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Abstract

Peer grading systems aggregate noisy reports from multiple
students to approximate a “true” grade as closely as possi-
ble. Most current systems either take the mean or median of
reported grades; others aim to estimate students’ grading accu-
racy under a probabilistic model. This paper extends the state
of the art in the latter approach in three key ways: (1) recog-
nizing that students can behave strategically (e.g., reporting
grades close to the class average without doing the work); (2)
appropriately handling censored data that arises from discrete-
valued grading rubrics; and (3) using mixed integer program-
ming to improve the interpretability of the grades assigned to
students. We show how to make Bayesian inference practical
in this model and evaluate our approach on both synthetic
and real-world data obtained by using our implemented sys-
tem in four large classes. These extensive experiments show
that grade aggregation using our model accurately estimates
true grades, students’ likelihood of submitting uninformative
grades, and the variation in their inherent grading error; we
also characterize our models’ robustness.

1 Introduction
Peer grading is a powerful pedagogical tool. It benefits stu-
dents by helping them to internalize evaluation criteria by
applying them critically to peer work (Lu and Law 2012);
offering them feedback from equal-status learners (Topping
2009); and giving them exposure to others’ perspectives. Just
as importantly, it gives instructors a way to make classes
more scalable by shifting (some) grading workload away
from course staff; this again benefits students by giving them
more opportunities for their work to be evaluated within a
course’s staffing constraints.

In order for peer grading systems to be both useful to
instructors and acceptable to students, they must produce
grades that are sufficiently similar to those that an instructor
would have given. This is a challenging task because individ-
ual peer graders will be biased (consistently give generous or
harsh grades); noisy (the same grader could grade an assign-
ment differently on different days); and potentially strategic
(some students will enter insincere peer grades unrelated to a
submission’s quality if they can get away with it). Addressing
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these interrelated challenges has been a topic of academic
study in Computer Science for at least the last two decades.

The first methods for aggregating peer grades—and many
others introduced more recently—produce point estimates
of each assignment’s grade and each grader’s quality (Walsh
2014; Chakraborty, Jindal, and Nath 2018; Prajapati et al.
2020; de Alfaro and Shavlovsky 2014; Hamer, Ma, and
Kwong 2005). At their best, methods that produce point
estimates maximize the likelihood of the data given a model,
e.g., by assigning each grader a “reliability” parameter and
iteratively updating these parameters to best describe the
reported grades. (At worst, they do not even maximize likeli-
hood. In this case they can produce grades and reliabilities
that are inconsistent with each other, such as giving high
weights to graders who are judged unreliable.) Even when
they do maximize likelihood, such point estimates can be
overly confident. This can matter for model accuracy: e.g.,
the data might show that only one of several students is reli-
able without offering evidence about which is which, making
it likely that the model will commit to the wrong explanation.
It can also limit the way such models are used in real classes:
e.g., an instructor may not want to trust student grades until
the system is confident that a peer grader is reliable.

These problems can be addressed by inferring distribu-
tions over grade and reliability estimates rather than point
estimates. A seminal paper due to Piech et al. (2013) in-
troduced the first such system, using graphical models to
simultaneously determine distributions over both grades for
student submission and accuracy assessments for each grader.
Their core “PG1” model assumes that each assignment has a
latent true grade and each peer grader has a latent bias and re-
liability; these parameters can be estimated from grading data
through Bayesian inference, producing posterior distributions
(and, hence, confidence intervals) on each assignment’s grade
and each student’s grading abilities. Piech et al. also intro-
duced PG2 and PG3 models that respectively permit graders’
biases to change over time and students’ grading reliability to
be correlated with their own assignments’ grades. Follow-up
work by others further extended these models to allow for
more complex reliability-grade correlations (the PG4 and
PG5 models of Mi and Yeung 2015) and to more explicitly
account for differences between a single grader’s reported
grades (the PG6 and PG7 models of Wang et al. 2019).

