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Abstract

Current methods of blended targets domain adaptation
(BTDA) usually infer or consider domain label information
but underemphasize hybrid categorical feature structures of
targets, which yields limited performance, especially under
the label distribution shift. We demonstrate that domain labels
are not directly necessary for BTDA if categorical distribu-
tions of various domains are sufficiently aligned even facing
the imbalance of domains and the label distribution shift of
classes. However, we observe that the cluster assumption in
BTDA does not comprehensively hold. The hybrid categori-
cal feature space hinders the modeling of categorical distribu-
tions and the generation of reliable pseudo labels for categor-
ical alignment. To address these, we propose a categorical do-
main discriminator guided by uncertainty to explicitly model
and directly align categorical distributions P (Z|Y ). Simul-
taneously, we utilize the low-level features to augment the
single source features with diverse target styles to rectify the
biased classifier P (Y |Z) among diverse targets. Such a mu-
tual conditional alignment of P (Z|Y ) and P (Y |Z) forms a
mutual reinforced mechanism. Our approach outperforms the
state-of-the-art in BTDA even compared with methods uti-
lizing domain labels, especially under the label distribution
shift, and in single target DA on DomainNet.

Introduction
Deep learning suffers a serious performance drop under the
distribution shift (Ben-David et al. 2006). Unsupervised do-
main adaptation (UDA) is proposed to adapt a source model
to a new unlabeled target domain. Most UDA research con-
siders the adaptation from single or multiple sources to a
single target (STDA). However, in reality, the target domain
can be diverse and include various styles and textures, and
the distribution of each class also varies from each target.
These steer us to consider a practical yet challenging set-
ting termed as blended targets domain adaptation (BTDA):
1)Adaptation is conducted from one single source to mul-
tiple targets. 2)Neither domain labels nor class labels are
available on targets and the model should perform well on
each target. 3)Label distributions of different targets can be
different (label shift). In the following, we first present the

* Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

analysis of BTDA and discuss limitations of current meth-
ods due to these essential issues. Finally, we discuss that do-
main labels are not directly necessary for BTDA and propose
the category-oriented mutual conditional domain adaptation
(MCDA), which also generalizes to common settings.

There are two practical issues for distributional alignment
in BTDA: 1)Diverse styles and textures of blended targets.
2)Label shift of various targets. These induced our key ob-
servation that categorical feature space in BTDA is hybrid
and unstructured as shown in Figure 1. Features of differ-
ent classes in the blended targets are pervasive and do not
form a well-clustered structure. To analyze it, we conduct
t-SNE for feature space under BTDA in the left. Besides,
we also uniformly sample and calculate K nearest neighbors
(KNN) of each class center under STDA and BTDA. The re-
sult in the middle shows that the number of samples within
the same class in STDA is more than that of BTDA. This in-
dicates that the cluster structure of BTDA is not well formed
compared to STDA which corresponds to the hybrid cate-
gorical feature space in t-SNE visualization. This weakens
the cluster assumption (Chapelle and Zien 2005) that serves
as the necessary condition of many adaptation methods (Ta-
chet des Combes et al. 2020; Shu et al. 2018; Tang, Chen,
and Jia 2020; Yang et al. 2021). Further, it motivates our an-
alytical perspective from both categorical distribution shift
and biased classifier for BTDA.

Current UDA methods yield sub-optimal performance
in BTDA due to these. Concretely, methods based on the
covariate shift assumption and aligning marginal distribu-
tions (Tzeng et al. 2017; Ganin and Lempitsky 2015; Shen
et al. 2018) are inevitable to increase the joint error of opti-
mal hypotheses under the label shift (Wu et al. 2019; Ta-
chet des Combes et al. 2020). BTDA worsens the situa-
tion with diverse target domains and more serious imbal-
ance and label shift issues. Some theories further propose
conditional alignment formulation to avoid the joint error
issue. (Tachet des Combes et al. 2020; Jiang et al. 2020) im-
plicitly align conditional distribution by aligning reweighted
marginal distributions that still need cluster assumption.
Other methods use the target pseudo labels to model and
align conditional distributions through class centroids (Pan
et al. 2019; Tanwisuth et al. 2021; Singh 2021), task-oriented
classifiers (Zhang et al. 2019; Saito et al. 2019), and the
conditional discriminator (Long et al. 2018). These effec-
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tive STDA methods produce limited performance under the
hybrid feature space in BTDA. Centroid and general adver-
sarial methods may not model distributions well. The bi-
ased classifier and clustering labeling algorithm also gen-
erate noisy labels in this situation.

