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Abstract

We study the problem of semantically annotating textual doc-
uments that are complex in the sense that the documents are
long, feature rich, and domain specific. Due to their com-
plexity, such annotation tasks require trained human work-
ers, which are very expensive in both time and money. We
propose CEMA, a method for deploying machine learning
to assist humans in complex document annotation. CEMA
estimates the human cost of annotating each document and
selects the set of documents to be annotated that strike the
best balance between model accuracy and human cost. We
conduct experiments on complex annotation tasks in which
we compare CEMA against other document selection and an-
notation strategies. Our results show that CEMA is the most
cost-efficient solution for those tasks.

Introduction
Machine learning (ML) applications rely on the availabil-
ity of large and high-quality datasets for model training.
In many applications, large volumes of documents are col-
lected from which key information is extracted via manual
annotations. The extracted information can then be struc-
tured using other data models (e.g., knowledge graphs) to
support information search and AI model training. Com-
pared with other data types, document annotation can be a
very expensive task. For example, it is reported in (Wu et al.
2020) that it took 11 workers with legal training 6 months
to annotate a corpus of roughly 4,000 court judgments. The
high cost of document annotation comes from a number of
constraints and characteristics of textual data:
[Document complexity] Unlike simple annotation tasks
such as image annotation, annotating a document could re-
quire substantial reading and comprehension. For example,
the COLIEE2019 dataset (Shao et al. 2020), which is used
in the study of legal document retrieval tasks, consists of
case law articles with an average document length of 3,000
words; In (Harašta et al. 2018), 350 court decisions (docu-
ments) were manually annotated for legal reference recog-
nition. These documents consist of 4,746 to 537,470 char-
acters each, with an average of 36,148 characters per docu-
ment. It takes much time to read and to identify salient points
in such documents.
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Figure 1: A fragment of an annotated judgment

[Feature complexity] Due to their non-trivial lengths, doc-
uments are usually multifaceted. Annotators are often re-
quired to remember numerous features (a.k.a. labels or tags)
and to identify relevant texts that correspond to the features.
For example, in (Wu et al. 2020), annotators are requested to
annotate court judgments of illegal drug trafficking offenses
with 82 features. Example features include drug type, drug
weight, defendant name, and prison term. Figure 1 shows
an example annotation where certain text segments are high-
lighted and their associated labels illustrated. The annotation
task is thus highly complex and time-consuming, requiring
workers to recall features and to associate them with relevant
text segments.
[Domain knowledge] In many applications, the documents
to be annotated are domain specific and are full of techni-
cal terms. For example, in court judgment annotation, one
feature could be defendant’s mitigating factor. Labeling for
that feature requires a worker with legal knowledge who un-
derstands what constitutes a legitimate mitigation. In (Xia
and Yetisgen-Yildiz 2012), radiology reports are annotated
by radiologists and physicians to label texts that mention
“critical suggestions” of follow-up actions. In such cases,
annotators must possess relevant domain knowledge.
[Privacy] Often, documents contain confidential informa-
tion such as business information or personal information.
Medical documents, for example, may contain sensitive pa-
tient records. In such cases, the documents can only be an-
notated by a small group of people with access rights.
[Error-prone annotation] Due to the complexity of the an-
notation task, human annotations are error-prone. Given a
large set of features, workers may forget to annotate some
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features or mis-label text with the wrong features. In (Wu
et al. 2020), each court judgment is annotated by two human
workers; One provides the first annotations, and the other
verifies the annotations and corrects mistakes.

