent actor to each agent by directly transferring
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the actor-critic methods to multi-agent scenarios 2018; 2017;
2021; 2021. Another line is value-based methods 2018; 2019;
2020; 2020. To avoid the non-stationary problem, they usu-
ally develop different factorized value functions following
the IGM principle 2019, which requires individually opti-
mal actions are consistent with the jointly optimal actions.
We remark that existing value factorization methods follow-
ing the IGM principle either suffer from the structural con-
straints, like VDN and QMIX, or introduce secondary com-
ponents along with additional hyperparameters, like QTRAN,
WQMIX and QPLEX. However, the optimal joint action of-
ten changes due to the discovery of a better policy, resulting
in the mismatch between the optimal joint Q function and in-
dividual functions during training. This means that individual
Q functions require more iterations to recover the satisfaction
of IGM, and the policy explores the environment with sub-
optimal actions, leading to low sample efficiency. To avoid
the issues, this paper focuses on directly estimating the value
of each action, rather than following the IGM principle to
construct factorization function classes.

Second, the action-dependent learning scheme 2019;
2021a; 2022; 2021b; 2022; 2022; 2022 is more centralized.
One perspective is action-dependent execution, where the
agent makes decisions with dependency on other agents’
actions. CGS 2022 proposes a graph generator to output a
directed acyclic graph which describes the action dependency.
Each node in the graph represents an agent whose policy is
dependent on the action of agents on its parent nodes. How-
ever, each agent’s decision is only dependent on part of the
previous agents in the topological sort of the generated DAG,
and the policy update is independent on the reaction of the
subsequent agents. It means the non-stationary effect is not
totally removed. In another perspective, action-dependency
is introduced in policy update rather than execution. Multi-
agent rollout algorithm 2019 and HAPPO 2021a follow a up-
date to sequentially update the policy of each agent with the
others fixed, thus avoiding the conflicting update directions
of individual policy updates. This paradigm is an implicit
rather than full action-dependency, because the policy does
not explicitly depends on the actions of the preceding agents.
As an extra difference, ACE is the first value-based MARL



Node Feature Unit Encoder Unit Embedding
—— —— i — — - ——
( unit1 | s \ ( unit1 |
| ‘ Node Node Embedding Add l : OF . |
1 I | Encoder ' Saik| 1
) | : Sy
1 Edge Embedding |
[
1 ! ! Edge ‘ Average !
0 £ . ! I | Encoder Pool | !
— £ Edge [Featuré, _ ) \ : /
2 N o e o e e e mm mm mm o -
H .
unit 2 unit3  unit 4 D units controlled by agents D other units

Figure 2: The schematic of the unit encoder. The node embedding is obtained by the node encoder, and the edge embedding (for
the unit and its interacted units) is obtained from the edge encoder. The average-pooled edge embedding is added to the node

embedding to provide unit embedding.

method that achieves remarkable performance following the
action-dependent learning scheme.

Problem Formulation
In this paper we take Multi-agent Markov Decision Pro-
cess (MMDP) 1994 to model cooperative multi-agent tasks.
An MMDP is a tuple G (S,N, A, P,r,v), where S
is the space of global state and A is the set of n agents.
A = A;x,...,xA, is the joint action space consisting
of each agent’s action space A;. At each step, the global
state s is transformed to each agent ¢’s input, and each
agent 7 selects an action a; € A;. Then, with the joint ac-
tion a = [ay, ..., a,] and the transition function P (s'|s, a),
the process transits to the next state s’ and returns a re-
ward 7 (s,a). The target we consider is to learn an opti-
mal policy 7 (a | s) which maximizes the expected return

R = Ex (Y0077 (35, at)].

Method
Bidirectional Action-Dependency

In this section, we consider a sequential decision-making
scheme: all agents make decisions sequentially. The bidirec-
tional action-dependency has two directions. In the forward
direction, each agent’s decision depends on the state and their
preceding agents’ actions. Inversely, in the backward direc-
tion, the update of the Q-value for an agent’s action depends
on how its successor reacts to the preceding actions.

