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Abstract

Distribution estimation has been demonstrated as one of the
most effective approaches in dealing with few-shot image
classification, as the low-level patterns and underlying rep-
resentations can be easily transferred across different tasks
in computer vision domain. However, directly applying this
approach to few-shot text classification is challenging, since
leveraging the statistics of known classes with sufficient sam-
ples to calibrate the distributions of novel classes may cause
negative effects due to serious category difference in text do-
main. To alleviate this issue, we propose two simple yet effec-
tive strategies to estimate the distributions of the novel classes
by utilizing unlabeled query samples, thus avoiding the po-
tential negative transfer issue. Specifically, we first assume a
class or sample follows the Gaussian distribution, and use the
original support set and the nearest few query samples to esti-
mate the corresponding mean and covariance. Then, we aug-
ment the labeled samples by sampling from the estimated dis-
tribution, which can provide sufficient supervision for train-
ing the classification model. Extensive experiments on eight
few-shot text classification datasets show that the proposed
method outperforms state-of-the-art baselines significantly.

Introduction

Text classification plays a fundamental and crucial role in
natural language processing, which has been widely applied
to various real applications, such as intent detection (Lou-
van and Magnini 2020), sentiment analysis (Kumar and Abi-
rami 2021), news classification (Bozarth and Budak 2020)
and so on. Traditional text classification methods (Johnson
and Zhang 2017; Devlin et al. 2019) have achieved impres-
sive performance, which require a large amount of labeled
instances per class for training. However, collecting and
annotating sufficient data is a time-consuming and labor-
intensive process, sometimes even unachievable in industry,
which motivates few-shot text classification.

Few-shot learning is a paradigm for solving the data
scarcity issue, which aims to detect novel categories with
very limited labeled examples by using prior knowledge
learned from known categories. Several kinds of methods

*Corresponding author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

13219

have been proposed to meet this challenge. Meta-learning
based methods aim to train a generalized model which can
quickly adapt to new tasks (Finn, Abbeel, and Levine 2017,
Santoro et al. 2016; Snell, Swersky, and Zemel 2017; Liu
et al. 2021, 2022). This type of methods has been success-
fully applied to solve the few-shot learning problem. Fine-
tuning based methods usually train a model on the base
set first and then transfer to novel classes via adjusting
the model parameters (Jeremy and Sebastian 2018; Suchin
et al. 2020), which are susceptible to the overfitting prob-
lem. Their variants like prompt-based and entailment-based
methods (Gao, Fisch, and Chen 2021; Wang et al. 2021) can
mitigate the above issue and have achieved promising per-
formance. It is worth noting that most previous works focus
on developing stronger models, but less attention has been
paid to the property of the data itself. Intuitively, when more
informative data is available for supervision, the model tends
to generalize well during evaluation.

In order to explore the problem from the perspective of
data itself, several data-augmentation based methods (Ku-
mar et al. 2019; Dopierre, Gravier, and Logerais 2021; Chen
et al. 2022) have been proposed. However, these methods
require the design of a complex model and loss function to
learn how to generate examples. Recently, one variant of
data-augmentation based methods named distribution cali-
bration has shown to be effective in few-shot image classifi-
cation. It first estimates the distribution of the unseen classes
by transferring statistics from the seen classes, and then sam-
ples an adequate number of examples to expand the size of
labeled data. Nevertheless, this method cannot directly ex-
tend to text domain. The main reason is as follows. In vision
domain, low-level patterns and their corresponding repre-
sentations can usually be shared across classes. For example
the classes white_wolf and arctic_fox from ImageNet (Deng
et al. 2009) are very similar. The category difference, how-
ever, tends to be serious in text domain. For example, the
classes get_-weather and play_music from SNIPS (Coucke
et al. 2018) are entirely different. That is to say, the unseen
classes probably have no overlap with the seen classes in text
domain. Simply transferring distribution statistics from seen
data seems not a good solution, as some distribution statis-
tics from seen classes may be biased or even harmful to the
unseen classes.
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Figure 1: Illustration of a simple 4-way 1-shot task. Figure (a) shows the real data distribution, which contains one labeled
support sample per class and several unlabeled query samples. Figure (b) shows that the classifier learned from only one
support sample may cause the serious overfitting issue, and the class boundary is biased. Figure (c) shows the classifier learned
from support set and generated samples based on our estimated distribution, which has better class-discriminative ability.

In this paper, we propose two simple yet effective strate-
gies (way-based and shot-based strategies) to estimate the
distributions of the novel classes by exploiting unlabeled
query samples instead of adequate samples from seen
classes, thus circumventing the possible adverse impact
caused by serious category difference. In particular, we as-
sume a class or sample obeys the Gaussian distribution, and
use the original support set and the nearest several query
samples to estimate the corresponding mean and covariance.
Based on the approximated distribution, we generate a suffi-
cient amount of labeled data to augment the support set, thus
boosting the model performance. Figure 1 gives a 4-way 1-
shot task to illustrate the drawbacks of previous methods and
the advantages of our proposed strategies. To verify the ef-
fectiveness of the proposed methods, we conduct extensive
experiments on eight public datasets. The empirical results
show that the proposed strategies can achieve promising re-
sults compared with other strong baselines.