The complexity of document annotations and the con-
straints on annotators imply that open crowdsourcing plat-
forms are, in many cases, not suitable to carry out the anno-
tation tasks. Instead, such tasks have to rely on small groups
of trained workers, making the tasks very costly in time and
money. In this paper we study how machines can assist in
achieving more cost-efficient document annotation. In par-
ticular, we focus on a budget-constrained situation in which
the available budget (time and money) for annotation is far
less than what is needed to fully annotate the whole docu-
ment corpus, which is often the case in real-world projects.
The implication is that with the given budget, we strive to (1)
extract as much information as possible from the annotated
documents, (2) use the extracted features as training data to
build the best machine annotator model. The latter can be
used to help (partially) annotate documents that are not cov-
ered by the budget, and as we will see later to help improve
the machine-assisted annotation task itself.
[Fully-manual Annotation (FMA) vs. Machine-assisted
Annotation (MAA)] Figure 2 illustrates the processes of
fully-manual annotation (FMA) and machine-assisted an-
notation (MAA). With FMA (Figure 2(a)), given a budget
constraint, some documents are selected randomly from a
corpus for annotations. For each document, the annotation
task involves a human worker reading the document, high-
lighting important text segments, and associating each high-
lighted segment with the appropriate feature label. We call
each “highlight and label” a markup. For example, Figure 1
shows 6 markups. For quality concerns, the annotated doc-
ument is double-checked by a second human worker, who
would confirm or correct each markup; or discover missing
markups. We call the first and second workers in the process
the first annotator and the verifier, respectively.

Employing two workers to annotate each document is ex-
pensive. We propose MAA (Figure 2(b)) to reduce cost. Our
approach is to replace the (human) first annotator by a ma-
chine annotator. Initially, a small set of documents, called
seed documents, are annotated using FMA. This seed set is
used to train a machine annotator (MA). The MA is then
applied to annotate all documents in the corpus. A selec-
tion module assesses the machine-annotated documents and
selects a small batch of them to be verified and corrected
by human workers. The documents with verified markups
are then added to the pool of training data for refining the
MA model. The process iterates until the human cost budget
is exhausted. MAA is potentially more cost-efficient than
FMA for two reasons. First, each document is processed by
one human worker (verifier) under MAA instead of two (first
annotator and verifier) under FMA. Secondly, if the first an-
notation done by the machine is sufficiently accurate, then
most of the verifiers’ job is to confirm the markups; In gen-
eral, verifications are less time consuming than first anno-
tations because the latter involve point-click-drag actions to
highlight text segments and selecting appropriate feature la-
bels from a long feature list, while the former only require

simple clicks to accept the given markups.
As we will show later, the document selection module is

the major factor that determines the cost-efficiency of the
MAA approach. On one hand, the selection module should
select a document that contains many feature instances so
that more examples are collected into the training pool for
better MA model training. This improves the MA’s accuracy
resulting in less work for the human verifiers in correcting
first-annotation mistakes. On the other hand, the selection
module should select short documents to avoid long reading
time of the human verifiers. To tackle this problem, we pro-
pose CEMA (Cost-Efficient Machine-assisted Annotation).
CEMA extends the MAA approach by modeling and pre-
dicting the human cost and the machine annotator accuracy.
These models are employed by CEMA in its cost-based doc-
ument selection strategy. Our experiments show that CEMA
is substantially more cost-efficient than other document se-
lection methods within the MAA framework 1.

Related Work
[Machine-Assisted Annotation Tools] There are studies on
designing annotation tools that facilitate efficient human an-
notations. BRAT (Stenetorp et al. 2012) is a tool that sup-
ports various annotation schemes for different NLP tasks,
including POS tagging, semantic role labeling (Gildea and
Jurafsky 2002) and dependency annotation (Nivre 2003).
WAT-SL (Kiesel et al. 2017) predicts markups’ highlights
so that human annotators only need to perform label assign-
ments. Tagtog (Cejuela et al. 2014) and ezTag (Kwon et al.
2018) incorporate a lexicon-based tagger and an ML anno-
tator to pre-annotate documents. Compared with these ex-
isting tools, CEMA employs an intelligent document selec-
tion strategy that minimizes human cost in processing the
selected documents and maximizes the amount of informa-
tion collected from the selected documents.
[Document Selection and Active Learning] With a limited
budget, it is important to select the best set of documents
to be labeled that can maximize the information obtained.
Works that are based on active learning approaches have
been proposed. Many works use the uncertainty of the fea-
ture labels assigned by machine to documents as the docu-
ment selection criteria (Berger, Della Pietra, and Della Pietra
1996; Settles and Craven 2008; Scheffer, Decomain, and
Wrobel 2001; Baldridge and Osborne 2004; Hwa 2004; Cu-
lotta and McCallum 2005). The idea is to boost the accu-
racy of the MA by training it with documents that it may
not perform well in labeling. For example, (Culotta and Mc-
Callum 2005) proposes the Least Confidence (LC) method.
With LC, each word (token) of a document is assigned a
feature label and a confidence score is given to each such
label. The document with the smallest sum of the log of its
tokens’ confidence scores is selected for human annotation.
In (Shen et al. 2018), the authors show that LC tends to se-
lect long documents and propose MNLP, which normalizes
a document’s confidence score with its length.