We formalize this bidirectional dependency by transform-
ing the original MMDP G into a single agent MDP G. In

G, the state transits along the decision-making sequence.
Specifically, a intermediate transition happens each time
when a single agent in the sequence selects its action.
The intermediate state is defined as the original state s°
along with the actions of the agents which have made their
decisions, denoted as szl .- Ateach intermediate transition,
an agent i receives its intermediate state s’ and produces
its action al, then the intermediate state intermediately
transits to s’ with a reward 0. After the last agent n makes
decision and ‘the intermediate state intermediately transits
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to st ,..» a psuedo agent produces an empty action and

the intermediate state transits from sfhm to st*1, with the
reward 7 (s', a®) defined in the original MMDP G. With
the above definition, a transition (s, a’,r (s*,a’) , s'™!) of
g is expanded into a sequence of 1ntermediate transitions
(3 alvov Sal) ) ( alaa2a 07 Sal 2) 50y (szl n— 17an7T(st at)v
stt1) in G. We define G as the sequential expansion of
G and name this MDP as sequentially expanded MMDP
(SE-MMDP). Similarly, we define the intermediate state
Sa,.; as sequentially expanded state (SE-state), of which the

space is represented by S.

As depicted in Figure 1, the formulation of SE-MDP vali-
dates that the bidirectional action-dependency does circum-
vent the non-stationary problem. In SE-MDP, the forward
dependency is manifested in that the preceding actions are in-
corporated in the SE-state. It means the changeable behavior
of the preceding agents are tracked in the value estimation
of each SE-state. As for the backward dependency described
by dashed lines in Figure 1, the target value of an agent’s
action a; in the Bellman operator depends on its successor’s
reaction to the preceding actions, i.e., the best selection of
a;+1, which also tracks the successor’s behavior.

Bidirectional Action-Dependent Q-learning

The formulation of sequential expansion G circumvents the
non-stationary problem, which enables us to easily adopt
different single-agent algorithms to solve G. Based on the for-
mulation of sequential expansion, this section introduces the
proposed bidirectional ACtion-dEpendent Q-learning (ACE),
which transfers existing single-agent value-based methods to
multi-agent scenarios with minimalist adaptation and inherits
their theoretical guarantee of convergence and performance.

Value-based methods usually learn the function @ : S —
RI4l to build the mapping from the state to the estimated
return of actions, and select the action with the maximum )
value during execution. However, in SE-MDP, once making
the decision a;4+1 for the ¢ 4+ 1th agent on the current SE-

state s, , we can direct intermediate transition to the next
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Figure 3: Schematic of the pipeline of ACE, which takes SMAC as an instance. There are four units in the map. Units 1 and 2 are
controlled by the RL agent, and units 3 and 4 are enemies controlled by the environment. At first, the initial state embedding is
generated, consisting of the initial embedding for all units obtained from the unit encoder, as well as the action embedding of all
actions obtained from the action encoder (only the action embedding of unit 1 is shown in the figure, where actions attack 3 and
attack 4 mean unit 1 attacking unit 3 and 4 respectively). Then, agent (unit) 1 is the first one to make the decision, thus its action
embeddings are incorporated into the initial unit embeddings to rollout to the embeddings of different new SE-states e (sfll) 4
rolled out SE-states in the figure). Afterwards, all of these new SE-states are evaluated by the value encoder. Finally, the SE-state
with the maximum value is retained and used by the next rollout for the action of agent 2.

SE-state SZMI without interacting with the environment.

Hence, we take a step forward and use the value function
V : § — R to estimate the return of the SE-state rather than

the action, and use the values V' (sfzu - of all possible next

SE-states rolled out via different actions a;41 to select the
optimal action.