Recent multi-target domain adaptation (MTDA) methods
produce impressive results by generally inferring or utiliz-
ing the domain level information and then conducting STDA
methods. Some methods train separated models for each tar-
get which is not efficient in practice (Saporta et al. 2021;
Isobe et al. 2021; Nguyen-Meidine et al. 2021; Saporta et al.
2021). Other methods utilize graph neural networks with co-
teaching (Roy et al. 2021a), disentanglement methods (Gho-
lami et al. 2020) and meta-clustering (Chen et al. 2019).
These require domain labels and lack consideration for the
imbalance and the hybrid target feature space in BTDA.

In this paper, we address two intrinsic issues of BTDA:
1)Domain labels. 2)Hybrid categorical feature space. First,
our analysis shows that domain labels are not directly nec-
essary for BTDA only if the categorical distributions of var-
ious domains are sufficiently aligned even facing the imbal-
ance and the label shift. However, categorical alignment re-
quires labels. The hybrid categorical feature space in BTDA
raises practical issues in modeling categorical distributions
and producing reliable pseudo labels. Considering these, we
design techniques to explicitly model and align categori-
cal distributions P (Z|Y ) of various domains and simulta-
neously correct the biased classifier P (Y |Z) among diverse
targets to enhance pseudo labels.

Practically, this motivates two designs on P (Z|Y ) and
P (Y |Z). Firstly, for modeling and aligning P (Z|Y ), cur-
rent methods such as prototype (Pan et al. 2019; Tanwisuth
et al. 2021) and kernel methods (Wang et al. 2020) inferiorly
model conditional distributions of unstructured data features
in the hybrid feature space in Figure 1. Leveraging the dis-
tribution modeling ability of GAN (Arora et al. 2017; Good-
fellow et al. 2014), we propose an uncertainty-guided cate-
gorical domain discriminator. We encode categorical distri-
butions within the same semantic space to explicitly model
and directly align P (Z|Y ) of various domains. Since the
discriminator is supervised with source and noisy target la-
bels, we adopt uncertainty to guide it to gradually learn and
align categorical distributions. Secondly, to correct the bi-
ased classifier for reliable pseudo labels during adaptation,
we first adopt balanced sampling on the source data and then
utilize the low-level features in convolution neural networks
(CNN) to augment the source features with diverse target
styles to reduce domain dependent information and balance
the classifier training on target classes. Our method shows
that one single labeled source can still be augmented with
multiple targets to rectify the classifier during adaptation by
leveraging the prior of low-level features in CNN.

In summary, our contributions are as follows: 1)We
demonstrate that the adaptation can be well-achieved with-
out domain labels in BTDA if categorical distributions are
sufficiently aligned even facing the imbalance and label
shift. 2)We propose the mutual conditional alignment to
directly minimize conditional distributions and simultane-
ously correct the biased classifier. 3)Practically, to address

the hybrid feature space of BTDA, we design an uncertainty-
guided categorical domain discriminator to explicitly model
and align categorical distributions, and utilize low-level fea-
tures to mitigate the bias of the classifier on blended targets.
Our method achieves state-of-the-art in BTDA even com-
pared with methods using domain labels, especially under
the label shift, and in STDA with DomainNet.