Related Work
Meta-Learning Based Methods

Meta-learning aims to design a model which can well
adapt or generalize to new tasks and new environments
that have never been encountered with only a few train-
ing examples. Existing meta-learning based methods can be
divided into three types. (1) Optimization-based methods,
such as MAML (Finn, Abbeel, and Levine 2017) and Reptile
(Nichol, Achiam, and Schulman 2018), intend to learn how
to optimize the gradient descent procedure so that the model
can be effective in learning with a few instances. (2) Model-
based methods, such as MANN (Santoro et al. 2016) and
MetaNet (Munkhdalai and Yu 2017), rely on the modules
that can update the parameters rapidly and effectively with a
few steps. (3) Metric-based methods like matching network
(Vinyals et al. 2016), prototypical network (Snell, Swersky,
and Zemel 2017), relation network (Sung et al. 2018) and
induction network (Geng et al. 2019), first learn an embed-
ding space, and then use a metric to classify new category
cases based on the proximity to labeled examples.
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Fine-Tuning Based Methods

Traditional fine-tuning algorithms usually use a few sam-
ples belonging to the unseen classes to update the parame-
ters of the models pre-trained on the seen classes with ade-
quate samples, which is a straightforward way to deal with
few-shot learning. However, these algorithms inevitably suf-
fer from the over-fitting issue due to data scarcity. To mit-
igate this issue, Jeremy and Sebastian (2018) and Suchin
et al. (2020) propose to train the models with the language
model objective function on task-specific unlabeled data be-
fore fine-tuning models on the target task. Phang, Févry, and
Bowman (2018) propose to train the model with data-rich
intermediate supervised tasks before fine-tuning it on the
target task. Recently, prompt-based and entailment-based
methods seem potential in dealing with the few-shot learn-
ing task. LM-BFF (Gao, Fisch, and Chen 2021) introduces
automatic prompt generation and incorporates the demon-
strations as additional context to fine-tune smaller language
models on a handful of annotated examples. EFL (Wang
et al. 2021) reformulates NLP tasks as textual entailment
instead of cloze questions, and provides fine-grained label-
specific descriptions instead of a single task description, thus
achieving promising performance.

Data Augmentation Based Methods

Data augmentation is a tried and true method to solve the
data sparsity problem. Conventional augmentation methods
focus on word substitution (Zhang, Zhao, and LeCun 2015).
EDA (Wei and Zou 2019) proposes four simple operations,
synonym replacement, random insertion, random swap, and
random deletion. Recently, some strong methods are specif-
ically proposed for few-shot text classification. Kumar et al.
(2019) explore six feature space data augmentation meth-
ods to improve performance in few-shot intent classification.
PROTAUGMENT (Dopierre, Gravier, and Logerais 2021)
introduces a short-text paraphrasing model that produces di-
verse paraphrases of the original text as data augmentation.
ContrastNet (Chen et al. 2022) leverages data augmenta-
tion to train the supervised contrastive representation model
under the regularization of a task-level unsupervised con-



trastive loss and an instance-level unsupervised contrastive
loss. Recently, distribution estimation (Yang, Liu, and Xu
2021) has shown to be powerful in dealing with few-shot
image classification, which first calibrates the distribution of
the unseen classes by transferring statistics from the seen
classes. Then an adequate number of examples are sampled
from the calibrated distribution to expand the inputs to the
classifier. Obviously, its core goal is to generate more sam-
ples based on the estimated distribution, thus providing more
supervision for training the classification model. However, it
heavily relies on the strong assumption that there always ex-
ist seen classes that are similar to an unseen class, which
probably not holds in text domain.

The Proposed Method
Problem Formulation

In this paper, we use the episode learning strategy to ex-
plore few-shot text classification. Specifically, the data is di-
vided into two parts: seen class set Csen and unseen class
set Cunseen> aNd Cgeen [ Cunseen = 0. A classifier is trained
with numerous samples from Cgeep, and it is quickly adopted
to Cynseen With only a few labeled data from Cypgeen. Meta
learning provides an effective solution for few-shot learn-
ing, which commonly follows the N-way K-shot setting,
i.e., for each task, there are N classes and each class has K
supports (labeled samples). In general, meta-learning con-
tains two phases: training and testing.

In the training phase, the meta-classifier is trained on
Nipqin tasks. In each training task, it consists of a support
set and a query set. To construct the train task, NV classes are
randomly picked from Cgee,. The support set is composed of
randomly selecting K labeled samples from each of the N
classes, i.e., S = {(=;,y;)},, where x; is a data sample,
v; 1s the class label and m = N x K. The query set consists
of a portion of the remaining samples from these IV classes,
ie., @ = {(z;,y;)}}-1, where n is the number of queries.

