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Abstract

The generation of bimanual object manipulation sequences
given a semantic action label has broad applications in collab-
orative robots or augmented reality. This relatively new prob-
lem differs from existing works that generate whole-body
motions without any object interaction as it now requires the
model to additionally learn the spatio-temporal relationship
that exists between the human joints and object motion given
said label. To tackle this task, we leverage the varying de-
gree each muscle or joint is involved during object manipu-
lation. For instance, the wrists act as the prime movers for
the objects while the finger joints are angled to provide a firm
grip. The remaining body joints are the least involved in that
they are positioned as naturally and comfortably as possible.
We thus design an architecture that comprises 3 main compo-
nents: (i) a graph recurrent network that generates the wrist
and object motion, (ii) an attention-based recurrent network
that estimates the required finger joint angles given the graph
configuration, and (iii) a recurrent network that reconstructs
the body pose given the locations of the wrist. We evaluate
our approach on the KIT Motion Capture and KIT RGBD Bi-
manual Manipulation datasets and show improvements over
a simplified approach that treats the entire body as a single
entity, and existing whole-body-only methods.

Introduction

Modelling human and object motion given a semantic ac-
tion label has broad applications in human-robot interaction
(HRI) (Chao et al. 2015) or virtual and augmented reality
(AR/VR) (Chacén-Quesada and Demiris 2022). In the con-
text of HRI, being able to forecast the hand and object trajec-
tories would allow the robot to respond in a timely manner
while avoiding collisions. For AR/VR, predictive computa-
tion facilitates systems to plan ahead on rendering with in-
creased buffer time. Existing work however, have focused on
modelling only the human motion for whole-body actions
such as run, jump, walk, etc (Guo et al. 2020; Petrovich,
Black, and Varol 2021). The same set of methods cannot
be deployed in a setting that involves human-object inter-
action as there exists some spatio-temporal correlation be-
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Figure 1: Given the action label a, and initial human and
object pose, our network generates the entire manipulation
sequence using 3 separate modules.

tween the human and object motion e.g., how a person ori-
ents the bottle relative to a cup during a pour action. Our
goal in this work is thus to address the relatively new task of
action-conditioned generation of bimanual object manipula-
tion, where we take a semantic action label such as ”Pour”
and generate a realistic sequence of both the human and ob-
ject motion, from the moment the person approaches the ob-
jects and performs the pouring action, till the moment the
objects are placed back on the table after completion. A first
solution that can address said task would be to incorporate
a densely connected graph where the nodes represent the
human and object pose, and the edges their relation. How-
ever, one intuitive observation in the context of object ma-
nipulation is the varying degree each joint is involved dur-
ing the action. We propose a network partitioned into three
modules, each dedicated to the respective body parts or ob-
jects: (1) a graph recurrent network that models the wrist
and object motion, (2) an attention-based recurrent network
for the finger joints, and (3) another recurrent network for
the body joints (Fig. 1). We show that this provides better
performance versus representing the entire body pose as a
single node.

Next, existing works use a recurrent network built for ac-
tion recognition to quantify the performance of their gener-
ative models. However, the absence of object relation in the
recognition network makes it infeasible for use in our case.
To address this, we propose a bidirectional graph recurrent
network for bimanual action segmentation.

In summary, our contributions are as follows: (1) We in-
troduce a novel neural network for the action-conditioned



generation of bimanual object manipulation sequences. To
the best of our knowledge, ours is the first that tackles the
problem of action-conditioned pose generation in the con-
text of object manipulation. (2) We propose a bidirectional
graph recurrent network to evaluate the performance of gen-
erative models tasked to generate bimanual actions.