Related Works
Single Target UDA (STDA): STDA is a typical setting that
adapts single or multiple sources into one target. Gener-
ally, the research includes four categories. One branch min-
imizes the explicit statistical distance such as Maximum
Mean Discrepancy (MMD) to mitigate the domain distribu-
tion shift (Long et al. 2015, 2017; Venkateswara et al. 2017;
Tzeng et al. 2014; Shen et al. 2018; Lee et al. 2019; Xu et al.
2019; Montesuma and Mboula 2021). The second branch
leverages the adversarial training to implicitly minimize the
domain discrepancy through GAN (Ganin and Lempitsky
2015; Tzeng et al. 2017; Zhang et al. 2019) or entropy
minimization (Pan et al. 2020; Vu et al. 2019). The third
one utilizes the self-training with the target pseudo labels to
train the source model (Liu, Wang, and Long 2021; French,
Mackiewicz, and Fisher 2017). The fourth one utilizes im-
age translation techniques to mitigate the semantic irrelevant
gap (Sankaranarayanan et al. 2018; Roy et al. 2021b; Kim
and Byun 2020; Yang et al. 2020a). However, these methods
produce limited performance in BTDA. The serious imbal-
ance and label shift issues in blended targets cause a serious
incremental error of classifiers (Wu et al. 2019), and the hy-
brid target feature space also yields noisy pseudo labels and
calibration issues (Mei et al. 2020), which deteriorates the
self-training and conditional alignment methods.
Multi-Target UDA (MTDA): transfers the knowledge from
a single source to multiple targets. MTDA is recently stud-
ied in both classification (Gholami et al. 2020; Nguyen-
Meidine et al. 2021; Chen et al. 2019; Roy et al. 2021a;
Yang et al. 2020b) and semantic segmentation (Saporta
et al. 2021; Isobe et al. 2021). One common approach is
to disentangle domain information from multiple targets
by adversarial learning and adapt each target with a sepa-
rated network (Saporta et al. 2021; Gholami et al. 2020).
AMEAN (Chen et al. 2019) first clusters blended targets
into sub-clusters and adapt the source with each cluster.
CGCT (Roy et al. 2021a) uses graph convolution network
(GCN) for feature aggregation and uses GCN classifier and
source classifier for co-teaching. Differently, our method
does not require any domain label and conducts BTDA in a
united network which is scalable and efficient. Besides, our
model considers the hybrid categorical feature space and is
robust under the imbalance and label shift in BTDA.

Methodology
We present our analysis of BTDA and discuss the proposed
mutual conditional domain adaptation (MCDA) frame-
work including: explicit categorical adversarial alignment,
uncertainty-guided discriminative adversarial training, and
low-level feature manipulation for the classifier correction.
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Figure 1: Left: t-SNE for hybrid categorical feature space of BTDA where features of various classes are pervasive and un-
structured. The color indicates the domain and the digit indicates the class. Middle: the sample rate of the same class for each
class center’s K nearest neighbors. All data are collected from Office-Home (ResNet-50). Right: BTDA distribution shift where
features are unstructured and the classifier is biased.

Notation. Let us denote the input-output space X × Y
where X represents the image space and Y represents the
label space. The labeled source domain is denoted as S =

{xs
i , y

s
i }

|S|
i=1 and each unlabeled target is denoted as Tj =

{xtj
i }|Tj |

i=1 . Both source and target domains are i.i.d sampled
from some distribution PS(X,Y ) and PTj (X,Y ). For the
model, we denote the feature extractor g : X → Z and the
classifier h : Z → Y . The error rate of the model on source
S and target Tj are ϵS an ϵTj

, and the blended target error
rate is evaluated as ϵT = 1

K

∑
j ϵTj .

MCDA is a unified framework that adapts a single source
to the blended targets such that the model performs well
on each single target even facing the label distribution
shift across various targets. i.e., PS(Y ) ̸= PTj

(Y ) and
PTj (Y ) ̸= PTm(Y ). As proved in (Tachet des Combes et al.
2020), minimizing marginal distribution shift of PS(X) and
PT (X) can arbitrarily increase the target error ϵT due to
the label shift, which fails the adaptation. The situation be-
comes worse in BTDA since each target can have a different
PTm

(Y ). In that, we are interested to have a bound such that
each term of it can be independently minimized as much as
possible, and that is better irrelevant with domain labels.
Blended Error Decomposition Theorem. Inspired by
the generalized label shift (GLS) theorem in (Tachet des
Combes et al. 2020), we intend to align the conditional dis-
tributions of each class P (Z|Y ) within each target to the
same class in the source domain on the feature space Z .

Theorem 1 For any classifier Ŷ = (h ◦ g)(X), the blended
target error rate is

∥ϵS − 1

K

K∑
j

ϵTj∥ ≤ 1

K

K∑
j

∥PS(Y )− PTj (Y )∥1BERPS (Ŷ ∥Y )

+ 2(c− 1)∆BTCE(Ŷ ).
(1)

BERPS (Ŷ ∥Y ) = max
j∈[k]

PS(Ŷ ̸= Y |Y = j) (2)

∆BTCE(Ŷ ) =
1

K

K∑
j

max
y ̸=y′∈Y2

|PS(Ŷ ̸= Y |Y = y)