Decision with Rollout Specifically, to make decision at
an SE-state s® _, we use agent i + 1’s action space A; 1 to

ay:;’
roll out to all possible next SE-states sflm, b and select the

R ‘ .
action aj; = argmax,,_ V (sal:i,aiﬁ), which leads to

the next SE-state with the optimal value V' (st )

ay:i41
Update with Rollout Our value function V is updated
by the standard Bellman backup operator in single agent
RL. At an SE-state sg”, to obtain the target value to update

the value V' (s, ), we also rollout to all possible next SE-

A1:i41° a1:i41
the maximum value as the target value. For the final SE-state
! in a decision sequence, we roll out at the first SE-state

Sal:n

st*1 in the next decision sequence, i.e., the next state in the
original MMDP G. The update of V is formalized as Eq 1,
with V' (s%,, ) denoting the Bellman target of V' (s}, ).

1:8
t
{maxai+l ’YV (Salziyai+1) ’

maXg, T (St7a1:n> + 'YV (S(t,jl) s ifi=n

ey

states st estimate their values V (st ) and select

(s )= ifi <n

ai:4

Network Representation

Deep Reinforcement Learning (DRL) methods usually ben-
efit from the good generalization ability of a deep neural
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network (DNN), which encodes the state to a vectorized em-
bedding and maps the embedding to the estimated return of
the state or action. As the design of representation has a great
effect on the efficiency and performance of the algorithm,
we will discuss two concerns in the design of the network
representation of the SE-state s, with DNN.

Decomposed State Embedding Firstly, a transition
(s*,a',r (s',a’),s"™') in the original MMDP G corre-
sponds to n intermediate transitions in the sequential ex-
pansion G and each intermediate transition requires to evalu-
ate |A;| next states, resulting in ) .-, |A;| total states for
evaluation. Direct computing all states’ embedding from
scratch will bring unacceptable computational cost, thus the
first principle we follow in the representation of SE-state
is: all the state embeddings e, (sfl 1) along the sequential
decision-making are decomposed into a shared embedding
e, (s?) of the initial state s, as well as a shared set of em-
beddings e, (a1), ..., €4 (ay,) of available actions aq, ..., @y,
all generated by the same action encoder. Then, the state
embedding e, (s, ) is obtained by combining the initial
state embedding e, (s') and the corresponding action embed-
dings e, (a1), ..., €4 (a;). In this decomposition, the original
state only requires to be encoded once rather than > | |A4;].
Moreover, the combination is additive and introduces negli-
gible cost. Secondly, a multi-agent task involves interac-
tion among multiple units, including cooperative interac-
tion among agent-controlled units, like healing an allied
unit in SMAC, and interaction between agent-controlled and
environment-controlled units, like attacking an enemy unit
in SMAC. We follow two designs, unit-wise state embed-
ding and interaction-aware action embedding, to describe the
interactions in the state and action embedding.
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Figure 4: Comparison of ACE against baselines on four super hard and four hard SMAC maps.

Unit-wise State Embedding For state embedding, we use
a unit encoder to generate the unit-wise embedding e,, (u;)
of each unit u; in the environment, which forms the initial
state embedding e, (s') = [ey (u1), ..., €y (up,)]. Here m
is the number of units. We assume that the first » units are
controlled by the RL agent and the rest (m — n) ones are
controlled by the environment. We do not fuse the unit em-
beddings to a global state embedding, but retain them to
facilitate the description of the interactions among units. The
input feature of each unit includes the node feature and edge
feature. The node feature is the state of each unit, e.g., the
health and shield in SMAC and the speed in GRF, and the
edge feature is the relation between the units, e.g., the dis-
tance between units in SMAC. Our unit encoder takes a fairly
simple architecture, depicted in Figure 2. The node and edge
feature are separately encoded by two encoders to generate
the corresponding embedding. In this paper, we take a fully
connected layer along with a ReLLU 2018 as the encoder. The
resulted edge embedding average-pooled and then added to
the node embedding to obtain the final unit embedding.