1The code of CEMA can be found in https://github.com/
gavingwyuan/cema

11044



(a) Fully-manual annotation (FMA) (b) Machine-assisted annotation (MAA)

Figure 2: Fully-manual annotation vs. machine-assisted annotation

Recently, deep learning is applied to learn a document se-
lection policy. Examples include ALIL (Liu, Buntine, and
Haffari 2018) and Dream (Vu et al. 2019). In Dream, a
neural-network-based document selection policy, let us call
it P , is learned by iteratively applying two steps called wake
learn and dream learn. The wake-learn step is about ap-
plying policy P . Specifically, a batch of k documents are
first shortlisted using a Least-Confidence (LC)-like method.
Then, policy P is applied to the shortlisted candidates to se-
lect some documents to be labeled by human workers. The
labeled documents are then used to update a machine an-
notator model. The dream-learn step is about learning pol-
icy P . Specifically, the neural network (of P ) is trained by
simulating an active learning process using machine-labeled
documents and human-labeled documents, during which the
DAGGER (Ross, Gordon, and Bagnell 2011) algorithm is
used to update policy P .

There are also studies that focus on analyzing annotation
costs. (Settles, Craven, and Friedland 2008) shows that in-
corporating cost estimates into active learning strategies can
reduce the cost of training a machine annotator. In (Gao and
Saar-Tsechansky 2020), more accurate human annotators
are assumed to be more expensive. They propose GBAL,
which determines the documents to be labeled and the hu-
man annotators to be assigned the labeling tasks.

As we will see later, CEMA differs from the above meth-
ods in that it employs a more accurate cost model to estimate
human cost and a knowledge model that assesses the amount
of new feature instances that a document carries to better
train the MA. This results in a document selection strategy
that takes into account not only the machine annotation ac-
curacy, but also the human cost incurred. Potentially, CEMA
helps select more and better documents in the MAA process.

Model and Problem Definition
Let D = {d1, ..., d|D|} be a corpus of documents. Each doc-
ument di = [xi1, .., xi|di|] is modeled as a sequence of tokens
(words) xij’s, where |di| denotes the length or the number of
tokens of di. Let F = {f1, ..., f|F|} be a set of feature labels.
Given a document di, we annotate it by assigning feature
labels to certain text segments. Specifically, a machine an-
notator (MA) assigns a feature label lij ∈ F to each token

xij of di, or “NIL” if the corresponding token is not part
of any feature2. A sequence of tokens with the same feature
label form a feature instance or a markup. Specifically, we
abstract the annotation done by an MA on a document di as
a sequence of markups Ai = [mi1, ...,mi|Ai|], where |Ai|
denotes the number of markups in Ai. Each markup mij has
the form (sij , eij , fij), which denotes that “the j-th markup
in document di starts at (token) position sij , ends at position
eij and is assigned the feature fij .” For example, in Fig-
ure 1, the first markup is denoted by (24, 25, Drug Weight).
The annotation can also be done by a human annotator. We
use AH

i and AM
i to denote the annotations done by human

and by machine, respectively.
As we have discussed, our objective is to design machine-

assisted annotation (MAA) (Figure 2(b)), particularly the
document selection module so that (1) we minimize the hu-
man cost and (2) maximize the amount of information ex-
tracted from the annotated documents. We argued that in
typical projects, the budget is not enough to annotate the
complete corpus by human workers. We thus consider the
optimization problem in two ways: (1) we minimize the hu-
man cost given a desired amount of extracted knowledge, or
(2) we maximize the extracted knowledge without exceeding
a human cost budget. In either case, we need to model hu-
man cost and knowledge. Note that the extracted knowledge
is used to build a machine annotator (MA) in the MAA pro-
cess. Hence, we assess the extracted knowledge by the accu-
racy of the MA built. We assess human cost by the following
cost model that takes into account the different actions a hu-
man verifier (in MAA) would perform when he/she is pre-
sented with a document di and its machine first annotation
AM