− PTj (Ŷ ̸= Y |Y = y)|

(3)

where ∥PS(Y ) − PTj
(Y )∥1 represents the L1 distance of

label distributions between the source and each target and
is a constant only depending on the data, BERPS (Ŷ ∥Y ) is
the classification performance only related with the source
domain. ∆BTCE(Ŷ ) measures the conditional distribution
discrepancy of each class between the source and each tar-
get. In this sense, we only need to minimize the ∆BTCE(Ŷ ),
which is equivalent to minimize the discrepancy between
PS(Z|Y = y) and PTj

(Z|Y = y).
Key Differences. First, different from (Tachet des Combes
et al. 2020), we argue that the theorem 3.3: clustering struc-
ture assumption in (Tachet des Combes et al. 2020) is a
strong assumption in BTDA because each target has a dif-
ferent cluster structure ZTj in feature space under the pre-
trained feature extractor gS , which induces hybrid categor-
ical feature space and different decision boundaries for dif-
ferent target Tj as illustrated in Figure 1. When blended to-
gether, the cluster of class a in Tm may overlap with the
cluster of class b in Tn. Consequently, the sufficient con-
dition for GLS may not hold. Thus, calculating class ra-
tios and aligning reweighted marginal distributions in (Ta-
chet des Combes et al. 2020) do not induce GLS to align
the semantic conditional distributions. Second, when the
number of classes |Y| is large, solving a quadratic prob-
lem to find class ratios requires O(|Y|3) time which is not
efficient and accurate. We do not calculate class ratios. Fi-
nally, we do not make any assumption to satisfy GLS. In-
stead, we adopt the general bound in equation 1 and de-
sign model to directly minimize the conditional JS diver-
gence DJS(PS(Z|Y = y)∥PTj

(Z|Y = y)) to enforce it.
However, aligning conditional distribution requires accurate
pseudo labels. This motivates us to develop a mutual con-
ditional alignment system to align P (Z|Y ) and P (Y |Z) si-
multaneously. Besides, since we only use the class label, the
domain label is unnecessary, which suits the BTDA setting.

Explicit Categorical Adversarial Alignment
Our motivation is to explicitly model and directly align the
categorical JS divergence DJS(PS(Z|Y = y)∥PTj

(Z|Y =
y)) between the source and each target under the hybrid
feature space. Current categorical alignment methods utiliz-
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Figure 2: The framework of MCDA. The source data utilizes balanced sampling for training the categorical discriminator and
is augmented with blended target styles to train the classifier. The target data is randomly sampled, and the predicted pseudo
labels with low uncertainty are converted to one-hot labels to train the categorical domain discriminator.

ing task-classifiers, prototypes, and conditional discrimina-
tor (Zhang et al. 2019; Saito et al. 2019; Long et al. 2018)
may not represent conditional distributions well in the hy-
brid categorical feature space in BTDA.

Leveraging the distribution modeling ability of GAN, we
intend to encode categorical distributions of various domains
into the same semantic space to explicitly model categori-
cal distributions for optimization. Inspired by DANN (Ganin
and Lempitsky 2015), we augment the last layer of a general
domain discriminator D into the number of classes k, and
each logit of such a categorical domain discriminator Dk

is followed by a sigmoid function to predict the probability
of a feature belonging to the source or target domain con-
ditional on the corresponding class. Each logit behaves as a
single GAN to minimize the discrepancy of JS divergence of
a specific class PS(Z|Y = y) and PTj

(Z|Y = y). To make
each logit corresponds to one class in Dk, we feed one fea-
ture g(xi) into Dk and get the prediction di ∈ Rk. Then we
use the corresponding one-hot label yi ∈ {0, 1}k to only ac-
tivate the corresponding logit to compute adversarial loss by
yi · di. To achieve this, we use pseudo target labels and de-
sign a strategy to make the categorical adversarial alignment
and pseudo label refinement reinforce each other. Then we
formulate the optimization as follows

Ladv(g,D
k) =

1

ns

ns∑
i=1

yi · log[Dk(g(xs
i ))]+

1

nt

nt∑
j=1

ȳj · log[1−Dk(g(xt
j))],

(4)

where yi represents the one-hot true labels of the source and
ȳj represent the mix of soft and one-hot pseudo labels of the
target. We discuss this in detail in the next section.

Uncertainty Guided Discriminative Adversarial
Training
To train a discriminative categorical domain discriminator
Dk, we require the one-hot true labels of source and blended

targets. However, since the initial target labels are noisy, we
design the uncertainty-guided training strategy for our cate-
gorical domain discriminator. We start with soft target labels
and then gradually convert soft target labels with low uncer-
tainty into one-hot encoding as training goes by. We use the
entropy as the metric of the uncertainty of each sample and
select the samples based on a threshold γ.