In the testing phase, the trained meta-classifier is used to
predict the labels of queries in Ny 4 tasks. In each testing
task, it also has a support set and a query set. In a simi-
lar manner, N classes are randomly sampled from the test
classes Cynseen- The support set and query set are constructed
in the same way as those in the meta-training phase. As the
labels of queries are unknown in testing stage, the query set
in test task can be represented as Q = {x; };L:l. The goal is
to predict the class labels for these queries.

Basic Few-Shot Classifier

We take a popular metric-based meta-learning method — pro-
totypical network (Snell, Swersky, and Zemel 2017) — as the
basic few-shot classifier. The core idea of prototypical net-
work is to learn a mapping (metric) ¢ that projects support
and query samples into an embedding space, and then clas-
sify the queries by learning their relations according to the
Euclidean distance in that space. Specifically, for each train-
ing task, the prototype P° of the c-th (¢ = 1,2, ..., N) class
is obtained by averaging K mapped supports ¢(x$) in this
class, i.e., P¢ = & Efil ¢(x5). For a query x,, the proba-
bility of x, belonging to the c-th class is computed by a soft-
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max function with the Euclidean distances between ¢(x,)
and the prototypes:

exp(—|[[¢(zq) — P|13)
SN exp(—||6(m,) — Pil3)

where the mapping ¢ is learned by minimizing the cross-
entropy loss. Formally,

n N
Lyasic = m(bin Z Z —Yqc 1Og ch>

qg=1 c=1

ch = (1)

2

where yq. = 1 if x4 belongs to the c-th class, otherwise
Yqe = 0. is the number of queries.

Distribution Estimation

Distribution calibration (Yang, Liu, and Xu 2021) attempts
to calibrate the distributions of unseen classes with few sam-
ples by transferring statistics from seen classes with suffi-
cient samples in vision domain. This method heavily relies
on the strong assumption that there always exist seen classes
which are similar with an unseen class. However, this as-
sumption does not always hold well in text domain. To tackle
this issue, we propose two simple yet effective distribution
estimation strategies by utilizing unlabeled query samples.

Considering an N-way K -shot task, given a novel class c,
its K support samples can be represented as {x1, ..., Tk }.
For each x;, we can calculate the top R nearest query
samples of x; according to the Euclidean distance in the
embedding (mapping) space, and we denote this set as
{a;1, ..., a;r}. Here R is a hyperparameter.

Way-Based Distribution Estimation For the way-based
distribution estimation strategy, we treat each way (class) as
arandom variable which follows the Gaussian distribution in
the embedding space. In general, the mean of the Gaussian
distribution can be obtained by averaging the embedding of
each sample in support set:

K

i=1

po = = 3)

K

where ¢ is the feature extraction function.

In order to better estimate the distribution of the novel
class, we attempt to use the top R query samples to cali-
brate the estimation result. Specifically, we first calculate the
mean of {a11, ..., @1R, ..., AK1, ..., Ax g } With:

1 K R
B = %R Z;M‘lzj)- (4)

i=1j

Then the final estimated mean ft,,4, can be represented as:

1
Hway ) (s + “q)

1 X ] KR (5)
K z; () + KR 2; 2; P(aij).
i= i=1 j=



In a similar manner, we can estimate the covariance ma-
trix 3,4, of the Gaussian distribution with:

1
Z'uuay = 5(28 + 2q)a (6)
where 3, € R%*? and B, € R?*? can be calculated with:
| X
Es = i) — Ms i) — Ms T7 7
g ) — ot~ )T, O

1 K& .
Do = o7 2 2 (0(ai) — o) (Blai) — pg)"- (8)

i=1 j=1

Shot-Based Distribution Estimation For the shot-based
distribution estimation strategy, we follow (Yang, Liu, and
Xu 2021) to treat each shot (support sample) as a random
variable which obeys the Gaussian distribution. For each
support sample x;, as it can represent the original mean, we
only need to use the top R query samples to adjust it. Specif-
ically, the estimated mean of the support sample x; can be
obtained by:

1 1 &
Hi = §(¢($i> + = Z o(aij)), )
j=1

and the estimated covariance matrix X; of the support sam-
ple x; can be calculated by:

R
> (blay) — i) (day) — )"

j=1

1
Y=
‘" R-1

(10)
By using the above distribution estimation method, for a
class ¢ with K support samples, its distribution can be rep-
resented as the set {N(p1,31), ... N (pk, Xk)}-

Distribution Sampling

According to the estimated distribution, we can generate
more samples which can provide sufficient supervision for
training the classification model.

Way-Based Distribution Sampling Given an unseen
class c, in this scenario we can generate the samples with
label ¢ by sampling from the following Gaussian distribu-
tion:

De = {(z,c)|x ~ N(Hway, Bway)}- (11)
After generating a series of samples, we can combine the
original support set and the generated samples together to
serve as the training data for a task.