Related Works

Human Pose Forecasting. Recent works on 3D human
pose forecasting differ mainly in their architecture, opting
for either a deterministic model (Martinez, Black, and
Romero 2017; Guo and Choi 2019; Corona et al. 2020) or
injecting stochasticity (Liu et al. 2021; Yuan and Kitani
2020; Kundu, Gor, and Babu 2019) via Variational Autoen-
coders (VAE) (Kingma and Welling 2013) or Generative
Adversarial Networks (Goodfellow et al. 2014) in order
to predict multiple plausible futures. These works receive
as input a sequence of the past pose to output either the
joint positions (Martinez, Black, and Romero 2017; Li et al.
2018) or joint rotations (Fragkiadaki et al. 2015; Pavllo,
Grangier, and Auli 2018) that are then converted to positions
via forward kinematics. More recent works go beyond body
joints to instead, output the full SMPL body model (Loper
et al. 2015; Taheri et al. 2022). Early deterministic models
tend to use recurrent networks such as Gated Recurrent
Units (GRU) (Chung et al. 2014) or fully convolutional
layers. Several other works incorporate additional context
such as eye gaze (Razali and Demiris 2021) or the object
coordinates (Razali and Demiris 2022; Taheri et al. 2022).
Lastly, the context-aware model (Corona et al. 2020)
forecasts both the human pose and object motion and is
related to our work, although there exist several notable
differences. First, their model relies on the past 1 second
to predict the next 2 seconds and does not take in an input
action label, meaning the predicted sequence relies purely
on the past motion without any controllability. Second, their
model predicts the full pose at every timestep. By contrast,
our method receives only the input action label and initial
positions to first generate the wrist and object motion,
before reconstructing the full body pose including the finger
joints, from start to finish, and is thus more akin to synthesis.

Human Pose Synthesis. In contrast to human pose forecast-
ing, methods developed for human pose synthesis typically
do not receive a sequence of the past pose as input. Rather,
the input may either be a zero-vector or the default standing
pose. These models are then trained to generate the com-
plete motion conditioned either on an audio signal (Li et al.
2021), a semantic action label (Guo et al. 2020; Petrovich,
Black, and Varol 2021), or a sentence (Ahuja and Morency
2019). Autoregressive type methods (Guo et al. 2020) hold
an advantage in that they can be easily repurposed for fore-
casting unlike the purely generative ones that accept only
the input action label without the pose (Petrovich, Black,
and Varol 2021; Ahuja and Morency 2019). Most similar to
our work are Action2Motion (Guo et al. 2020) and Actor
(Petrovich, Black, and Varol 2021). Action2Motion takes
an action label to generate the human pose in an autore-
gressive manner using a VAE-GRU whereas Actor employs
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a VAE-Transformer (Vaswani et al. 2017) to generate the
full sequence in one shot. A similarity shared by the above-
mentioned works is that they were built for whole-body mo-
tions such as run, walk, jump, etc without any object inter-
action which is our contribution in this paper.

Method
Given the one-hot action label a, initial object poses
X0 = [29,29,..2%] € RVN*M*3 and their labels L =

[l1,12,...In] at time ¢ 0 for N objects represented by
M points of the bounding box or motion capture markers,
and the human pose P° € RX*3 with K joints, our goal is
to generate the complete human and object motion from the
moment the person begins reaching for the object to perform
the action, till the moment the objects are placed back on the
table after completing said action. In short, we want to learn
the expression p(PYT X1 T|q, PO, X0 ).

However, not every joint of the human body is directly in-
volved during bimanual object manipulation. The forearms,
or more specifically the wrists act as the primary movers in
reaching or moving the object throughout the action. Their
movements may mirror each other e.g., when rolling dough
with both hands, or uniquely, wherein one hand provides sta-
bility while the other makes precise movements e.g., when
stirring the contents of a cup. The finger joints are then an-
gled to ensure that the object is firmly held and oriented as
required for the task such as the cutting of fruits. The re-
maining body joints are lastly positioned as naturally and
comfortably as possible to perform the action. There is thus
a higher degree of correlation between the objects and fore-
arms. In light of this, we can partition the complete hu-
man pose P into the left and right wrists z;, z,, fingers
F = [f1, fr], and remaining body joints b. The wrists share
the variable = and are subsumed into X as they will be
treated as objects from here onwards. We can then further
factorize our initial objective into three components:

log p(X*"|a, X°, L)
+ logp(FlzT|X1:T’ L) + logp(blzT|Il1:T7 II:T)