A key issue in peer grading is that while students are asked
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to expend effort in grading each other’s work, it is difficult to
assess whether they did expend this effort. For example, stu-
dents can subvert systems that assess grading quality by com-
paring individual grades to each other if they coordinate on all
reporting the same grade. In response to this issue, an exten-
sive line of work in the mechanism design literature focuses
on incentivizing high quality reporting in peer grading and
other crowdsourcing environments (Prelec 2004; Jurca and
Faltings 2009, 2005; Faltings, Li, and Jurca 2012; Witkowski
and Parkes 2012; Witkowski et al. 2013; Radanovic and Falt-
ings 2013, 2014; Riley 2014; Kamble et al. 2015; Kong,
Ligett, and Schoenebeck 2016; Shnayder et al. 2016; Liu
and Chen 2018; Goel and Faltings 2019; Gao, Wright, and
Leyton-Brown 2019; Zarkoob, Fu, and Leyton-Brown 2020).
Work in this area is mostly centered around the idea of peer
prediction, developing mechanisms that incentivize graders
to grade carefully by rewarding them based on comparing
their peer grades to others’. While our model of low-effort
grading is inspired by work in this area, these mechanisms
typically rely on restrictive modeling assumptions, making
them inapplicable to most practical peer grading systems.
Further, Burrell and Schoenebeck (2021) found that rewards
from out-of-the-box peer prediction mechanisms do not accu-
rately reflect grader effort levels on realistic simulated data.

Despite the considerable intellectual progress just de-
scribed, there remain obstacles to deploying AI-based peer
grading systems in practice. Statistically rich methods based
on graphical models and economically informed mechanism
design approaches have been developed independently; we
are not aware of any system that unifies the two by providing
both Bayesian parameter estimates and meaningful incentives
for students to invest effort in peer grading. Furthermore, the
statistical literature allows both students and the peer grading
system itself to assign real-valued grades, whereas real in-
structors tend to use coarse-valued rubrics, particularly when
eliciting grades from students. This can harm inference and
also requires the instructor to find a way of mapping real-
valued grades back onto their course’s rubric. Even if this
mapping produces accurate grades, students must be able to
understand it in order to trust the system (Kizilcec 2016).

This paper addresses all of these problems, introducing ex-
tensions to probabilistic peer grading systems that can detect
(and hence enable the disincentivization of) low-effort, strate-
gic behavior by students; improve inference quality in the
presence of discrete grading rubrics; and output interpretable,
discrete final grades that closely approximate maximum a
posteriori estimates. In what follows we begin by introducing
notation and formally defining the baseline PG1 model (Sec-
tion 2). We then introduce our novel methods for modeling
grader effort, modeling discrete grade reports as censored
observations, and outputting interpretable discrete grades via
mixed-integer programming (Section 3). We evaluate our
contributions in two ways. First, using real data from four
offerings of a large class, we show that each of our effort and
censoring model extensions improved likelihood on held-out
data and that our method for generating interpretable grades
closely tracked MAP estimates (Section 4). Second, using
simulated data generated using the hyperparameters fit in the
previous section, we assessed our model’s ability to recover
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Figure 1: The PG1 graphical model.

grades and grader reliabilities as a function of dataset size and
in the presence of hyperparameter misspecification (Section
5). We conclude by discussing ways in which our methods
can be leveraged in the classroom (Section 6).1

2 Technical Setup
We will use the following notation throughout the paper. Let
U be the set of submissions and V be the set of graders. It
is common for instructors to provide graders with a rubric:
a decomposition of the overall grade into a set of separate
components. To capture this, we assume that each submission
is graded on C components C = {1, 2, . . . , C}, with possi-
ble grades of {0, 1, . . . ,M} for each. We write N (µ, σ2) to
denote the normal distribution with mean µ and variance σ2.

We now define PG1 (Piech et al. 2013), a key graphical
model from the literature, which models students as having
reliabilities and biases. The PG1 model supposes three sets
of latent variables. Each submission u ∈ U has a true grade
su,c ∈ R for each rubric component c ∈ C. Each grader
v ∈ V is described by a reliability τv ∈ R+, which captures
the consistency of their grading, and a bias bv ∈ R, which
describes their tendency to give generous or harsh grades. An
ideal grader would have a high reliability and 0 bias. Then,
when a grader v grades a submission u, they give a peer grade
gvu,c ∈ R for each component c. Concretely, the PG1 data
generating process, depicted in Figure 1, is:

(True grades) su,c ∼ N (µs, 1/τs);

(Reliabilities) τv ∼ Gamma(ατ , βτ );

(Biases) bv ∼ N (0, 1/τb);

(Peer grades) gvu,c ∼ N (su,c + bv, 1/τv).