Shot-Based Distribution Sampling Given an unseen
class ¢, we denote S. = {(p1,%1), ..., (UK, XK)} as the
set of mean and covariance pairs. We can generate the sam-
ples with label ¢ by sampling from the following Gaussian
distribution:

D, = {(:L‘,C)‘SC ~ N(,Ll,, E)7V(H7 E) € SC}'

After the sampling procedure, we can train the whole model
with the original support set and the generated samples.

(12)
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Relationship between Way-Based and Shot-Based
Strategies Considering the shot-based distribution
sampling, if we sample uniformly from the distribution
D. = {(x, )|z ~ N(p, 2),V(p, X) € S, }, we can get the
overall mean p 40+ can be represented as:

1 K
MHshot = 7~ 1223
hot K;
1 &1 1 &
=22 @)+ 5> dlai) (13)
i=1 j=1
1 & 1 &
= o 2 9@ + g 2 2 Haw)
1= =1 j=

From Eq. (5) and Eq. (13), it is easy to observe that the
way-based and shot-based distribution estimation strategies
share the same mean, which indicates that these two esti-
mated distributions probably overlap heavily. In addition, in
the extreme 1-shot scenario, way-based and shot-based dis-
tribution estimation methods are equivalent.

Training and Testing Phases

Training During the training phase, we use the prototypi-
cal network loss and the generation loss simultaneously. For
the prototypical network loss Lp4sic,» When calculating the
prototype for each class, we combine the original support
set and the generated samples as the final support set, and
the remaining calculation process can refer to Egs. (1) and
(2). In terms of the generation loss, it aims to guarantee that
the generated samples are close to their original center and
away from other centers, thus improving the confidence of
generated samples. To achieve this goal, the generation loss
can be written as:

1

L en — T
]

> —logp(y = y.le.,S),  (14)

(,yx)ED

where D = U.D. is the overall generated data, and S is the
original support set. Then the overall loss function is:

Etotal = ‘Cbasic + )\‘Cgeny (15)

where ) is a trade-off hyperparameter. By minimizing L;t4;
with gradient descent methods, all trainable model parame-
ters can be learned.

Testing In the testing phase, given an N-way K -shot task,
we first estimate the distribution with way-based or shot-
based approaches. Based on the estimated distribution, we
generate the corresponding samples and combine them with
the original support set as the final support set. Finally, we
predict the class label for each query sample by the proto-
typical network.

Experiments
Datasets

We follow (Chen et al. 2022) to conduct experiments on
eight text classification datasets, including four intent detec-
tion datasets: Banking77, HWU64, Clinic150, and Liu57,



Dataset #samples Avg. text length #train / valid / test (total) classes
HuffPost (Bao et al. 2020) 36900 11.48 20/5/16 (41)

Amazon (He and McAuley 2016) 24000 143.46 10/5/79 (24)

Reuters (Bao et al. 2020) 620 181.41 15/5/11 (1)

20News (Lang 1995) 18828 279.32 8/5/7/7Q0)
Banking77 (Casanueva et al. 2020) 13083 11.77 251712517127 (77)
HWU64 (Liu et al. 2019a) 11036 6.57 23/16/25 (64)

Liu57 (Liu et al. 2019a) 25478 6.66 18/18/18 (54)
Clinic150 (Larson et al. 2019) 22500 8.31 50/50/50(150)

Table 1: Dataset statistics.

and four news or review classification datasets: HuffPost,
Amazon, Reuters, and 20News. The average length of sen-
tences in news or review classification datasets is much
longer than those in intent detection datasets. Table 1 con-
cludes the statistics of all datasets.

(1) HuffPost (Bao et al. 2020) is a news headlines dataset
with 41 classes, which are published on HuffPost from 2012
to 2018. They are shorter and less grammatical than formal
sentences.

(2) Amazon (He and McAuley 2016) consists of 142.8
million customer reviews from 24 product categories. Fol-
lowing (Han et al. 2021), we use a subset, having 1000 re-
views per category.

(3) Reuters (Bao et al. 2020) is collected shorter Reuters
articles in 1987. Following (Bao et al. 2020), we discard
multi-label articles and only use 31 classes, having at least
20 articles.

(4) 20News (Lang 1995) covers 18828 documents from
news discussion forums under 20 topics.

(5) Banking77 (Casanueva et al. 2020) is a fine-grained
single-domain dataset for intent detection. It consists of
13083 customer service queries labeled with 77 intents, in
which some categories are similar and may have overlap
with others.

(6) HWU64 (Liu et al. 2019a) contains 11036 utterances
covering 64 intents in 21 domains. The examples are from a
real-world home robot, with multi-domain utterances, e.g.,
email, music, weather and so on.

(7) Liu57 (Liu et al. 2019a) is composed of 25478 user ut-
terances from 54 classes. The dataset is collected from Ama-
zon Mechanical Turk.