T

)]

The result is more reflective of the degree of interaction that
occurs during bimanual manipulation in that it first gener-
ates the wrist and object pose sequence given the action la-
bel p(X 7T |a, X°, L) before computing the required finger
joint angles p(F'*T| X 5T L) at every timestep. The remain-
ing body joints are then reconstructed independently of the
object pose and finger joint angles p(b*T |z, z1:T). Note
that we assume the objects to already be within grasping dis-
tance. Figure 2 illustrates the framework of our system. In
the following, we describe our method for all three modules.

Wrist and Object Pose Module

We formulate the task of wrist and object pose generation
as a sequential modeling problem over a densely connected
graph, where the wrists and objects are each represented by
a vertex, and their locations recursively predicted over time.
Specifically, we first define a graph G(V, E) at time t = 0
that connects each vertex to all its neighbours, where each
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Figure 2: Overview of our method. The wrist and object motion are generated by the graph network. The outputs are then sent to
the finger and body pose modules to generate the respective body parts. We detach the data flowing to the finger and body pose
modules to simplify the training. The architecture can thus be viewed as 3 modular components that can be trained separately.

vertex v} = [z, ];] concatenates the coordinates and label,
and the edge ¢j; = v} — v! the difference between neigh-
bours ¢ and j. We then compute the representation for each
vertex by running the graph through the edge-convolution

(Wang et al. 2019) variant of the message passing scheme:

9f = jg%%([vf se5;]) ()
= e 6(a(lol ). (a1 — da((el, )

where ¢ denote linear layers and [, .] a concatenation. This
operation encodes the relation between vertex ¢ and all its
neighbours through the edge while maintaining information
about what and where the node is through the vertex infor-
mation. We then concatenate the one-hot action label a to
the vertex feature ¢! and provide them as input to a GRU
and subsequently a linear layer to produce the parameters of
a Gaussian distribution:

hi = GRU(R!™", (g}, a]) 3)
pt, ot = ¢3(hl) )

Intuitively, the GRU is tasked to generate the latent motion
distribution for the object given its feature-wise proximity
to all its neighbours and the action label. Lastly, we sample
from the Gaussian distribution and concatenate the output
to the object label, and send them to another linear layer to
decode either the coordinates of the object or wrist.

z ~ N(uj, 07) ®)

ot = af + dall=f, L)) ©)

Note that the object label [; not only helps the vertex es-
tablish their relation to each other in equation 2 but is also
useful in determining the coordinates of the bounding box

corners or motion capture markers in equation 6 as it deter-
mines their size or positions relative to each other. The entire
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network is then run recursively until the variance of the wrist
and object coordinates dip below a threshold, indicating that
the action has been completed and the person has reverted to
the default standing pose.

Finger Pose Module

As mentioned, the finger joint angles are a function of both
the objects of interest, proximity between the wrists to said
objects of interest, and action. Although information pertain-
ing to proximity are encoded in the edge features, they need
to be aggregated appropriately. To this end, we first attend to
the most likely object given the action label:

¢5(L)ds(a)”

— ) )
Vd

where d represents the dimension of the embedded variables

and P the vector of object probabilities. We then use the

probability scores to scale the edge features returned by the

graph network and concatenate the result to the finger pose
from the previous timestep for prediction.

ht = GRURTL [ pi x el £1]) ®)
FHY = go(hb) )

where a GRU is used to enforce temporal smoothness. Since
the handedness of an individual affects the object selected
by the left and right hand, we incorporate a separate set of
weights for the operations above for each hand to induce a
bias towards the object frequently selected by the respective
hand as shown in Fig. 2. Our finger pose module works as
a deterministic model as there is very little to no in-hand
manipulation of the objects. The finger module can be easily
augmented with a VAE if there is a need for stochasticity.