This model has five hyperparameters: µs and τs fix the prior
distribution of true grades; ατ and βτ fix the prior over re-
liabilities (gamma-distributed to ensure that reliabilities are
positive); and τb is the precision of the bias distribution.

Armed with a dataset of peer grades, the goal of the model
is to infer true grades for each submission and reliabilities
and biases for each grader. Such a complex model does not
give rise to a closed-form expression for the posterior distri-
bution over these parameters. Instead, the posterior must be
estimated numerically. A good option is Gibbs sampling (Ge-
man and Geman 1984): initializing each variable randomly,

1Open-source implementations of our models are available at
https://github.com/hezar1000/mta-inference-public.
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repeatedly sampling new beliefs about a single variable in
the model conditional on beliefs about all other variables,
and reporting the long-run distributions of these samples.
This approach is particularly attractive for PG1, as the true
grade, bias, and reliability priors are conjugate priors for the
normally-distributed peer grade likelihoods, giving each of
the Gibbs updates a simple closed form. We present these
update equations in Appendix A.2

3 Methods
We now present our main conceptual contributions. First, we
show how low-effort grading behavior can be disincentivized
by augmenting the probabilistic model to include latent vari-
ables describing graders’ effort. Second, we show how to
better handle the common case where graders select discrete
grades from a coarse rubric by modeling these reports as
censored observations of an underlying real value. Third, we
introduce a mixed-integer programming method for identify-
ing interpretable weighted averages of the peer grades that
are faithful to the model’s posterior beliefs. We present and
evaluate these features as extensions to PG1, which we found
most applicable to our own class, but they could be applied
to any of the PG* models in the literature. In Appendix B, we
show how these extensions could be added to the PG5 model
of Mi and Yeung (2015), additionally modeling correlations
between students’ submission grades and reliabilities.

3.1 Modeling Grader Effort
In order for a statistical model to be able to accurately re-
cover true grades from peer reports, students must invest the
effort required to grade as well as they can. Typically, stu-
dents are incentivized to do so in part by receiving explicit
grades for their peer grading prowess. However, it is not
easy to determine whether a student has done a good job of
peer grading when there are no instructor or TA grades to
which their evaluation can be compared. The main alternative
method of providing an incentive—called peer prediction—is
based on comparing students to each other. When all other
students grade as accurately as they can, it is often possible
to design reward systems that incentivize a given student to
do the same (i.e., making effortful reporting an equilibrium).
Unfortunately, however, other equilibria also exist in which
students coordinate on the same grade without reading the
assignment (Jurca and Faltings 2009; Waggoner and Chen
2014; Gao et al. 2014).

We can reduce students’ incentives for such low-effort be-
havior by explicitly modeling it, helping us to avoid assigning
high reliabilities to low-effort students. Each time a grader v
grades a submission u, we assume they make a binary deci-
sion about whether to make an effort zvu on the submission.
If they choose to make an effort, they produce a noisy grade
as usual; otherwise, they choose a random grade from a fixed
“low-effort” distribution D`. For simplicity, we model these
effort decisions as being independent of the content of the
submission. Then, each student has an effort probability ev,
describing the fraction of submissions where they exert high

2Our appendix is available at https://arxiv.org/abs/2209.01242.

effort. Formally, adding this feature to PG1 produces the
model:

(True grades) su,c ∼ N (µs, 1/τs);

(Reliabilities) τv ∼ Gamma(ατ , βτ );

(Biases) bv ∼ N (0, 1/τb);

(Effort prob.) ev ∼ Beta(αe, βe);

(Efforts) zvu ∼ Ber(ev);

(Peer grades) gvu,c ∼
{
N (su,c + bv, 1/τv), zvu = 1;

D`, zvu = 0.