(8) Clinic150 (Larson et al. 2019) contains 150 intents
and 23700 examples across 10 domains. It has 22500 user
utterances evenly distributed in every intent and 1200 out-of-
scope queries. Here we ignore these out-of-scope examples.

Baselines

We compare the proposed way-based distribution estimation
(Way-DE) and shot-based distribution estimation (Shot-DE)
with the following strong baselines.

(1) Prototypical Network (Snell, Swersky, and Zemel
2017) is a metric-based method which calculates the pro-
totype for each class by averaging the corresponding sup-
port samples, and utilizes the negative Euclidean distance
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between query samples and prototypes to do the few-shot
classification task.

(2) MAML (Finn, Abbeel, and Levine 2017) is an
optimization-based method, which learns a good model ini-
tialization, and adapts to new tasks by a small number of
gradient steps.

(3) Induction Network (Geng et al. 2019) leverages the
dynamic routing algorithm to learn generalized class-wise
representations.

(4) HATT (Gao et al. 2019) is a hybrid attention-based
prototypical network, which improves the model robustness
greatly.

(5) DS-FSL (Bao et al. 2020) is a framework to map dis-
tributional signatures into attention scores, thus guiding the
fast adaptation to new categories.

(6) MLADA (Han et al. 2021) is a meta-learning adver-
sarial domain adaptation network, which aims to improve
the adaptive ability and generate generalized text embed-
dings for new classes.

(7) ContrastNet (Chen et al. 2022) trains the supervised
contrastive representation model under the regularization of
a task-level unsupervised contrastive loss and an instance-
level unsupervised contrastive loss, which can prevent over-
fitting and generate better representations.

(8) TPN (Liu et al. 2019b) intends to learn to propagate
labels from labeled support samples to unlabeled query sam-
ples via episodic training and a specific graph construction,
which is a powerful transductive few-shot learning method.

(9) DC (Yang, Liu, and Xu 2021) calibrates novel class
distribution using statistics from the seen classes with abun-
dant samples based on similarity.

(10) DC-DE is a variant of DC, which considers the statis-
tics from seen classes and query data simultaneously to esti-
mate the distribution. It is a baseline for validating whether
seen classes may bring some side effects on performance.

(11) PROTAUGMENT (Dopierre, Gravier, and Logerais
2021) is an extension of Prototypical Network (Snell, Swer-
sky, and Zemel 2017) using diverse paraphrasing data aug-
mentation. It conducts an instance-level unsupervised loss
on the vanilla prototypical network. PROTAUGMENT (un-
igram) and PROTAUGMENT (bigram) are two enhanced
versions using different words paraphrasing strategies.

Note that PROTAUGMENT is a method specifically-
designed for intent detection, which is not suitable for long
text classification, so we do not compare it in the news or



Method HuffPost Amazon Reuters 20News Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Prototypical Networks  35.7 41.3 37.6 52.1 59.6 66.9 37.8 45.3 42.7 514
MAML 359 49.3 39.6 47.1 54.6 62.9 33.8 43.7 40.9 50.8
Induction Networks 38.7 49.1 349 41.3 594 67.9 28.7 33.3 40.4 479
HATT 41.1 56.3 49.1 66.0 432 56.2 44.2 55.0 44 .4 58.4
DS-PSL 43.0 63.5 62.6 81.1 81.8 96.0 52.1 68.3 59.9 77.2
MLADA 45.0 64.9 68.4 86.0 82.3 96.7 59.6 77.8 63.9 81.4
ContrastNet 51.8 67.8 73.5 83.6 88.5 94.6 70.9 80.5 71.2 81.6
TPN 50.6 69.5 76.0 84.9 914 93.1 63.0 69.4 70.3 79.2
DC 47.7 67.0 70.6 84.2 84.9 93.8 65.6 79.6 67.2 81.2
DC-DE 49.2 68.3 73.9 85.0 88.7 94.2 68.8 80.9 70.2 82.1
Shot-DE (Ours) 51.9 71.4 76.1 86.9 90.6 95.1 71.0 83.2 72.4 84.2
Way-DE (Ours) 51.9 71.7 76.1 87.4 90.6 95.2 71.0 83.2 72.4 84.4

Table 2: The 5-way 1-shot and 5-shot average accuracy on news or review classification datasets.

Method Banking77 HWU64 Liu57 Clinic150 Average
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

PROTAUGMENT 86.9 94.5 82.4 91.7 84.4 92.6 94.9 98.4 87.2 94.3
PROTAUGMENT (bigram) 88.1 94.7 84.1 92.1 85.3 93.2 95.8 98.5 88.3 94.6
PROTAUGMENT (unigram)  89.6 94.7 84.3 92.6 86.1 93.7 96.5 98.7 89.1 94.9
ContrastNet 91.2 96.4 86.6 92.6 85.9 93.7 96.6 98.5 90.1 95.3
TPN 90.4 94.8 83.7 91.5 86.6 93.2 97.1 98.1 89.5 94 4
DC 86.8 94.9 79.4 90.7 84.8 92.9 95.5 98.6 86.6 94.3
DC-DE 88.9 95.1 85.3 92.8 88.2 94.0 98.8 99.0 90.3 95.2
Shot-DE (Ours) 90.5 95.8 87.1 93.5 90.4 95.2 98.0 99.2 91.5 95.9
Way-DE (Ours) 90.5 95.4 87.1 93.4 90.4 95.5 98.0 99.3 91.5 95.9

Table 3: The 5-way 1-shot and 5-shot average accuracy on intent detection datasets.

review classification task. In addition, in the intent detection
task, due to space and time limitation, we just compare with
the most effective methods.