Interaction-aware Action Embedding To make the state
embedding e, (s’ ) aware of the unit interactions, we
develop a two-fold interaction-aware action embedding.
Given an action a; that is executed by unit u; and involves
the interaction with some target units, its action embedding
consists of an active embedding and a passive embedding,
formalized by e, (a;) = [e% (a;) , €P (a;)]. The active embed-
ding e? (a;) encodes the effect of action a; on the unit u;
itself, and the passive embedding e? (a;) encodes the effect
of action a; on the target units. For actions without interac-
tion, it only has an active embedding e? (a;), formalized by
€a (ai) = [eg (ai)].

After the generation of the original state embedding
es (st) = [ey (u1), ..., €4 (um)] and the action embedding
eq(a1),...,eq (a;), we use an additive combination of the
unit and action embedding to construct the state embed-
ding e (st ) of the intermediate SE-states s’ , formalized

i ai:;’
by e (st ) = leu (U1,a1,,) s €u (Umoay,,)]. The element
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€u (U} q,.;) denotes the combination of the initial unit embed-
ding e,, (u;) of unit j and the embeddings of its associated
actions among a;.;. The rule of combination is: for each ac-
tion a;, its active action embedding e? (a;) is added on the
unit embedding e,, (u;) of it executor u;; if a; involves an in-
teraction with some target unit, its passive action embedding
e? (a;) is added on e,, (u;) to describe the interaction. The
definition of e,, (;,q,,,) is formalized by:

eu (u3) + Zeg(ak)EP(al:i)j ea (ak)
ifi < j
e ()65 (03)+ S g oy, €6 (6)
ifi >=j
)

Cu (ujvalzi) =

where P (a1.;), is the set of all passive action embeddings

whose target unit is v;. When ¢ >= j, which means u; is an
agent-controlled unit and has made its decision a;, the active
embedding e? (a;) will also be added to e,, (u;).

In this paper, the passive embedding e? (a;) of a unit u;
is generated from an action encoder whose input is the node
feature of the unit u;, because the effect of action a; may rely
on the executor’s state. For instance, in GRF the effect on the
ball is affected by the speed of the controller. However, the
active embedding e? (a;) is defined as a learnable parameter-
ized vector, because it is added to the embedding e,, (u;) of
u; which has already encoded the state of u;. Both the two
kinds of embeddings are learnable. Like the encoders of node
and edge features, we also take a fully connected layer along
with a ReLU activation as the action encoder in this paper.

At last, we use a encoder to estimate the value
of each SE-state. The state embedding e; (SZI)
[ew (U1,a1.;) 5o €4 (Um ay.; )] is fed into a *fe-relu’ structure
to encode the interaction-aware unit embedding, followed by
a 'pooling-fc’ structure to output the estimated value. Fig-

ure 3 demonstrates the pipeline of embeddings generation
and how to use them to represent the transition in G.



Metric | Map | VDN QMIX QTRAN ACE
Stens 5x5 | 078 0.7 060  0.04

P 7x7 | 090  0.87 .02 0.07

55| 0.19  0.19 017  0.09

Samples (M) ‘ 7%7 ‘ 197 181 168 101

Table 1: Comparison ACE against baselines on Spiders-and-
Fly. Steps represent the gap between the average steps of the
methods and the oracle policy. Samples represent the number
of samples to achieve a 100% success rate within 10 steps.

Experiment

To study the advantages of ACE, we consider three tasks: (1)
Spiders-and-Fly, (2) StarCraft Multi-Agent Challenge and (3)
Google Research Football. Since the baselines we compare
with are designed for partial observation settings, we also
introduce our efforts to guarantee fairness in this section.