Regardless of our choice of D`, Gibbs sampling remains
straightforward: both efforts and effort probabilities yield
closed-form updates, and all other parameter updates simply
exclude grades that a given sample calls low effort.

So, which low-effort distribution D` should we choose?
Hartline et al. (2020) showed that the most robust “low effort”
strategy is to report the class average, because it minimizes
the expected distance to an effortful report. A point-mass
low-effort model would be extremely brittle, so a natural
D` is thus a normal distribution centered on the class aver-
age. Some low-effort students may adopt other, idiosyncratic
strategies such as assigning everything a low or high grade.
We would prefer to model such outliers as low-effort behav-
ior rather than having them drive our reliability estimates, so
we chose our final D` to be a mixture between this normal
distribution and a uniform distribution:

D` =

{
N (µs, 1/τ`), with probability 1− ε;
Uniform(0,M), with probability ε.

Adding effort to a model introduces four new, tunable hy-
perparameters: αe and βe parameterize a prior over grades’
effort probabilities, which is beta-distributed to ensure that
these probabilities are between 0 and 1; τ` describes the
amount of noise in graders’ reports when they put in low
effort; and ε specifies the probability with which a low-effort
grader reports a grade uniformly at random.

3.2 Discrete Rubrics as Censored Observations
In practice, submissions are usually graded on coarse, dis-
crete rubrics such as five-point scales (and virtually no class
allows graders arbitrary decimal precision). PG1 and all of its
successors nevertheless assume that both true and reported
grades are real valued. They do this for two good reasons.
First, continuous distributions like Gaussians are realistic
models of true grade distributions, and arguably reported
grade distributions are just discretizations of the same con-
tinuous distributions. Second, such discretizations typically
produce non-conjugate priors, and without such special struc-
ture, Gibbs updates can be computationally intractable.

However, a model’s posterior beliefs can be skewed by
failing to model the fact that only integer values can be re-
ported by graders. Treating discrete grades as real-valued
observations can add statistical bias to graders’ reliability es-
timates, both by overestimating (e.g., graders appear to be in
perfect agreement when their rounded grades are interpreted
as draws from a continuous distribution) or underestimating
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Figure 2: Our complete graphical model.

(e.g., two graders who correctly assess that a true grade is
close to the midpoint between two integers can appear to
disagree substantially after rounding). Of course, degraded
reliability estimation implies degraded true grade estimation.

We propose an approach for extending PG-style models
to realistic discrete grade distributions that maintains the
tractability of Gibbs updates. Let G ⊂ Z be a set of legal
discrete grades (e.g., integers between 0 and 5), and let nG :
R→ G be a function mapping a grade to its nearest value in
G, rounding up. We continue to model a grader v grading a
submission u as sampling a real-valued peer grade gvu,c, but
we now treat these real-valued peer grades as latent variables,
with the student reporting the discrete grade rvu,c = nG(g

v
u,c):

a censored observation of the real-valued peer grade. Figure 2
shows the resulting graphical model. Observe that it correctly
leads us to consider grader disagreement to be more likely
when an assignment’s true grade is 3.51 than when it is 3.0.

Performing naive Gibbs sampling on the latent peer grade
variables would lead to extremely sample-inefficient infer-
ence: the posterior distribution has multiple modes where the
true grade nearly matches one latent peer grade, and Gibbs
sampling rarely moves between these modes. To avoid this
problem, we instead marginalize over each peer grade, inte-
grating over all of its possible values. While we are no longer
able to apply Gibbs updates by evaluating a closed-form
expression, we can still straightforwardly compute the likeli-
hood of a reported grade for any setting of the submission’s
true grade and the grader’s reliability and bias, enabling a
discrete approximation of the Gibbs updates. To update a
true grade variable, we thus consider a uniform grid of pos-
sible grades (ranging from 0 to a grade slightly above the
maximum grade M ), compute an unnormalized posterior
probability for each value, renormalize these probabilities to
sum to 1, and take a sample from the resulting discrete dis-
tribution. The reliability and bias updates are similar, testing
uniform grids of plausible reliabilities and biases. We provide
full details of these Gibbs updates in Appendix A.