i . The actions are:
Read. The verifier reads document di. We use tread to de-
note the per-token reading time. Confirm. If the verifier
agrees with a markup mij ∈ AM

i given by the machine,
the verifier confirms mij by a simple click action. Re-label.
If a markup has a wrong feature label, the verifier clicks on
a pull-down menu and assigns it the correct label. Delete.
If a markup does not contain any correct feature, the veri-

2Technically, our MA uses BIOES tagging scheme. That is, it
indicates, besides a feature f , whether a token is, e.g., the start/end
of f . For simplicity, we skip these details in our discussion.
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fier deletes the markup by a couple of mouse clicks. Add.
If the verifier spots a missing markup, he/she selects a text
segment by a click-and-drag, and adds a label to it.

In addition, if a markup should be revised by adjusting the
span of the highlight and possibly assigning it a new label,
the modification can be modeled as a Delete followed by an
Add. We call this a Delete-add.

We use tX and nX to denote the time cost to perform
an action X and the number of X actions, respectively,
where X is confirm/re-label/delete/add. The human anno-
tation (verification) cost c(di, AM

i ) for di is:

c(di, A
M
i ) = tread ·|di|+tconfirm ·nconfirm+trelabel ·nrelabel

+ tdelete · ndelete + tadd · nadd . (1)

If we employ a human annotator to first-annotate a document
(instead of to verify), the cost can be modeled as c(di, ∅).

CEMA
CEMA extends MAA (Figure 2(b)) by carefully crafting a
document selection module that takes both human cost and
amount of knowledge obtained into account. In this section
we explain the various components based on which CEMA
selects documents to be annotated.
[Human cost estimation] Recall that under MAA, unla-
beled documents are first-annotated by a machine annotator
(MA) (see Figure 2(b)). CEMA considers the human verifi-
cation cost of each such unlabeled document and prefers the
one with the lowest such cost in its document selection mod-
ule. It assesses the cost based on Equation 1. The various
tX ’s (time for each action type) are obtained by observing
human annotators in real annotation exercises. We estimate
the nX ’s (the number of each action type taken to verify
a document) by an action predictor. Specifically, given an
unlabeled document di, CEMA applies the machine anno-
tator (MA) to label the tokens in di, i.e., it obtains the ma-
chine markups AM

i . The action predictor employs a neural
network (details to be given shortly) that outputs predicted
actions (confirm/re-label/delete/add) on the markups. The
nX ’s are then tallied based on the predicted actions. Further-
more, CEMA performs paragraph filtering. The idea is that
if the tokens of a paragraph P in di are all labeled “NIL” (no
features) by the MA, we found that it is very unlikely that
P contains any features. Hence, P is removed from di. This
paragraph filtering saves human cost because it reduces the
document’s length (|di|) and hence reading time.
[Action predictor] Figure 3 illustrates the design of the ac-
tion predictor. Let di = [xi1, .., xi|di|] be a document with
its machine annotation AM

i . Recall that AM
i assigns a fea-

ture label lij to each token xij (see Section ). The predictor
first obtains an embedding for each token and an embed-
ding for its label. Specifically, the document di is divided
into segments (such as sentences or paragraphs). Let g be
a segment and x be a token in the segment. We obtain the
embedding x⃗ of x using BERT by taking the final hidden
states, i.e., x⃗ = BERT (g), where x⃗ ∈ Rm and m = 768 is
the size of BERT’s hidden layer. The embedding l⃗ of the la-
bel l of token x is similarly obtained, i.e., l⃗ = BERT (l).