Body Pose Module

Existing work has shown that the head has a significant lead
before motor actions only if the objects are not situated in

P=o(



front of the person within the field of view, nor is it within
grasping distance (Land 2006). Because we assume the con-
verse, we find it sufficient to simply concatenate the loca-
tions of the left and right wrists, and the body at the previous
timestep as input to predict it at the next timestep.

hi = GRU(RL™!, [of, ot b'1]) (10)
b* = ¢s(hj) (11
Likewise, we find the GRU crucial in maintaining temporal

smoothness.

Loss Function

Altogether, our architecture is trained end-to-end to mini-
mize the following loss at every timestep:

M[[X" = XI5 + AKL(q(Z'| X5, Z2)||p(2'| X <", Z<")
Wrist and Object Pose Loss
+ Al [ = FUI5 + MaPlog(P) +A510" — 0[5 (12)

Finger Pose Loss

Body Pose Loss

where KL denotes the Kullback-Liebler divergence and the
lambdas the tuning parameters. Note that our KL term does
not assume the posterior to be a unit Gaussian and thus
requires a posterior graph network that is removed at test
time (Guo et al. 2020). We include the cross entropy for the
most likely object-action pair to act as an auxiliary loss for
the attention network in equation 7. Lastly, we simplify the
training and selection of lambdas by detaching the gradients
flowing from the finger and body pose decoders into the ob-
ject decoder and setting all lambdas to 1. The architecture in
Figure 2 can thus be viewed as 3 modular components that
can be trained separately.

Experiments
Datasets

The KIT Motion Capture Dataset (Krebs et al. 2021) con-
tains motion capture data of a right-handed person perform-
ing bimanual actions such as Cut, Pour, Stir, etc. We only
select tasks with at least two interacting objects. The result
is 995 sequences across 9 actions, each on average 8 seconds
long that is temporally annotated with a total of 15 intra-
or fine-action labels such as Approach, Hold, Cut, etc. The
person stands directly in front of a table with the objects
within both field-of-view and grasping distance. The person
then picks up the objects to perform an action before plac-
ing them back to where they were originally picked from.
We preprocess the dataset by centering the coordinates with
respect to the table center, augment it by adding Gaussian
noise in the horizontal XY plane to all entities except the ta-
ble, and sample each sequence at 10 Hz. The added noise is
constant throughout time and also such that the objects do
not go beyond the table. We use the motion capture markers
on each object to compute its oriented 3D bounding box. We
split the dataset to obtain a train:test ratio of 70:30. The KIT
RGBD Dataset (Dreher, Wichter, and Asfour 2019) differs
in that it contains RGBD recordings instead of motion cap-
ture. We use the provided ground truths that are estimated
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using OpenPose (Cao et al. 2017) and YOLOv3 (Redmon
and Farhadi 2018). We clip the video such that the person
is already standing in front of the table immediately before
performing the action and preprocess in the same way as
above. The result is 480 sequences across 8 actions, each on
average 10 seconds long that is temporally annotated with a
total of 14 fine actions. We represent each object by its cen-
troid as we find the training to be highly unstable if using the
estimated 3D bounding box corners.