3.3 Explaining Discrete Grades via MIP
A key advantage of a Bayesian approach to reasoning about
peer grades is that it yields distributional posterior beliefs
about each quantity of interest rather than point estimates.
However, students still expect to receive discrete grades rather

than probability distributions. Furthermore, in settings where
the course staff use the same rubric as the students to grade
submissions and where TA grades replace peer grades after
an appeal, assigning real-valued final grades to students in-
centivizes half of them to ask for regrades (e.g., if 3.6 is their
true grade, the rounded TA grade would be 4).

How should we turn posterior distributions into discrete
grades? One might map the mean of the Gibbs samples to the
nearest rubric element, but this can lead to rounding errors.
A better option is to choose the rubric element corresponding
to the continuous grade interval having the highest mass in
the posterior distribution, which is the maximum a posteriori
(MAP) grade. While this approach is statistically sensible, it
leaves students with little insight about how their peer grades
influenced the calculation; this can lead to reduced trust in
the system (Kizilcec 2016) and more appeals. It can also
sometimes produce final grades larger or smaller than any
peer grade (e.g., when the model assigns biases having the
same sign to all graders). In our experience, students find such
grades confusing and unfair; they instead expect to receive
final grades that interpolate their received grades, such as
averages weighted by each grader’s perceived trustworthiness.
However, students also tend to fixate on low-quality peer
reviews and strongly prefer for such graders to receive zero
weights rather than small positive weights.

We propose a novel mixed integer programming (MIP)
formulation that maps posterior grade distributions to dis-
crete final grades that can be explained as rounded weighted
averages of reported peer grades. Our starting point is to as-
sign a weight for each grader in proportion to their reliability
and effort estimates. We then allow the MIP to adjust these
weights in two ways to maximize the posterior probability of
the resulting rounded weighted average. First, we allow the
MIP to deviate from each grader’s initial weight by up to a
constant S to improve the likelihood of the resulting rounded
grade. Second, we prevent the MIP from putting small, non-
zero weights on relatively uninformative grades by requiring
weights either to be zero or to exceed a minimum thresh-
old T . Notice that the resulting weighted averages can never
produce a grade outside of the range of the peer grades. We
define our MIP formulation formally in the Appendix C.

4 Validation Experiments on Classroom Data
We now evaluate our contributions on real peer grading data,
gathered between September 2018 and December 2021 from
four offerings of an undergraduate-level computer science
course on ethically evaluating the societal impacts of com-
puting. In each offering of this course, approximately 120
students wrote 11 weekly essays. Each grade consisted of
discrete values between 0 and 5 for each of four compo-
nents (structure; evidence; subject matter; English). Overall,
our experiments show that our model extensions (grader ef-
fort and censored observations) improved fit and that the
explainable grades output by our MIP rarely differed from
the (non-explainable) MAP estimates.

Our experiments include data from three types of graders.
First, most student essays were graded by 4–5 peers, with
a handful receiving more or fewer grades, yielding between
6088 and 7068 peer grades per dataset. Second, each course
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was supported by a team of 3–5 TAs who spot checked be-
tween 474 and 644 essays, mostly in response to suspiciously
high average grades, high disagreement between peer grades,
and graders with poor historical performance. Our TAs were
diligent and responsible, so we clamped their effort estimates
to 1 (i.e., their grades could never be explained as coming
from the low-effort distribution); we fit their bias and re-
liability parameters from data just as we did for students.
Third, our peer grading datasets included between 60 and
84 gold-standard “calibration” submissions that we used to
train students; these grades were painstakingly agreed upon
by the whole course staff. We model these gold-standard
grades as having being given by a special “instructor” grader,
for whom we clamped effort to 1 and further clamped the
reliability parameter τ instr = 16 (corresponding roughly to
an 80% accuracy of perfectly recovering true grades); we fit
this grader’s bias parameter from data.