Figure 3: Action prediction

These embeddings are fed to a neural network that out-
puts predicted actions, one for each token. We call these
token-level actions, per-token actions (to distinguish them
from markup-level actions, see Section ). The conditional
probability of assigning an action aij to a token xij is de-
fined as p(aij |xij , lij) = SOFTMAX ([x⃗ij ; l⃗ij ]W ), where
W ∈ R2m×c, aij ∈ Rc, and c = 6 is the number of per-
token action types3. The action aij with the highest proba-
bility for token xij is taken as the predicted action on the
token. Given a machine-annotated markup y, the per-token
action predicted for y’s first token is taken as the predicted
action of markup y.

The objective of the action predictor is to maximize the
probability of an action sequence a conditioned on a (token,
label) sequence given in g:

max
∑
di∈D

∑
g∈di

∑
(xij ,lij)∈g

log p(aij |xij , lij), (2)

where D is the set of documents with verified annotations.
We use the cross-entropy between action predictor’s output
and ground truth action as the loss function in training.
[Knowledge estimation] In MAA, the (human) verified
markups constitute the collected knowledge from labeled
documents. During document selection, CEMA assesses
each unlabeled document, say di. This is done by first ap-
plying the MA to di to obtain its machine annotation AM

i ,
followed by estimating the potential knowledge that can
be gained from di if the document is selected and (later)
verified. Not all markups, however, are equal. Specifically,
CEMA computes a contribution score, s(di, AM

i ), of each
di given its AM

i . Figure 4 illustrates how the document
scores are computed. In the figure, d1 is a verified labeled
document with two markups (m1 and m2). Documents d2,
d3, and d4 are unlabeled. CEMA applies MA on d2, d3, d4
and obtains machine markups (m3 to m8). CEMA then de-
termines if two markups are similar. Specifically, given two
markups mi, mj , let ei and ej be the average token embed-
dings of the markups’ highlighted texts. If the cosine simi-
larity of ei and ej exceeds a threshold ρ, then markups mi

3The per-token actions are read, confirm, re-label, delete, add,
and delete-add.

11046



Figure 4: Contribution scores of documents

and mj are considered similar. In Figure 4, similar markups
are connected by a line. For an unlabeled document di, we
consider the markups in AM

i as well as the markups in other
documents that are similar to those in AM

i . For example,
d3 has a markup coverage of {m5,m6,m1,m4}. Note that
m5,m6 are in d3; m1,m4 are similar to some markups d3
contains. The markup coverage of di reflects that, if di is
labeled and its (verified) markups are used to train an MA,
the number of markups the MA can extract if it is applied to
the whole document corpus. The markup coverage is further
modified by removing from it any markups that are similar
to those that have already been collected in labeled docu-
ments. For example, m1,m5 are removed from d3’s markup
coverage (because m1 is in an already-labeled document and
m5 is similar to m1). Finally, s(di, AM

i ) is given by the car-
dinality of di’s markup coverage.

In each iteration of the MAA process (Figure 2(b)),
CEMA selects a batch of k unlabeled documents that give
the best balance between human cost and the knowledge
gained. Specifically, the document selected is given by:

argmin
di∈DU

w · c(di, AM
i )− (1− w) · s(di, AM

i ). (3)

In Equation 3, DU denotes the set of unlabeled documents
and w is a parameter that gives relative weights to the cost
and the score functions. Also, c(di, AM

i ) and s(di, A
M
i ) are

normalized using min-max normalization. In each MAA it-
eration, the selection is repeated k times until a batch of k
documents are collected.

Experiments
We evaluate CEMA and compare it against other existing
methods. In this section we report our experiment results.
[Datasets] We use the following two document datasets for
our experiments. These datasets are annotated by domain ex-
perts with feature labels. The human annotations are used as
ground truth for performance evaluation.

The Drug Trafficking Judgments (DTJ) dataset (Wu
et al. 2020) consists of 4,045 court judgments on drug traf-
ficking cases collected from the HKLII4 website. The aver-
age document length is 940 tokens with a standard deviation
of 610. We consider 5 feature labels, namely, neutral cita-
tion, drug weight, drug type, drug value, and date of offense.