Evaluation Metrics

We follow performance measures first proposed in (Guo
et al. 2020): accuracy, FID, diversity, and multimodality.
FID and accuracy measure the model’s ability to gener-
ate sequences that are semantically correct, while diver-
sity and multimodality the overall and within-class vari-
ance respectively. However, because the dataset provides
fine action labels, we compute said metrics per-frame in-
stead of per-sequence and additionally compute the segmen-
tal F1 score (Lea et al. 2017) at an intersection over union
of 0.5 (F1@0.5) and edit distance (Lea, Vidal, and Hager
2016). The segmental score penalizes over-segmentation er-
rors while the edit distance predictions that are out-of-order.
We then noted that there exists no model that performs
bimanual action segmentation given 3D coordinate data.
The recognition model used in (Guo et al. 2020; Petrovich,
Black, and Varol 2021) do not jointly model the human and
object motion whereas the bimanual segmentation models
proposed by (Morais et al. 2021) and (Dreher, Wichter, and
Asfour 2019) operate on images and is built for online seg-
mentation respectively. (Dreher, Wichter, and Asfour 2019)
additionally requires symbolic relations which may not re-
flect the generative model’s ability to replicate real-world
data. An advantage presented to us is that our model ef-
fectively enables the classification at every timestep to use
information from both the past and future. We thus train a
modification of our graph network that uses only the wrist
and object pose for segmentation and convert it to a bidi-
rectional variant to utilize said information from both past
and future. We do not use the body and finger pose since the
motion of the wrist and object intuitively provides sufficient
discriminatory information. Lastly, because our segmenta-
tion model does not utilize the body and fingers, we com-
pute their MSE for the sake of evaluation. In summation, we
report the per-frame accuracy, FID, diversity, multimodality,
segmental F1 score, and edit distance for the wrist and object
pose, and the MSE scores for the body and finger pose. We
generate sets of sequences 20 times with different random
seeds and report the mean and confidence interval at 95%.

Setup

We compare our approach to existing whole-body-only
methods: Action2Motion (A2M) (Guo et al. 2020) and Ac-
tor (Petrovich, Black, and Varol 2021), and two variants of
our model: one that treats the wrists and fingers as a sin-
gle node in the wrist module without a separate finger pose
module (WF), and another that treats the entire human pose
as a single node in the graph without the finger and body
pose modules (CA), with the latter being closely related to
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Table 1: We study the effect the action a and object labels [ have on the wrist and object pose module and compare to previous
work. The top rows ablate our method with the action and object labels. In the middle row, the results on real data, and in the
bottom rows, all previous work. Our method with both a and [ outperforms all previous work. — means motions are better

when the metric is closer to real.

Body Pose MSE |
Body Pose Decoder | Kit Motion Capture KIT RGBD
MLP (Ours) 0.171%0-488 0.044%0-009
RNN (Ours) 0.057+0-107 0.038%0-011
CA 0.091%0-207 0.051£0-031
Actor 0.379%0-440 () 199+0.045
A2M 0.316:‘:0‘487 0.187:‘:0‘010

Table 2: We study using an MLP vs RNN for reconstruct-
ing the body pose and compare to the state-of-the-art. Our
method utilizing an RNN performs the best.

Finger Pose MSE |
Finger Pose Edge Agg. | Kit Motion Capture KIT RGBD
Average (Ours) 0.056%0-119 0.032:+0-080
Attention (Ours) 0.0447*0-081 0.033%0-082
WF 0.061i0‘162 0.033i0‘091
CA 0.097i04078 0_035i04096
Actor 0'404:&14344 0'134:&04165
A2M 0.466i1‘762 0.050i0‘093

Table 3: We study various edge aggregating mechanisms in
the finger pose module and compare to the state-of-the-art.
Our method utilizing attention performs the best.

the Context-Aware model (Corona et al. 2020). We adapt
both Action2Motion and Actor to accept the object label in
addition to the action label. We train all models including
ours for 1000 epochs using the ADAM optimizer (Kingma
and Ba 2014) with an initial learning rate of 1e-3 and batch
size of 32. The experiments were implemented using Py-
Torch 1.12.0 installed on an Ubuntu 20.04 machine with an
NVIDIA RTX-2080. Finally, we have the number of param-
eters of all models match at approximately 2.5 million.
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Quantitative Results