Of course, our real-world datasets give us no way to rea-
son about ground-truth values for any parameters (like true
grades, reliabilities, etc), so we cannot evaluate how accu-
rately our models’ posteriors recover these parameters’ true
values. Instead, we evaluated our models based on their abil-
ity to predict held out data: specifically, their held-out likeli-
hood (Vehtari, Gelman, and Gabry 2016). Ideally, we would
have run leave-one-out cross-validation, but this would have
required running the model once for each peer grade in the
class, which would have been computationally prohibitive
given the size of our datasets and the cost of our inference pro-
cedure. Instead, we used 10-fold stratified cross-validation.
We first split the dataset into 10 groups of n/10 peer grades,
ensuring that no two peer grades on the same submission
were in the same group. Then, for each way of selecting
9 groups from the 10, we ran the model on these selected
observations, summing the model’s log likelihoods on the
remaining group. An exploratory experiment on one of our
four datasets confirmed that this approach closely approxi-
mated leave-one-out cross-validation. We use paired t-tests
to make statistical comparisons between held-out likelihoods
of several models on the same dataset.

Each time we fit our model to a dataset, we collected 4
runs of 1,100 Gibbs samples, discarding the first 100 burn-
in samples from each run and concatenating the remainder;
this took about 8 CPU hours. We found that this number
of samples made a good tradeoff between the runtime and
sample complexity of our models: e.g., comparing to runs
with 10,000 Gibbs samples, our protocol of gathering 4,000
samples caused an average error of 1%, 3%, and 1% on our
estimates of true grades, reliabilities, and effort, respectively,
and therefore had a small impact on our results.

First, in order to evaluate the effectiveness of our effort
and censoring extensions to PG1, we compared models hav-
ing both, one, or neither of these features. We independently
optimized each model’s hyperparameters using randomized
search, choosing the hyperparameters that maximized the
model’s held-out likelihood; full details of this hyperparam-
eter search, along with the resulting hyperparameters, are
presented in Appendix D. We found that the model using
both features had the highest held-out likelihood.

We then ran an ablation experiment, disabling each feature
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Figure 3: Model ablations. Each bar represents the change
relative to the best-performing model, which included both
censoring and biases for each dataset. Stars on log-likelihood
bars show significance (p < 0.05).

while holding the hyperparameters fixed. We evaluated held-
out likelihood of each ablated model along with the average
absolute change in each student’s grade. Our results, shown
in Figure 3, indicate that removing each feature degraded the
model’s held-out likelihood, with censoring always causing
significant drops in performance and efforts having signifi-
cant effects in one class. We note that in Fall21 and Winter21,
the two offerings of the class where modeling effort made the
smallest difference in performance, we made greater efforts
to detect low-effort behavior; of course, when such behavior
is successfully disincentivized, detecting it will have less im-
pact on model performance. All model changes made small
but meaningful changes to the final grades, averaging be-
tween 0.05 and 0.15 points on our 5-point scale, and very
rarely ever exceeding a single point change.

Finally, we also investigated variations in model architec-
ture beyond the two extensions introduced in this paper. First,
we asked whether we could get good performance without
bias terms. We could not; they helped substantially. Second,
we asked whether PG5-style correlation between students’
grades on their own submissions and their reliabilities was
helpful. It was not, regardless of whether we included biases.
Details of both experiments are given in Appendix E.

Having settled on our effort + censoring model, we used
it to evaluate the extent to which the MIP had to deviate
from submissions’ MAP grades in order to present them
as weighted averages of the graders’ reports. We set the
MIP constants to the defaults recommended in Appendix C,
allowing the graders’ weights to change by at most S = 0.09,
with a minimum non-zero weight of T = 0.1. Across the four
offerings, replacing the MAP grades with the MIP’s output
would have caused only 6.5 percent of grades to change.

5 Robustness Experiments on Synthetic Data
While our experiments on real class data allowed us to test
how well our models described real peer-grading behavior,
they gave us no way to check the accuracy of the parameter
estimates. Of course, giving accurate grades (either for sub-
missions or students’ grading abilities) is a primary focus of
peer grading systems. We therefore conducted further experi-
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ments on synthetic data, generating parameters and reported
grades according to our best-fitting models from the previous
section, and evaluating how well the posteriors recovered the
latent parameters’ true values. This methodology allowed us
to test how our estimates improved as the amount of grading
data increased, how sensitive they were to the choice of hy-
perparameters, and whether explaining grades with our MIP
increased their error.