H(xj) = −
K∑

k=1

ŷj,k · log(ŷj,k) (5)

ȳj =

{
{0, 1}k, ifH(xj) < γ

ŷj , otherwise
(6)

In the early stage, the entropy of soft pseudo labels on the
target domain is large so that each digit of Dk is assigned
with a similar probability mass. Dk cannot discriminate dif-
ferent classes and behaves as the general discriminator D
in DANN since all logits share the same semantics. As the
training goes, the entropy of target pseudo labels will de-
crease, and the labels will become more discriminative ow-
ing to the distribution alignment. At the same time, the dis-
criminative target labels will also train Dk to distinguish
different categories and further align the categorical distri-
butions, which forms a mutually reinforced process.

Source-Only Balanced Adversarial Training
We expect our model to be robust under the label shift across
various domains such as in a case shown in Figure 3. Equa-
tion 1 indicates that the label shift only influences the clas-
sification error BERPS but does not influence the major
distribution discrepancy ∆BTCE . It indicates that only if
∆BTCE is small enough, the model is robust to label shift
even in the blended domains.

So, we focus on training Dk since the class imbalance
will lead to bias to the training of Dk. Hence, Dk cannot
distinguish different classes and align distributions biased
towards the majority classes, which will ruin the categorical
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distribution alignment. To train a balanced Dk, we propose
to only conduct balanced sampling for the source domain
rather than on both domains as in (Jiang et al. 2020) for
two reasons: 1)We only have true labels on the source do-
main, balanced sampling based on the hard target pseudo
labels may introduce errors and bias because initially target
pseudo labels are inaccurate. Filtering out confident target
pseudo labels may rule out some classes, which exacerbates
the class imbalance issue. 2)With conventional double-side
balanced sampling, target pseudo labels are only updated ev-
ery epoch. Instead, mixed target pseudo labels can be up-
dated online with the distribution alignment, which is more
beneficial for adaptation. We demonstrate the robustness and
efficiency in the Experiments section.

Low-Level Feature for Classifier Correction
We intend to correct the biased classifier P (Y |Z) from a sin-
gle source to blended targets during the adaptation process.
This improves the pseudo label accuracy on blended tar-
gets during the adaptation process and further facilitates the
training of our categorical domain discriminator. Inspired by
the research on low-level features on CNN, we utilize the
low-level features of CNN that mainly represent the style
and background of images to project blended target styles
into the source for correcting the classifier. Denoting the
low-level feature maps z ∈ RD×H×W where D represents
the channel and H,W represents the spatial size, leverag-
ing the AdaIN, we have augmented features zst with source
content and target style as below:

µt =
1

HW

H∑
h=1

W∑
w=1

zt (7)

σt =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(zt − µt)2 + ϵ (8)

zst = AdaIN(zs, zt) = σt(
zs − µs

σs
) + µt (9)

Compared with previous image translation methods, our
method does not need to generate specific images, which is
efficient in practice. Besides, considering the diversity and
imbalance of blended targets, our method achieves the cor-
rection on two sides: 1)Since the source is evenly resampled
on class, the augmented feature zst with source content is
balanced on semantic classes, which forms a balanced clas-
sifier for inference. 2)The augmented zst with diverse target
styles mitigate the domain irrelevant information. This reg-
ularizes the hybrid categorical feature space in BTDA and
make the cluster assumption more practical.
Overall Objective: Eventually, the final loss function con-
sists of the categorical adversarial loss and the classification
loss of various domains. Note that h′ indicates the networks
excluding the shallow layers.

Lcls(g, h) =
1

ns

ns∑
i=1

lce(g ◦ h(xs
i ), y

s
i )+

1

ns

ns∑
i=1

lce(g ◦ h′(zsti ), ys
i )

(10)

min
g,h

max
D

L = Lcls(g, h) + Ladv(g,D
k) (11)

Figure 3: Label distribution shift of Office-Home-LMT.