Effect of object and action labels. We ablate several com-
ponents of our architecture while comparing to previous
work. The first question we ask is whether the information
provided by object and action labels to the graph network is
beneficial. Note that the accuracy, segmental F1 score, edit
distance, and FID are more important than diversity and
multimodality as they reflect the quality of the sequences.
In Table 1, we first see that our variant with both object
and action labels has the best performance on both datasets
by a considerable margin. The labels allow the model to
generate sequences that are more representative of real
data as evidenced by the better per-frame accuracy and
FID. Likewise, the segmental F1 score and edit distance
also suggest that the sequences are more recognizable
temporal-wise. Next, we observe our method leading both
the CA and WF variants. Our method learns better as
it employs a single module that is tasked to learn only
the spatio-temporal relationship between the wrists and
objects. Lastly, the numbers slightly degrade on the more
challenging KIT RGBD dataset and is principally due to the
ground truths being obtained via detectors as opposed to the
more accurate motion capture cameras.

Choice of body pose decoder. We next ask if our choice
for the decoder matters when reconstructing the body by
comparing a GRU against a simple MLP in Table 2. Note
that because the graph recurrent network does not require
the output of the body pose module in order for it to re-
cursively predict the future, the body pose module thus ef-
fectively has access to the wrist information from ¢ = 0 to
t = T. The MSE suggests that the model using temporal in-
formation provides better reconstructions. We can attribute
this mainly to the fact that there exist various ways for a
person to naturally position his body given the same wrist
locations. Using a GRU with the past pose as information
would thus ensure that the reconstructions are temporally
smooth. Likewise, our method with the RNN body decoder
outperforms recent work.
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Choice of edge aggregating mechanism. We examine the
importance of the aggregating mechanism when computing
the finger joint angles given the edges. Table 3 shows that
the variant with attention is able to achieve a lower MSE
than the one that does a simple average on the KIT Motion
Capture dataset. Naturally, the estimation of the finger pose
is made easier if the model can first de-emphasize the ob-
jects each hand will not interact with through the attention
mechanism. On the KIT RGBD dataset, the two aggregation
methods are on par likely due to the noisy estimates returned
by the detectors. Nevertheless, the lower numbers compared
to previous work still indicate that our finger pose module
learns better since it is not required to simultaneously pre-
dict the positions of the other less relevant joints and ob-
jects. The tables highlight the efficacy of our novel approach
in modelling bimanual object manipulation. By grouping the
joints and objects based on their degree of interaction with
each other, and dedicating a single module to each group, the
learning is made much easier. Whole-body-only methods are
insufficient for bimanual object manipulation except when
there is very low variation in the action. The context version
may be improved by fine-tuning the lambdas for each body
part and for each dataset but with increased training time.
Our method, in contrast, is modular and free from tuning.

Qualitative Results

We present some visual results for the KIT Motion Capture
dataset in Fig. 3 where the sequence in the top row illus-
trates the pour action, the next row a closer view of the fin-
gers and objects, and the horizontal bar the predicted left and
right-hand fine actions at every timestep with the lines ref-
erencing the respective timesteps. Our segmentation model
is able to correctly predict the fine actions with the errors
coming mainly from the exact moment the action transits
from one label to the next. The fingers also appear to be ap-
propriately angled. The figures show several limitations of
our model. First, because there is no mechanism nor con-
straint that forces the object to remain attached to the hand
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after it is grasped, we can see in several frames the object
being at an unnatural distance from the hand. Second, our
model does not check for collision nor was it trained with
the interpenetration loss as the data has not been annotated
for contact. However, our modular design makes it easy to
replace our finger pose module with GrabNet (Taheri et al.
2020). Fig. 4 illustrates our output on the KIT RGBD dataset
where the 3D points are reprojected back onto the image se-
quence. A close inspection of the sequence will show the
hand and object motion remaining stationary throughout the
action, which is the consequence of minimizing the MSE
given noisy or very fine data. This consequently also results
in the segmentation model’s inability to associate the motion
to the very transient fine actions. Note that the predictions
being off from the objects in image space does not equate
to poor performance as it is ultimately a generative problem
given only the initial positions. The reprojections are for the
sake of visualization. All-in-all, the output is still very us-
able for HRI since it enables the robot to roughly predict the
locations of the body pose, hand, object positions, and action
over time given the first frame and uttered action. It can then
refine its predictions as more data is presented over time.