The German Legal (GL) dataset (Leitner, Rehm, and
Schneider 2020) consists of 66,723 sentences that are ex-
tracted from 750 legal documents written in German. We

4https://www.hklii.org/

consider 7 feature labels: person, location, organization, le-
gal norm, case-by-case regulation, court decision and le-
gal literature. Since the dataset does not provide the orig-
inal documents, we chunk the 66K sentences into 750 doc-
uments of 88 sentences each. (We will provide the source
code of this chunking step.) The average document length
is 2,931 words. For GL, we consider each sentence as a
paragraph for the purpose of paragraph filtering in CEMA.
We remark that the “documents” in GL have similar lengths
while those in DTJ have bigger variations. This difference
allows us to study the various selection methods especially
those that take costs into account.

Experiments are conducted using 5-fold cross validation
in which 80% of the documents are used as the set of un-
labeled documents (for which the MAA process is applied),
and 20% of the documents (with their ground truth markups)
are used to evaluate the accuracy of the resulting machine
annotator (after the MAA process terminates).
[Other settings] We adopt pre-trained English5 and Ger-
man6 BERT models for the experiments with DTJ and GL
datasets, respectively. For MAA, we use 2 human-annotated
documents as seed. For this initialization, we train the ma-
chine annotator and the action predictor for 50 epochs. In
each MAA iteration, the document selection module selects
k = 2 documents to be verified by human workers. Practi-
cally, we could set k to be the number of human annotators
so that the each batch can be obtained with parallel anno-
tations by the workers. We observe that CEMA works rea-
sonably well when k = 2 or above. The labeled markups are
then added to the training pool to re-train the MA. We use 5
epochs in re-training. The batch size for training the MA and
the action predictor are 8 and 3, respectively. We set ρ = 0.8
and w = 0.5. In all trainings, we use AdamW (Loshchilov
and Hutter 2019) optimizer and set the learning rate to
2× 10−5. Based on observing real human annotation tasks,
we set the time costs (in seconds) of verifier actions to tread
= 0.3s; tconfirm = 1s; trelabel = 4s; tdelete = 1.5s; tadd = 10s
as our default setting.
[Other methods and evaluation metrics] We compare
CEMA against the following document selection strategies:
• Random (Rand): select a document randomly.
• Min Length (MinL): select the shortest document.
• Least Confidence (LC): (Culotta and McCallum 2005).
• Dream (Dream): (Vu et al. 2019).
• MNLP (MNLP): (Shen et al. 2018).
LC , Dream and MNLP are described in Section .

Recall that the MAA process is iterative. In each itera-
tion, a batch of k documents are selected, which are first-
annotated by an MA. These (machine-annotated) documents
are then presented to human workers for verification, and the
verified markups are added to the training pool to re-train the
MA. Hence, as MAA iterates, we accumulate more human
costs (in verification) and knowledge (in verified markups).
We compare the various methods by reporting their cumu-
lative costs (using Equation 1) and the F1 score of the MA
(which is trained by the cumulated verified markups). For

5https://huggingface.co/bert-base-uncased
6https://huggingface.co/dbmdz/bert-base-german-cased
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computing human costs, the numbers of the various action
types (the nX ’s in Equation 1) on a selected document di
are determined by comparing the machine annotations (AM

i )
with the ground truth markups of di.