Experiments
Datasets. We evaluate our method based on standard BTDA
tasks (Chen et al. 2019; Roy et al. 2021a): Office-31 (Saenko
et al. 2010), Office-Home (Venkateswara et al. 2017), Do-
mainNet (Peng et al. 2019), and a specialized dataset Office-
Home-LMT for label shift in BTDA. Similar to Office-
Home-RS-UT (Jiang et al. 2020), we use Cl, Pr and Rw to
resample two reverse long-tailed distributions and one Gaus-
sian distributions for each of them for BTDA with label shift.
For evaluation, we use one domain as the source and the rest
as blended targets. The performance is evaluated as the mean
accuracy of all target domains. We show a concrete example
of Ar as the source in the label shift setting in Figure 3.
Baselines and Implementations. We compare our method
with previous state-of-the-arts in standard BTDA and that
with label shift, i.e., MTDA (Nguyen-Meidine et al. 2021),
CGCT (Roy et al. 2021a), MDDIA (Jiang et al. 2020),
CST (Liu, Wang, and Long 2021), and SENTRY (Prabhu
et al. 2021). For comparison with BTDA under label shift,
we also combine the sampling strategies in MDDIA with
CGCT. The detailed summary of comparison methods is
in the supplementary. We followed the implementations in
(Junguang Jiang, Baixu Chen, Bo Fu, Mingsheng Long
2020). For all datasets, we use SGD optimizer with learn-
ing rates η0 = 0.01, α = 10, and β = 0.75. We set the
uncertainty threshold γ = 0.05 for all datasets. Since CST
and SENTRY use AutoAugment for data augmentation, we
set the number of transformations N = 1 and the transform
severity M = 2.0 in AutoAugment (Lim et al. 2019) for a
fair comparison.
Standard BTDA. We summarize the standard BTDA in Ta-
ble 1. Our method outperforms comparison methods with a
clear margin. Concretely, our method outperforms the lat-
est BTDA methods (e.g., AMEAN and CGCT) by 1.4% on
Office-31, 4.6% on Office-Home, and 2.2% on DomainNet.
Moreover, even compared with methods utilizing ground
truth domain labels, our method can still outperform them
by 0.8% on Office-31 and 1.3% on Office-Home. The results
validate our argument that categorical distribution alignment
overwhelms in BTDA, and echos the theoretical intuition
from equation 1 that proper domain alignment is achievable
even without domain labels in BTDA.
BTDA with Label Shift. We analyzed the essential label
shift influence on BTDA and summarized results of the spe-
cialized Office-Home-LMT in Table 2. The label distribu-
tion of each domain is different from each other. Since CST
and SENTRY essentially require extra augmented data, we
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Methods Office-31 Office-Home Methods DomainNet

A D W Avg. Ar Cl Pr Rl Avg. Cli Inf Pai Qui Rea Ske Avg.

Source 68.6 70.0 66.5 68.4 47.6 42.6 44.2 51.3 46.4 Source 25.6 16.8 25.8 9.2 20.6 22.3 20.1

DAN 79.5 80.3 81.2 80.4 55.6 56.6 48.5 56.7 54.4 SE 21.3 8.5 14.5 13.8 16.0 19.7 15.6
DANN 80.8 82.5 83.2 82.2 58.4 58.1 52.9 62.1 57.9 MCD 25.1 19.1 27.0 10.4 20.2 22.5 20.7
CDAN 93.6 80.5 81.3 85.1 59.5 61.0 54.7 62.9 59.5 CDAN 31.6 27.1 31.8 12.5 33.2 35.8 28.7
JAN 84.2 74.4 72.0 76.9 58.3 60.5 52.2 57.5 57.1 DADA 26.4 20.0 26.5 12.9 20.7 22.8 21.5
AMEAN 90.1 77.0 73.4 80.2 64.3 65.5 59.5 66.7 64.0 MCC 33.6 30.0 32.4 13.5 28.0 35.3 28.8
CGCT 93.9 85.1 85.6 88.2 67.4 68.1 61.6 68.7 66.5 CGCT 36.1 33.3 35.0 10.0 39.6 39.7 32.3

Ours 92.4 87.7 88.8 89.6 71.7 72.8 68.0 71.7 71.1 Ours 37.5 37.3 36.6 17.8 36.1 41.4 34.5

MTDA† 87.9 83.7 84.0 85.2 64.6 66.4 59.2 67.1 64.3 - - - - - - - -
DCL† 92.6 82.5 84.7 86.6 63.0 63.0 60.0 67.0 64.1 DCL† 35.1 31.4 37.0 20.5 35.4 41.0 33.4
DCGCT† 93.4 86.0 87.1 88.8 70.5 71.6 66.0 71.2 69.8 DCGCT† 37.0 32.2 37.3 19.3 39.8 40.8 34.4

Table 1: Accurary (%) of BTDA on Office-31, Office-Home (ResNet-50), and DomainNet (ResNet-101). Best results in Bold.
Each domain represents the source and the rest domains are blended as the target. The accuracy is the mean of accuracies of all
domains in the blended target. †indicates methods using domain labels.