Implementation Details

Evaluation Metric We follow (Chen et al. 2022) to use
the accuracy to evaluate the performance. All reported re-
sults are from 5 different runs, and in each run the training,
validation and testing classes are randomly resampled.

Parameter Settings We follow (Chen et al. 2022) to con-
duct experiments on 5-way 1-shot and 5-shot setting. In
news and review classification task, we report the average
accuracy on 1000 episodes sampled from test set, where the
number of query instances per class in each episode is 25.
In intent detection task, we report the average accuracy on
600 episodes sampled from test set for 4 intent detection
datasets, where the number of query instances per class in
each episode is 5. In terms of feature extraction, for the news
or review classification task, we use the pure pre-trained
bert-base-uncased model. For the intent detection task, we
use the further pre-trained BERT language model provided
in (Dopierre, Gravier, and Logerais 2021). We set R = 10
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for the news or review classification task, while R = 4
for the intent detection task. For the loss function, we set
A = 0.1, and optimize the model parameters using AdamW
(Loshchilov and Hutter 2019) with the initial learning rate
0.00001 and dropout rate 0.1. During distribution sampling,
in 1-shot and 5-shot scenarios, we generate 20 and 100 sam-
ples per class respectively. All the hyper-parameters are se-
lected based on the performance of the validation set.

Result Analysis

Tables 2 and 3 report the experimental results for the news or
review classification task and the intent detection task. Most
baseline results are taken from (Chen et al. 2022) and the top
2 results are highlighted in bold.

News or Review Classification From Table 2, we can
make the following observations. (1) Our proposed Way-
DE and Shot-DE methods perform much better than other
baselines in most cases, and achieve the best performance
in average. Specifically, in the 1-shot and 5-shot scenarios,
from the average perspective, our proposed methods im-
proves upon existing methods by 1.2%-32.0% and 2.1%-
36.3%. The reason is that Way-DE and Shot-DE strategies
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(a) Support and query examples.

(b) Support and generated examples.

(c) Support, generated and query examples.

Figure 2: Visualization of distributions obtained by our proposed methods Way-DE/Shot-DE in 5-way 1-shot scenario. The star,
dot and cross points mean support, query and generated examples respectively. Different colors denote different classes.

can accurately estimate the distribution and generate avail-
able samples, thus providing strong supervision for training
the classification model. (2) Some powerful baselines like
ContrastNet and TPN also perform well in most cases. The
reason is that they use a large amount of unlabeled data in
target domain. While just leveraging very limited queries
for each episode, our approaches still outperform them sig-
nificantly, which further demonstrates the superiority of our
proposed methods.

Intent Detection From Table 3, it is easy to find that: (1)
Compared with these latest methods, our proposed meth-
ods can achieve very competitive performance. Specifically,
on the Liu57 dataset, the average accuracy of Way-DE and
Shot-DE methods is greater than 90% and 95% in 1-shot
and 5-shot scenarios, which outperforms other algorithms
greatly. These improvements indicate that estimating distri-
bution using queries and then sampling from distribution can
effectively mitigate the data scarcity issue in few-shot learn-
ing. (2) Limited by the number of queries, the improvement
of our proposed methods is affected, but they still perform
better than other baselines, which validates the effectiveness
of the proposed strategies.

Comparison of Distribution Estimation Strategies

In order to deeply explore the disparity of different distri-
bution estimation methods, we conduct a series of exper-
iments under various conditions. DC (Yang, Liu, and Xu
2021) is the distribution calibration method, which transfers
the statistics from seen classes to unseen classes. DC-DE is
our modified method, which considers the statistics of seen
classes and query data simultaneously. Way-DE and Shot-
DE are our proposed distribution estimation methods by just
utilizing query samples. The results are shown in Tables 2
and 3. We can observe that Way-DE and Shot-DE perform
much better than DC and DC-DE, and their results are very
similar. The reason is that our proposed Way-DE and Shot-
DE employ unlabeled query samples instead of adequate
samples from seen classes, thus circumventing the possible
adverse impact caused by transferring the statistics of seen
classes. As Way-DE and Shot-DE have the same mean, their
results tend to be consistent. In addition, DC-DE outper-
forms DC, but not as well as Way-DE and Shot-DE, which
indicates that combining the distribution information of seen
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classes and query data may not bring further improvement,
even may be detrimental in most cases.