Spiders-and-Fly. The Spiders-and-Fly problem is first
proposed in 2019, where two RL-controlled spiders coop-
erate to catch a fly in a 2D grid and the fly avoids spiders’
neighboring locations. In this paper, we modify it to a much
harder problem where only two spiders are controlled by the
RL agent, and the fly will avoid moving to the neighboring
locations of the spiders, otherwise stay still. Each episode
starts with a state where the Manhattan distance between the
fly and each spider is larger than 4. With such modifications,
the two spiders must perform perfect cooperation to encircle
the fly at the corner. The reward is defined as 10 if the fly is
caught otherwise 0.

StarCraft Multi-Agent Challenge (SMAC). In
SMAC 2019, RL-controlled ally units in StarCraft play
against enemy units with built-in rules. They use cooperative
micro-tricks to win. This benchmark consists of various
maps classified as Easy, Hard, and Super Hard. Since the
Easy maps solved well by existing methods 2021, we focus
on four super hard maps: corridor, MMM2, 6h_vs_8z, and
3s5z_vs_3s6z, and four hard maps: S5Sm_vs_6m, 2c_vs_64zg,
8m_vs_9m and 3s_vs_5z.

Google Research Football (GRF). A harder environment
than SMAC, with a large action space and sparse reward.
Agents coordinate to organize attacks; only scoring leads
to rewards. We control the left team players, excluding the
goalkeeper. We evaluate our method on two challenging sce-
narios, using standard 19 actions and similar observations to
CDS. The final reward is +100 for winning, -1 for ball/player
returning to half-court, and 0 otherwise.

Evaluation Metric. For Spiders-and-Fly, we derive an
analytical optimal solution as the oracle policy and introduce
two metrics: (1) the samples required to achieve 100% suc-
cess rate in ten steps, and (2) the gap between the average
steps required by the RL policy and the oracle policy to catch
the fly. For SMAC, we follow the official evaluation metric
in 2019, i.e., we run 32 test episodes without exploration to
record the test win rate and report the median performance as
well as the 25-75% percentiles across 5 seeds. For GRF, we
similarly run 32 test episodes to obtain win rate and report
the average win rate as well as the variance across 5 seeds.
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Figure 5: Comparison of ACE against baseline on GRF.

Performance

Spiders-and-Fly We compare ACE with three value factor-
ization methods: QTRAN 2019, QMIX 2018 and VDN 2017,
on 5x5 and 7x7 grids. As shown in Table 1, ACE is the only
one that can approximate the performance of the oracle pol-
icy, while the baselines, although also find the best behavior
in some cases, cannot consistently converge to the optimal
policy. Moreover, ACE takes up to 50% fewer samples to
achieve the 100% success rate in ten steps.

SMAC We compare ACE with both the SOTA value-based
and actor-critic methods on SMAC. First, our value-based
baseline is the fine-tuned QMIX 2021 combining QMIX 2018
with bags of code-level optimizations and outperforming
QPLEX 2020, QTRAN 2019, vanilla QMIX and Weighted
QMIX 2020. NOISY-MAPPO 2021 serves as the actor-critic
baseline. Although the two methods are proposed for CTDE
pipeline, they are also important baselines to solve the expo-
nentially large action space in multi-agent tasks. To this end,
the comparison with them is fair. Note that the two baseline
algorithms are originally designed for partially observable
scenarios, where each agent only uses its local observation
to generate the action, while ACE uses the observation of all
units to make decisions. Thus, to make a fair comparison, in
the two baselines, we make each agent share the union of all
units’ observations at the input, denoted as SHARED. We
also evaluate the baselines with the original local observa-
tion, denoted as LOCAL, because in some cases the shared
observation has worse performance. For example, NOISY-
MAPPO-LOCAL achieves better performance than NOISY-
MAPPO-SHARED in 6h_vs_5z. As shown in Figure 4, ACE
surpasses fine-tuned QMIX and NOISY-MAPPO by a large
margin in the final win rate and the sample efficiency. Re-
markably, it achieves 100% test win rates in almost all maps,
including S5Sm_vs_6m and 3s5z_vs_3s6z, which have not been
solved well by existing methods even with shared observation.
Therefore, ACE achieves a new SOTA on SMAC.