Methods Clipart Product Real Avg.

Source 42.3 47.6 50.3 46.7

BSP 51.5 52.9 57.4 54.0
CDAN 50.5 53.2 56.3 53.3
DAN 51.0 49.2 56.8 52.3
JAN 51.4 50.1 57.0 53.2
DANN 46.6 50.4 53.3 50.1
ADDA 45.0 49.7 52.8 49.2
MCD 40.2 48.6 52.3 47.0
MDD 43.7 56.0 57.8 52.5
MDDIA 61.9 58.2 63.2 61.1
CGCT 53.7 51.5 52.0 52.4
CGCT+bal 57.1 53.0 56.8 55.7
Ours 68.0 62.3 67.5 65.9

CST(aug) 58.3 57.4 63.4 59.7
SENTRY(aug) 65.6 63.5 65.9 65.0
Ours(aug) 69.1 66.2 68.9 68.1

Ours(oracle) 98.9 98.3 98.2 98.5
S+T 99.7 99.8 99.8 99.8

Table 2: Accurary (%) of Blended-Office-Home-LMT
(ResNet-50). aug: using 1 extra augmented data with Ran-
dAug (Cubuk et al. 2020). bal: using balanced sampling. or-
acle: discriminator trained with true source and target labels.
S+T: supervised learning on source and target.

add 1 augmented data for each sample and evaluate CST,
SENTRY, and ours in the same setting (aug). Our method
outperforms the label shift UDA method MDDIA by 4.8%
and SENTRY by 3.1%. Compared with latest BTDA method
CGCT, we get an improvement of more than 12%. We also
equip CGCT with balanced sampling strategy in MDDIA
(i.e., CGCT+bal) whose result is still inferior to ours.

The result first demonstrates the label shift in BTDA se-
riously impedes the adaptation, especially for the marginal
alignment methods. Second, it validates our proposition in
theorem 1 that if categorical distribution ∆BTCE(Y ) can be

mix bal flip Office-Home DomainNet

Art Clip Prod Real Avg. Real Info Pain Avg.

✓ 66.0 67.3 64.5 70.9 67.2 32.0 31.0 33.4 32.1
✓ 70.6 72.5 67.4 69.9 70.1 34.3 33.5 34.9 34.2

✓ 65.0 66.5 65.6 71.0 67.0 34.6 30.7 32.8 32.7
✓ ✓ 70.2 73.2 67.0 70.6 70.3 35.7 35.7 36.1 35.8
✓ ✓ ✓ 71.7 72.8 68.0 71.7 71.1 36.1 37.3 36.6 36.7

Table 3: Ablations on Office-Home and the selected three
domains on DomainNet. mix: mix labeling strategy; bal: bal-
anced sampling strategy; flip: low-level features.

properly minimized, the label shift only reweights the classi-
fication error BERPS (Ŷ ∥Y ), which is relatively small. Be-
sides, our method does not require balanced sampling on
target pseudo labels for every epoch, which can be trained
and updated online. The extra data augmentation (e.g., Ran-
dAug) is not essentially necessary in the algorithm design.
STDA. We also validate the generalization ability of our
method in STDA (i.e., Office-Home and DomainNet). We
compare our method with SRDC (Tang, Chen, and Jia
2020) which considers cluster structures in STDA, and MD-
DIA (Jiang et al. 2020) which uses balanced sampling on
both source and target domains. Our method achieves 72.4%
on Office-Home, and 35.2% on DomainNet which outper-
forms the previous state-of-the-art method MDD+SCDA (Li
et al. 2021) by 1.9%. Please refer to the supplementary for
details.

Ablation and Analysis
We present ablations of MCDA in Table 3 on Office-Home
and three domains of DomainNet. Each proposed module
contributes to the improvement of the final performance.
Effectiveness of Uncertainty for Guiding Adversarial
Training. To validate the uncertainty and mixed labels to
train a categorical discriminator Dk that mutually reinforces
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Figure 4: Samples below uncertainty threshold and pseudo
label accuracy during training process on DomainNet.