Visualization

To show what the estimated distribution looks like, we use
t-SNE (Van der Maaten and Hinton 2008) to visualize the
distributions. To be convenient to observe the real distribu-
tions, we use 200 unlabeled query examples and 500 gener-
ated examples per class from the Liu57 dataset under 5-way
1-shot setting. Note that in the 1-shot scenario, Way-DE and
Shot-DE are equivalent in principle. Figure 2(a) shows the
original support and query examples. Figure 2(b) shows the
support and generated examples. Figure 2(c) shows the sup-
port, generated and query examples, which provides a com-
prehensive distribution representation. We have the follow-
ing observations: (1) In Figure 2(a), due to the scarcity of
support set, only one example in this case, the support set is
more likely mismatch with the query set. (2) In Figure 2(b),
by leveraging several query examples, the generated exam-
ples can better calibrate the real distribution, thus avoiding
some support examples locate in the margin of the distri-
bution. (3) In Figure 2(c), the generated examples overlap
largely with the query features, which indicates our distribu-
tion estimation is accurate and reasonable. Therefore, train-
ing and testing with these examples can boost the perfor-
mance effectively.

Conclusion

In this paper, we propose two simple and sweet distribution
estimation methods to deal with the few-shot text classifica-
tion task. By utilizing top nearest queries to calibrate the data
distribution and generate more informative samples accord-
ing to the estimated distribution, the proposed methods can
avoid the potential negative impact caused by transferring
from irrelevant seen classes, thus obtaining a more power-
ful classifier model for few-shot text classification. Exten-
sive experimental results on four news or review classifica-
tion datasets and four intent detection datasets show that our
proposed Way-DE and Shot-DE outperform the state-of-the-
art methods by a large margin. In future work, we plan to
further investigate the theoretical underpinnings of our pro-
posed strategies, and extend the strategies to deal with the
multi-label few-shot text classification task.



Acknowledgments

The authors are grateful to the anonymous review-
ers for their valuable comments. This work was sup-
ported by National Natural Science Foundation of China
(No. 62106035, 62206038, 61972065) and Fundamen-
tal Research Funds for the Central Universities (No.
DUT20RC(3)040, DUT20RC(3)066), and supported in
part by Key Research Project of Zhejiang Lab (No.
2022PI0ACO1) and National Key Research and Develop-
ment Program of China (2022YFB4500300). We also would
like to thank Dalian Ascend AI Computing Center and
Dalian Ascend AI Ecosystem Innovation Center for provid-
ing inclusive computing power and technical support.

References

Bao, Y.; Wu, M.; Chang, S.; and Barzilay, R. 2020. Few-shot
Text Classification with Distributional Signatures. In ICLR.

Bozarth, L.; and Budak, C. 2020. Toward a Better Perfor-
mance Evaluation Framework for Fake News Classification.
In ICWSM, 60-71.

Casanueva, 1.; Temcinas, T.; Gerz, D.; Henderson, M.; and
Vulié, 1. 2020. Efficient Intent Detection with Dual Sentence
Encoders. In Workshop on Natural Language Processing for
Conversational Al, 38—45.

Chen, J.; Zhang, R.; Mao, Y.; and Xu, J. 2022. Contrast-
Net: A Contrastive Learning Framework for Few-Shot Text
Classification. In AAAI, 10492—10500.

Coucke, A.; Saade, A.; Ball, A.; Bluche, T.; Caulier, A.;
Leroy, D.; Doumouro, C.; Gisselbrecht, T.; Caltagirone, F.;
Lavril, T.; Primet, M.; and Dureau, J. 2018. Snips Voice Plat-
form: an embedded Spoken Language Understanding sys-
tem for private-by-design voice interfaces. CoRR.

Deng, J.; Dong, W.; Socher, R.; Li, L.; Li, K.; and Fei-Fei, L.
2009. ImageNet: A large-scale hierarchical image database.
In CVPR, 248-255.

Devlin, J.; Chang, M.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In NAACL-HLT, 4171-4186.
Dopierre, T.; Gravier, C.; and Logerais, W. 2021. Pro-
tAugment: Intent Detection Meta-Learning through Unsu-
pervised Diverse Paraphrasing. In ACL, 2454-2466.

Finn, C.; Abbeel, P.,; and Levine, S. 2017. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks. In
Precup, D.; and Teh, Y. W, eds., ICML, 1126-1135.

Gao, T.; Fisch, A.; and Chen, D. 2021. Making Pre-trained
Language Models Better Few-shot Learners. In ACL, 3816—
3830.

Gao, T.; Han, X.; Liu, Z.; and Sun, M. 2019. Hybrid
Attention-Based Prototypical Networks for Noisy Few-Shot
Relation Classification. In AAAI 6407-6414.

Geng, R.; Li, B.; Li, Y.; Zhu, X.; Jian, P.; and Sun, J. 2019.
Induction Networks for Few-Shot Text Classification. In
EMNLP, 3902-3911.