The previous section showed that a model incorporating
both efforts and censoring had the best performance on all
four datasets, but its optimal hyperparameters varied. We
show results here based on a representative dataset, with
full results for all four sets of optimal hyperparameters in
Appendices F and G. Unless otherwise specified, we sim-
ulated courses consisting of 10 weeks, with 120 students
each making 1 submission and grading 4 peers’ submissions
each week. The grading rubric had four components, each of
which was given an integer grade between 0 to 5. We also
included 3 TAs who grade 25% of submissions; we clamped
their effort parameters to 1. We simulated TAs as being more
reliable than most students: inspired by our real data, we gave
TAs a mean reliability of 2.

We evaluated true grade and bias estimates via Mean Abso-
lute Error (MAE). We also computed accuracy (the fraction
of true grade MAP estimates equal to the rounded true grade)
and RMSE, finding qualitatively similar conclusions with
these measures. We found that some models produced inac-
curate reliability and effort estimates, but judged that this
was less important because rewarding good grading only
requires students to be ranked in the correct order. Accord-
ingly, we evaluated our reliability and effort estimates with
the Spearman rank-order correlation coefficient, measuring
how similarly students were ranked by the estimates and true
values. In each case, we report the mean and 95% confidence
intervals of each metric across inference runs on 15 simu-
lated datasets. We also compare our true grade MAEs to a
hypothetical TA with a reliability of 2 (who achieves a mean
absolute error of 0.48), allowing us to ask how much data is
required to effectively substitute for a TA.

5.1 Parameter Recovery
We begin by testing how the model’s parameter estimates
were affected by the amount of grading data available. One
obvious way to control the amount of data is to change the
number of students in the simulated class. However, this
change had surprisingly little impact on the inference prob-
lem’s difficulty, because as the class size varies, each grader
continued to grade a total of 40 submissions, and each sub-
mission continued to receive 4 grades. Instead, we control
these two dimensions separately, independently varying the
number of grades from each student and the number of grades
given to each submission.

Varying grades per grader. First, we changed the number
of grades given by each student by varying the number of
weeks in the class. Here, each assignment always received 4
grades, but the number of grades from each student scaled
linearly with the number of weeks. The results (Figure 4a-
b) show that increasing the size of the dataset in this way

improved grader quality estimates. Reliability estimates had
an appreciable correlation of 0.6 after just one week of data,
improving substantially to 0.9 after 8 weeks. Effort estimates
followed a similar trend, but were much more difficult to es-
timate: one week of data produced a much poorer correlation
of 0.3, with later weeks improving to 0.7. Bias estimates,
given in the appendix, also improved with additional data.

Perhaps surprisingly, true grade estimates improved very
little as the number of weeks grew. This suggests that, with
only 4 grades per submission, most of the inaccuracy in the
model’s true grade estimates was driven by aggregating a
small number of noisy signals, rather than because estimates
of graders’ reliabilities, biases, and efforts were inaccurate.

Varying grades per submission. Next, we changed the
number of graders in each course, holding the number of
weekly submissions fixed at 40 and each student’s grading
workload at 4 grades per week. Adding graders in this way
increased the number of grades given to each submission but
preserved the amount of data about each grader, isolating
the effect of additional information on each assignment. The
impact of this change on true grade recovery is shown in
Figure 4c. These results indicate that adding additional peer
graders on each submission substantially reduced true grade
MAE, from 0.52 with a single grader to 0.41 with four—well
below the MAE of a TA. Adding more graders decreased true
grade MAEs far lower, reaching below 0.2 with 32 graders.

Increasing the amount of data in this way had little effect
on the model’s ability to recover students’ reliabilities, biases,
and effort probabilities. This suggests that error in those
estimates was driven primarily by noise in the reported grades,
not by noise in the underlying true grade estimates.

5.2 Robustness to Incorrect Hyperparameters
While the synthetic experiments we have discussed so far
show that we were able to recover the model’s parameters
with sufficient data, they assumed knowledge of the hyperpa-
rameters used to generate this data. We now ask whether it
is crucial to set these hyperparameters correctly, or whether
the model still robustly recovers parameters of interest when
given different hyperparameter settings than those used to
generate the data. We tested our models under seven changes
to the hyperparameters, varying the true grade mean µs; the
true grade standard deviation σs; the bias standard devia-
tion σb; the reliability prior mean ατ/βτ ; the reliability prior
variance ατ/β2

τ ; the effort probability mean αe/βe; and the
low-effort precision τ`.