In addition, we report the costs and knowledge obtained
using fully-manual annotation (FMA, see Figure 2(a)) as
a reference. For FMA, the human cost includes both first-
annotation cost and verification cost. We estimate the (hu-
man) first-annotation cost by assuming a perfect human an-
notator. Specifically, the cost includes a document’s read-
ing time plus all the add actions of all the (ground-truth)
markups in the document. The verification cost would then
include the document’s reading time plus all the confirm ac-
tions of the markups. We remark that this is an optimistic
estimate of FMA’s cost because in practice human annota-
tors do make mistakes and so verification usually involves
other actions that are more costly than simple confirms. To
evaluate the knowledge FMA obtains, we compute the F1
score of a machine annotator that is built using the verified
markups collected in the FMA process.
[Results] We first compare the methods in terms of the cost
accrued for reaching a certain level of accumulated knowl-
edge; and the amount of saving MAA achieves compared
against FMA. Specifically, we record the cumulative human
costs until the F1 score of the MA trained using the verified
markups collected by each of the various methods is at least
0.8. Table 1 shows the results for the DTJ and GL datasets.
For each dataset, we show the FMA cost (1st column) as
reference; The first row shows the human cost (in bold) of
each MAA document selection method. Each cost is also ex-
pressed (in brackets) as a fraction of the corresponding FMA
cost. From the results, we make a few observations:
• While FMA employs two workers to annotate each se-
lected document, MAA replaces the first-annotator by a ma-
chine annotator (MA). Intuitively, since MAA uses only 1
human worker instead of 2, MAA should save 50% of hu-
man cost compared against FMA. There are a few factors
that affect this saving. First, the first-annotation done by the
machine annotator could be less accurate than a human an-
notator, which results in more human time in verification, re-
ducing the saving. Secondly, MAA could use a “smart” doc-
ument selection strategy that selects short documents (e.g.,
MinL) or documents that contain important markups (e.g.,
LC); This reduces the total amount of document contents
that need to be read and verified (by human verifiers), in-
creasing the saving. The exact savings depend on the strat-
egy and the characteristics of the document corpus. For ex-
ample, the costs of MAA using Rand are 48.7% and 45.3%
of those of FMA for DTJ and GL, respectively. Note that
Rand does not perform smart document selections. The fact
that the savings (1-48.7% = 51.3% and 1-45.3% = 54.7%) it
registers are higher than 50% implies that the machine an-
notator (MA) is doing reasonably well. (The over-50% sav-
ings come from the fact that verification generally costs less
than first-annotation.) MAA, which uses machine to first-
annotate documents, is thus a viable option.
• The performance of MinL is surprisingly poor. In partic-
ular, its cost for GL (40,413) is 81.8% of FMA (49,376).
The saving (1-81.8%=18.2%) is far less than the 50% mark,

showing that MAA with MinL is hugely counterproductive
(compared with simple random selection). For each dataset
in Table 1, the second row shows the average length of se-
lected documents under each selection strategy. We see that
MinL’s choices of documents are much shorter than Rand.
(For DTJ: 304 tokens (MinL) vs. 893 tokens (Rand); for GL:
2,051 tokens (MinL) vs. 2,886 tokens (Rand).) The reason
why MinL incurs very high cost even though it processes
short documents is that the documents it picks are generally
of low knowledge quality and thus MinL needs to process
more documents. The third row in Table 1 shows the total
number of markups collected by each strategy. We see that
for GL, MinL collects a large number of markups (2,671)
compared with others (which are all < 1700). Recall that in
this experiment, the MAA process stops when the MA’s F1
score reaches 0.8. The fact that MinL needs to collect such a
big number of markups (from many documents) before the
process terminates indicates significant redundancy and bi-
ases in the collected markups. This result shows that a selec-
tion strategy that considers only document length does not
work well; Other criteria, such as the knowledge contents
given by the markups, should also be taken into account.
• Another surprising result is that smart selection strategies,
such as LC, MNLP and Dream, do not have clear advantages
over simple random selection. The costs of LC are 46.1%
(DTJ) and 46.5% (GL); the costs of MNLP are 45.6% (DTJ)
and 53.5% (GL); the costs of Dream are 82.8% (DTJ) and
45.2% (GL). While the costs of LC and MNLP are some-
what comparable to those of Rand, Dream performs poorly
for the DTJ dataset with a high cost (82.8%). We remark
that LC and Dream select documents with the objective of
improving the MA model, they do not consider documents’
length or the human costs involved in processing the se-
lected documents. Given that long documents tend to con-
tain more markups, as a result, the documents LC and Dream
select are (on average) the longest among all methods. For
example, an average document selected by Dream in DTJ
has 2,575 tokens. That is way bigger than an average docu-
ment selected by Rand, which is just 893 tokens in length.
For both DTJ and GL datasets, LC and Dream have worse
performance than Rand because they ignore the cost factor.
In contrast, MNLP considers documents’ length in addition
to their contents. For DTJ, where documents vary much in
their lengths, MNLP tends to select much shorter documents
(741 tokens/doc) while targeting those with useful markups.
It thus performs better than Rand, LC and Dream. For GL,
however, there is less variation in document lengths. In this
case, MNLP is less cost-efficient than Rand, LC and Dream.
• CEMA performs the best among all methods. Its costs are
15.0% (DTJ) and 24.4% (GL). In particular, CEMA is 6.7
times more cost-efficient than FMA for DTJ. The good per-
formance of CEMA comes from three factors. First, it uses
a more precise human cost estimation to evaluate the veri-
fication cost of each candidate document. This is especially
effective for DTJ because the documents have big variations
in their lengths and markup counts. Secondly, CEMA an-
alyzes the knowledge contents of documents to determine
their contribution scores. This effectively identifies docu-
ments that can best improve the MA model. Thirdly, CEMA
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Rand MinL LC Dream MNLP CEMA