Figure 5: t-SNE feature visualization on Office-Home-LMT
with Clipart as the source. 15 classes are sampled for con-
ciseness. Color represents the domain and the digit repre-
sents the class. left: sourceonly, right: MCDA.

with target pseudo labels. We show the number of filtered
samples below the uncertainty threshold and the correspond-
ing pseudo label accuracy in Figure 4. The results of Do-
mainNet show that during the training, the uncertainty of
samples gradually decreases, and more samples pass the
threshold. Meanwhile, the accuracy of pseudo labels in-
creases, which justifies our motivation.
Robustness of Uncertainty Threshold. We validate the ro-
bustness of our model under various uncertainty thresholds
λ in Table 4 for both standard BTDA and BTDA with la-
bel shift in Table 4. For main experiments in Table 1 and 2,
we set λ as 0.05. The performance is stable when λ is se-
lected from 0.03 to 0.07. The results of Art on Office-Home
have a fluctuation range of 0.4%, and results of Clipart on
Office-Home-LMT have a fluctuation range of 1.5%. These
demonstrate the stability and generality of our model for the
standard BTDA and label shift setting.
Verification of Error Theorem under Label Shift. We ver-
ify our error theorem in equation 1 that if conditional dis-
tributions ∆BTCE(Ŷ ) is sufficiently minimized, the model
is robust under label shift in BTDA since the reweighted
source error ∥PS(Y ) − PTj (Y )∥1BERPS (Ŷ ∥Y ) is rela-
tively small. In Table 2, the oracle are results when the dis-
criminator is trained with true labels of source and target but
the classifier is trained only with source labels. In this case,
the categorical discriminator is trained to minimize categor-
ical distributions as much as possible under ground truth su-
pervision. The S+T are results where the classifier is trained
with both source and target labels. These two results approx-
imate to each other which verifies the theorem.
Essential of Domain Labels. Our theoretical formulation
in equation 1 does not require domain labels to minimize

Art Clipart Product

So
ur
ce
on
ly
M
CD
A

Figure 6: CAM feature response maps on Office-Home-
LMT. The left pervasive one is from sourceonly model while
the right class-discriminative one is from MCDA.

Thresholds 0.01 0.03 0.05 0.07 0.09

Art 71.9 71.9 71.7 72.3 71.8
Clipart 66.5 67.4 68.0 66.9 66.4

Table 4: Accuracy (%) of different uncertainty thresholds
for Art in Office-Home and Clipart in Office-Home-LMT
for BTDA (ResNet-50).

the target error rate in BTDA. The bound is mainly related
to the categorical distribution constraint. In comparison with
methods (i.e., CGCT (Roy et al. 2021a) and DCL (Nguyen-
Meidine et al. 2021)) using domain labels † in Table 1, our
method outperforms previous state-of-the-arts by 0.8% on
Office-31, 1.3% on Office-Home, and 0.1% on DomainNet
even without domain labels. This validates our proposition
that adaptation can be done without domain labels in BTDA
if categorical distributions is sufficiently aligned.
Feature Visualization. To show our method learns a regular
and meaningful categorical feature space, we visualize fea-
tures of last convolution layer with t-SNE in Figure 5 and
CAM (Selvaraju et al. 2017) in Figure 6. The t-SNE visu-
alization further shows that the sourceonly model generates
a hybrid feature space while MCDA produces a more class-
discriminative feature space, which corroborates our obser-
vation on the cluster assumption and categorical alignment
on BTDA. The CAM results shows feature response maps
of the sourceonly model is pervasive while those of MCDA
are more category-discriminative. This validates that MCDA
make the classifier learns more task-relevant features and
achieve better categorical alignment. More visualization re-
sults are discussed in the supplementary.

Conclusion
In this paper, we demonstrate that adaptation can be well
achieved without domain labels for BTDA only if the cat-
egorical distributions are sufficiently aligned, even facing
the cross-domain label shift. Following this, we present the
mutual conditional domain adaptation framework. We ex-
plore the uncertainty-guided mechanism and source-only
balanced sampling strategy to train a categorical domain dis-
criminator for efficiently modeling categorical distributions
in BTDA. And we explore low-level features to correct the
biased classifier. Extensive experimental results demonstrate
the state-of-the-art performance of the framework in single
target DA and BTDA tasks under label shift.
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