Overall, we found that many of these changes to the hy-
perparameters had small and statistically insignificant effects
on the inference results; these complete results are shown in
Appendix G. Notably, we found that the model’s performance
was quite robust to changes in the reliability and effort proba-
bility priors. We show four exceptions in Figure 4: using an
incorrect mean or standard deviation for the true grade prior
substantially increased true grade MAE from 0.44 to as high
as 0.53; incorrectly specifying the low effort distribution τ`
was very detrimental to the effort probability estimates; and
using a bias prior with a standard deviation far below its true
value hurt bias estimates.
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Figure 4: Effects of varying dataset size on (a) reliabilities; (b) effort probabilities; (c) true grades. Robustness of model outputs
to misspecified hyperparameters: true grade (d) average and (e) stdev; (f) low-effort precision; (g) bias stdev.
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5.3 MIP Stability
Lastly, we tested the impact of assigning grades based on ex-
planations from our MIP formulation, rather than our model’s
MAP estimates of true grades, as we varied the number of
peer grades given to each submission. The results are shown
in Figure 5. With only a single grader, the MIP output was
equal to the mean of the Gibbs samples, which is much less
accurate than the MAP. However, with additional graders, the
MIP gained the flexibility to recover MAP grades, reaching
nearly equal MAEs at 7 graders per submission.

6 Conclusions and Practical Considerations
We have shown how probabilistic peer grading systems can
be extended to provide incentives for effortful grading; to
correctly model discrete peer grades; and to output discrete,
interpretable final grades that approximate MAP estimates.
We validated our models on four years of real classroom data
and investigated both their ability to recover true parameters
and their robustness on synthetic data.

Although the peer grading literature has repeatedly shown
that Bayesian models can produce accurate grades, tuning
them to produce such good performance can be a daunting
task for an instructor—our model has 9 hyperparameters!
Luckily, our robustness experiments in Section 5.2 showed
that the model’s posterior beliefs were robust to misspecify-
ing the reliability, bias, and effort priors. Two hyperparame-

ters remain. The first is the true grade distribution, a choice
that instructors often make when curving grades. The second
is the specification of low-effort behavior, which is important
both for boosting model performance and for disincentivizing
bad behavior: if the model is good at identifying low effort
behavior, students will exhibit this behavior less often. We
recommend adapting the specification to capture low-effort
behavior observed in spot checks.

Our insistence on providing uncertainty estimates is not
just a statistical concern. Our methods work best when they
are integrated into the design of the class, giving these uncer-
tainty estimates pedagogical value. For assignment grades,
uncertainty estimates can direct TA spot checks towards areas
of disagreement. For grader reliability, uncertainty estimates
can inform whether students should be trusted to peer grade
without TA supervision. They can also help evaluate students’
peer grading prowess: in our own class, we initialized the
model to be confident that students had poor reliability and re-
quired students to do extra grading if the model’s pessimistic
estimate of their reliability was poor, but scored their peer
grading based on the model’s optimistic reliability estimate.
Thus, students got the best grade the model could justify, but
students suspected to be weak got additional practice grading,
which refined our reliability estimates in turn.

Our parameter recovery experiments in Section 5.1 found
that graders’ effort probabilities were difficult to estimate:
compared to reliabilities, effort probability estimates were
much poorer with little data, and converged more slowly as
data became available. This is not a surprise: our low-effort
graders choose grades that are as difficult as possible to distin-
guish from effortful graders. The problem is exacerbated by
coarse rubrics, which cause many high-effort grades to match
the class average exactly. Performance could be improved
by tuning the specification of low effort behavior, using an
autograding system as another unbiased signal about submis-
sions’ grades (Han et al. 2020), or by leveraging other signals
of low-effort behavior, such as graders’ time spent grading
and typing speed (Wang et al. 2019).
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