GRF We show the performance comparison against the
baselines in Figure 5. ACE outperforms the SOTA methods
CDS-QMIX 2021 and CDS-QPLEX 2021 by a large margin
in both two scenarios. The gap between ACE and the base-
lines is even larger than that on SMAC, possibly due to that
the football game requires more complex cooperation skills.

Further Analysis

Ablation: What Matters in the Components of ACE?
To understand ACE’s performance, we make ablations and
modifications. We compare ACE-w/o-IA (without interaction-
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aware action embedding) to ACE and fine-tuned QMIX. ACE-
w/o-IA still outperforms QMIX but is worse than ACE. We
also study decision-making order, comparing Shuffle Order
(random) and Sorted Order (by unit types and locations). As
shown in Figure 6, the two settings have little difference in
performance in two SMAC maps, which validates that ACE
is quite robust to the order of agents.

Extension: Extend ACE to the Actor-Critic Method.

Our approach, transforming a MMDP into a MDP, is gen-
eral and can be combined with a more extensive range of
single-agent RL algorithms. In this section, we combine ACE
with an actor-critic method, PPO, denoted by ACE-PPO. To
generate the logit of each action in PPO, we roll out each
action to the corresponding next SE-states, and use the same
way how our value encoder evaluates these states to obtain
the logit. As shown in Figure 7a, ACE-PPO achieves a com-
parable performance with ACE on the 5Sm_vs_6m map, which
validates that ACE is applicable to wider types of algorithms.

Generalization: Does ACE Generalize to a New Task with
a Different Number of Agents?

An interesting advantage of ACE is its surprising gen-
eralization. Compared with prior methods where agents
make decisions individually, ACE explicitly models the co-
operation between agents. As a result, when the preced-
ing agents take sub-optimal actions due to the change of
the task, the subsequent agents compensate it through the
learned cooperative skills. We train ACE and the fine-tuned
QMIX-SHARED on 5m_vs_6m and test them on 4m_vs_5m,
Sm_vs_Sm, 6m_vs_7m, 8m_vs_9m and 10m_vs_11m. As in
Figure 7b, although without any fine-tuning on the test maps,
ACE still achieves considerable win rates, which reveals an
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excellent generalization to the change of the agent number.

Practicability: Apply ACE to the CTDE Scheme.

We develop an adaptation of ACE, denoted by ACE-CTDE,
to apply it in the Centralized training and decentralized execu-
tion (CTDE) scheme, a popular scheme for multi-agent tasks
with limited communication. Typically, CTDE methods em-
ploy individual value functions based on local observations
and a joint value function using the global state. The optimal
actions of the two functions are aligned via well-designed
constraints to guarantee the IGM property. Similarly, we use
a counterfactual distillation, to distill the optimal joint action
generated via the sequential rollout in ACE, into an additional
individual value function @ (of, a;). The counterfactual distil-

lation is formalized by Q (of, a;) = V (st ) Q (o}, a;)

is the target to update @ (of, a;) and o! is the local observa-
tion of agent 7. a]_ denotes the optimal joint action generated
by the sequential rollout excluding the action of agent ¢. This
distillation estimates each individual action value of an agent
with other agents’ actions fixed jointly optimal, thus it follows
the IGM principle. In Figure 7c, ACE-CTDE is evaluated
with the individual value function @ in a decentralized way.
We can see that ACE-CTDE performs nearly as well as ACE
due to the IGM property of the proposed distillation.

Conclusion

In this paper, we introduce bidirectional action-dependency to
solve the non-stationary problem in cooperative multi-agent
tasks. The proposed ACE algorithm significantly improves
the sample efficiency and the converged performance against
the state-of-the-art algorithm. Comprehensive experiments
validate the advantages of ACE in many aspects.
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