Han, C.; Fan, Z.; Zhang, D.; Qiu, M.; Gao, M.; and Zhou,
A. 2021. Meta-Learning Adversarial Domain Adaptation

13226

Network for Few-Shot Text Classification. In Findings of
ACL, 1664-1673.

He, R.; and McAuley, J. J. 2016. Ups and Downs: Model-
ing the Visual Evolution of Fashion Trends with One-Class
Collaborative Filtering. In WWW, 507-517.

Jeremy, H.; and Sebastian, R. 2018. Universal Language
Model Fine-tuning for Text Classification. In ACL, 328-
339.

Johnson, R.; and Zhang, T. 2017. Deep Pyramid Convo-
lutional Neural Networks for Text Categorization. In ACL,
562-570.

Kumar, J. A.; and Abirami, S. 2021. Ensemble application of
bidirectional LSTM and GRU for aspect category detection
with imbalanced data. Neural Computing and Applications,
33(21): 14603-14621.

Kumar, V.; Glaude, H.; de Lichy, C.; and Campbell, W.
2019. A Closer Look At Feature Space Data Augmentation
For Few-Shot Intent Classification. In EMNLP, 1-10.

Lang, K. 1995. NewsWeeder: Learning to Filter Netnews.
In ICML, 331-339.

Larson, S.; Mahendran, A.; Peper, J. J.; Clarke, C.; Lee, A.;
Hill, P.; Kummerfeld, J. K.; Leach, K.; Laurenzano, M. A.;
Tang, L.; and Mars, J. 2019. An Evaluation Dataset for In-
tent Classification and Out-of-Scope Prediction. In EMNLP,
1311-1316.

Liu, H.; Zhang, F.; Zhang, X.; Zhao, S.; Sun, J.; Yu, H.; and
Zhang, X. 2022. Label-enhanced Prototypical Network with
Contrastive Learning for Multi-label Few-shot Aspect Cate-
gory Detection. In KDD, 1079-1087.

Liu, H.; Zhang, F.; Zhang, X.; Zhao, S.; and Zhang, X.
2021. An Explicit-Joint and Supervised-Contrastive Learn-
ing Framework for Few-Shot Intent Classification and Slot
Filling. In Findings of EMNLP, 1945-1955.

Liu, X.; Eshghi, A.; Swietojanski, P.; and Rieser, V. 2019a.
Benchmarking Natural Language Understanding Services
for Building Conversational Agents. In IWSDS, 165-183.
Liu, Y.; Lee, J.; Park, M.; Kim, S.; Yang, E.; Hwang, S. J.;
and Yang, Y. 2019b. Learning to Propagate Labels: Trans-

ductive Propagation Network for Few-Shot Learning. In
ICLR.

Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight De-
cay Regularization. In ICLR.

Louvan, S.; and Magnini, B. 2020. Recent Neural Methods
on Slot Filling and Intent Classification for Task-Oriented
Dialogue Systems: A Survey. In COLING, 480-496.
Munkhdalai, T.; and Yu, H. 2017. Meta Networks. In ICML,
2554-2563.

Nichol, A.; Achiam, J.; and Schulman, J. 2018. On First-
Order Meta-Learning Algorithms. CoRR.

Phang, J.; Févry, T.; and Bowman, S. R. 2018. Sentence
encoders on stilts: Supplementary training on intermediate
labeled-data tasks. CoRR.

Santoro, A.; Bartunov, S.; Botvinick, M. M.; Wierstra, D.;
and Lillicrap, T. P. 2016. One-shot Learning with Memory-
Augmented Neural Networks. CoRR.



Snell, J.; Swersky, K.; and Zemel, R. 2017. Prototypical
networks for few-shot learning. In NeurIPS, 4077-4087.
Suchin, G.; Ana, M.; Swabha, S.; Kyle, L.; Iz, B.; Doug, D.;
and A., S. N. 2020. Don’t Stop Pretraining: Adapt Language
Models to Domains and Tasks. In ACL, 8342—-8360.

Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P. H. S.; and
Hospedales, T. M. 2018. Learning to Compare: Relation
Network for Few-Shot Learning. In CVPR, 1199-1208.
Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research, 9(11).
Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.;
and Wierstra, D. 2016. Matching Networks for One Shot
Learning. In NeurIPS, 3630-3638.

Wang, S.; Fang, H.; Khabsa, M.; Mao, H.; and Ma, H. 2021.
Entailment as Few-Shot Learner. CoRR.

Wei, J. W.; and Zou, K. 2019. EDA: Easy Data Augmenta-
tion Techniques for Boosting Performance on Text Classifi-
cation Tasks. In EMNLP, 6381-6387.

Yang, S.; Liu, L.; and Xu, M. 2021. Free Lunch for Few-shot
Learning: Distribution Calibration. In /CLR.

Zhang, X.; Zhao, J.; and LeCun, Y. 2015. Character-level
Convolutional Networks for Text Classification. In NeurIPS.

13227