DTJ
(FMA cost
= 5,917)

MAA cost
(as fraction of FMA cost)

2,884
(48.7%)

3,537
(59.8%)

2,731
(46.1%)

4,899
(82.8%)

2,700
(45.6%)

887
(15.0%)

Average number of tokens per selected document 893 304 1,934 2,575 741 200∗

Total number of markups in selected documents 51 123 72 47 106 70∗

GL
(FMA cost
= 49,376)

MAA cost
(as fraction of FMA cost)

22,384
(45.3%)

40,413
(81.8%)

22,961
(46.5%)

22,307
(45.2%)

26,423
(53.5%)

12,037
(24.4%)

Average number of tokens per selected document 2,886 2,051 3,438 3,253 2,996 1,498∗

Total number of markups in selected documents 1,340 2,671 1,390 1,397 1,653 958∗

Table 1: Human cost incurred for a method’s MA to achieve at least 0.8 F1. (∗Counted after paragraph filtering.)

performs paragraph filtering, which removes paragraphs that
are unlikely to contain any markups. This reduces document
lengths and hence human verifiers’ reading time. The last
point is evidenced by Table 1, where we see that the num-
bers of tokens/doc under CEMA, after paragraph filtering,
are 200 (DTJ) and 1,498 (GL). Both are much lower than
those of other methods. On closer inspection, we find that
CEMA’s paragraph filtering is highly accurate and effective.
For example, for DTJ, CEMA removes 86.3% of the para-
graphs in its selected documents. Among the removed para-
graphs, more than 99% of them do not contain any markups
in the ground-truth data.

Figures 5(a) and 5(b) show the methods’ accrued human
costs and their accumulated knowledge (expressed in terms
of MA’s F1 scores) as the MAA process iterates. We can
draw similar conclusions as in our previous discussion: (1)
MinL, LC, Dream, and MNLP do not exhibit clear advan-
tage over Rand. (2) Among those four existing methods,
MNLP gives better performance for the DTJ dataset. This
is because documents in the DTJ dataset have a bigger vari-
ation in length and MNLP considers document lengths in its
selection strategy. (3) CEMA outperforms all methods sig-
nificantly, especially for DTJ. We remark that in a limited-
budget scenario, it is very important that we employ the most
cost-efficient MAA method. This is because without spend-
ing over the budget, an efficient method, such as CEMA,
can collect the best set of markups to train the most accurate
MA; and an accurate MA gives us the best shot at (machine)
annotating the rest of the documents that cannot be covered
by human annotation due to budget concerns.

Conclusion
In this paper we propose machine-assisted annotation
(MAA) as the solution to annotate a document corpus under
a stringent budget constraint. Specifically, we replace human
first-annotators in FMA by a machine annotator (MA), and
employ human workers only for annotation verification. We
also propose CEMA, which extends the basic MAA with
a document selection module. The core idea of CEMA is to
strike a balance between the verification cost and the amount
of knowledge gained in document selection. Specifically, we
propose a carefully engineered cost estimator model and a
knowledge estimator model. Through experiments that are
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Figure 5: Human costs and MA F1 scores under different
MAA document selection strategies

based on real document annotation tasks, we show that our
cost estimator model, which employs an action predictor, is
highly accurate. In particular, the cost estimator is very ef-
fective in identifying low-cost documents for selection dur-
ing the initial stage of the MAA process. We also compare
CEMA against a number of other document selection strate-
gies. Our results show that CEMA achieves significantly
larger savings compared with other methods over a wide
range of annotation environments and scenarios.
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