Robustness Against Distractors

Our autoregressive model can also be used for forecasting
with zero modifications i.e., it can accept a sequence of the
past pose and action label to output the future sequence. In
the context of forecasting for applications such as HRI, the
issue of distractors becomes much more relevant. Distrac-
tors are defined as irrelevant objects within the scene that
the person does not interact with both directly and indirectly
given the action label. For instance, a rolling pin given the
”Cut” action. A model without any mechanism to handle
distractors will see its performance degrade in the real world.
We assess our graph’s robustness by training and testing
it with increasing distractor counts. For each sequence, we
randomly sample a set of objects from a different sequence
and set their velocities to zero. To ease the assessment, we



True Left
Pred Left

True Right
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Figure 4: Our model is able to generate the semantic positioning of the various objects for the "Cook™ action on the more
challenging KIT RGBD dataset. The colored bars show the true and predicted segmentation for the left and right hands with

the lines referencing the corresponding time.
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Figure 5: Performance with increasing distractors. The dis-
tractor velocity has been scaled by 100 to aid analysis.

set the distractor count to 4 during training and [0,1,2,4,8]
during testing. We then have the generative model receive
the first frame as input to forecast the complete sequence.
We do not sample relevant objects that are already present
in the scene e.g., an additional knife for a ”Cut” action as
it is simply not possible to forecast which knife the person
reaches for without more information in the input action text
such as ”Cut 2 cucumbers using the left-most knife”. Some
sequences, however, do contain relevant distractors but are
always placed beyond grasping distance.

Fig. 5 shows our model’s ability to ignore distractors. The
recognition and segmentation metrics remain near constant.
We also indicated the average wrist and distractor veloci-
ties to ensure that the result is not due to the segmenta-
tion model’s ability to disregard distractors. Our model suc-
cessfully maintains near constant distractor velocity with in-
creasing distractor counts. A valid critique of our method is
that the same performance can be achieved by using lookup

Approach I Lift ll Hold
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tables to suppress distractors given the one-hot action label.
However, we argue that learning is more beneficial espe-
cially for future work when handling open-vocabulary sen-
tences that may not explicitly reference the objects in use.

Conclusion

We tackle the relatively new task of action-conditioned gen-
eration of bimanual object manipulation sequences. We pro-
posed a novel neural network that splits the body joints into
3 separate parts according to their degree of interaction with
the object, which shows improvements over prior work. We
based our method on an autoregressive approach which can
be used as a generative or forecasting model for AR or HRI
respectively. Our method’s modularity makes selection of
lambdas easy, and allows swapping various components; for
example, our finger pose module could be easily replaced
with GrabNet if the focus was only on the generative setting
and the object mesh is readily available. Limitations include
the absence of any constraints to have the object remain at-
tached to the grasping hand during manipulation. Actions
with semantic variation such as pouring the contents from
a bowl to a cup or vice-versa will also require two differ-
ent one-hot encodings for improved performance. Lastly, a
unique problem for this task is that evaluation becomes more
challenging due to the need for fine action segmentation as
opposed to the intuitively easier task of recognition given
an entire whole-body sequence as done in (Guo et al. 2020;
Petrovich, Black, and Varol 2021). It is easier to obtain near-
perfect performance with recognition than it is with fine ac-
tion segmentation. This then leads to an issue where the seg-
mentation model must be first improved in order for the re-
ported metrics to better reflect the performance of the gener-
ative or forecasting model. The analysis will not be as clear-
cut if the discriminative power of the segmentation model is
inadequate as it can result in the numbers being close given
either a poor or an excellent generative model.
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