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Abstract

Adversarial training is an effective learning technique to im-
prove the robustness of deep neural networks. In this study,
the influence of adversarial training on deep learning models
in terms of fairness, robustness, and generalization is theo-
retically investigated under more general perturbation scope
that different samples can have different perturbation direc-
tions (the adversarial and anti-adversarial directions) and var-
ied perturbation bounds. Our theoretical explorations sug-
gest that the combination of adversaries and anti-adversaries
(samples with anti-adversarial perturbations) in training can
be more effective in achieving better fairness between classes
and a better tradeoff between robustness and generalization
in some typical learning scenarios (e.g., noisy label learning
and imbalance learning) compared with standard adversarial
training. On the basis of our theoretical findings, a more gen-
eral learning objective that combines adversaries and anti-
adversaries with varied bounds on each training sample is
presented. Meta learning is utilized to optimize the combina-
tion weights. Experiments on benchmark datasets under dif-
ferent learning scenarios verify our theoretical findings and
the effectiveness of the proposed methodology.

Introduction
Apart from the standard generalization error (also known as
natural error), robust generalization error (also known as ro-
bust error) has received great attention in recent years. A
deep neural network with a low robust error can cope well
with adversarial attacks. Adversarial training is an effective
technique to reduce the robust error of a model (Wong, Rice,
and Kolter 2020; Bai and Luo 2021). Given a model f(·) and
a sample x associated with a label y, classical adversarial
training methods (Madry et al. 2018; Goodfellow, Shlens,
and Szegedy 2014) first generate an adversary (i.e., adver-
sarial example) xadv for x with the following optimization:

xadv = x+ arg max
∥δ∥≤ϵ

ℓ(f(x+ δ), y), (1)

where ℓ(·, ·) is a loss function, δ is the perturbation term, and
ϵ is the perturbation bound. Adversaries are then leveraged
as the training data to learn a more robust model. A number
of variations for adversarial training have been proposed in
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recent literature. Zhang et al. (2019) decomposed the robust
error into the natural and boundary errors. They developed
a new method, namely, TRADES, to obtain a better trade-
off between standard generalization and robustness. Wang
et al. (2020) proposed a misclassification-aware adversarial
training method to focus on the misclassified examples.

In addition to the design of new methods, theoretical stud-
ies have been conducted to explore the effectiveness and
ineffectiveness of adversarial training (Bai and Luo 2021).
Yang et al. (2020) concluded that existing adversarial meth-
ods cannot achieve an ideal tradeoff between accuracy and
robustness due to the insufficient smoothness (Xie et al.
2020) and generalization properties of classifiers trained by
these methods. They pointed out that customized optimiza-
tion methods or better network architectures should be pro-
posed. Xu et al. (2021) revealed that adversarial training
introduces severe unfairness between different categories.
Thus, they developed a new method that sets varied pertur-
bation bounds for each class, resulting in better fairness. Dif-
ferent from these studies, we conjectured that one possible
reason leading to unsatisfied tradeoff and fairness is that not
all training samples should be perturbed adversarially. For
instance, adversaries of noisy samples may harm the model
performance (Uesato et al. 2019), and these samples should
be perturbed in the anti-adversarial direction to reduce their
negative influence on model optimization. Zhu et al. (2021)
re-annotated pseudo labels for possible noisy samples before
generating adversaries for them. The generated adversaries
are actually perturbed anti-adversarially in binary classifica-
tion tasks. In this study, samples with anti-adversarial per-
turbations are called anti-adversaries1 (xat-adv)

xat-adv = x+ arg min
∥δ∥≤ϵ

ℓ(f(x+ δ), y). (2)

This study conducts a comprehensive theoretical analy-
sis of adversarial training in the presence of two different
perturbation directions (adversarial and anti-adversarial) and
varied bounds. Several typical learning scenarios are con-
sidered, including classes with different learning difficul-
ties, imbalance learning, and noisy label learning. Our the-
oretical findings reveal that the perturbation directions and

1The anti-adversary defined by Alfarra et al. (2022) is differ-
ent from ours. They utilize anti-adversaries to deal with attacks,
whereas we aim to improve robustness, accuracy, and fairness.
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bounds can remarkably influence the model training. The
combination of adversaries and anti-adversaries with varied
bounds can improve the fairness among classes and achieve
a better tradeoff between accuracy and robustness. Accord-
ingly, a general objective that combines adversaries and anti-
adversaries is constructed for adversarial training. A meta
learning-based method is then proposed to optimize this ob-
jective, in which the perturbation direction and bound of
each training sample is adjusted in accordance with its learn-
ing characteristics during training. Our experimental results
show that the combining strategy outperforms state-of-the-
art adversarial training methods. Our experimental observa-
tions are in accordance with our theoretical findings.

The contributions of our study are as follows:

• To the best of our knowledge, this is the first work that
combines adversaries and anti-adversaries in training. A
comprehensive theoretical analysis is conducted for the
role of the combination strategy with varied perturbation
bounds2 under three typical learning scenarios.

• A new objective is established for adversarial training by
combining adversaries and anti-adversaries. Meta learn-
ing is utilized to solve the optimization, and the pertur-
bation direction and bound for each training sample are
determined in accordance with its learning characteris-
tics, such as training loss and margin.

Related Work
Tradeoff and Fairness in Adversarial Training
Recent studies on adversarial training focus on the trade-
off between accuracy and robustness. Efforts (Raghunathan
et al. 2019; Zhang et al. 2019, 2020; Yang et al. 2021) have
been made to reduce the natural errors of the adversarially
trained models, such as adversarial training with semi/unsu-
pervised learning and robust local feature (Song et al. 2020).
Rice et al. (2020) systematically investigated the role of var-
ious techniques used in deep learning for achieving a better
tradeoff, such as cutout, mixup, and early stopping, where
early stopping is found to be the most effective. This inves-
tigation was also confirmed by Pang et al. (2021). Unfair-
ness is also a problem caused by adversarial training. Xu et
al. (2021) trained a robust classifier to minimize error and
stressed it to satisfy two fairness constraints. Several stud-
ies (Ding et al. 2020; Cheng et al. 2020; Balaji, Goldstein,
and Hoffman 2019) adaptively tune the perturbation bounds
for each sample with the inspiration that samples near the
decision boundary should have small bounds.

Meta Learning
Meta learning has aroused great interest in recent years. Ex-
isting meta learning methods can be divided into three cat-
egories, namely, metric-based (Snell, Swersky, and Zemel
2017; Sung et al. 2018), model-based (Santoro et al. 2016),
and optimizing-based (Finn, Abbeel, and Levine 2017;

2Existing theoretical studies presume that the perturbation
bounds are identical for all training samples.

Nichol, Achiam, and Schulman 2018) methods. The algo-
rithm we adopted that is inspired by Model-Agnostic Meta-
Learning (Finn, Abbeel, and Levine 2017) belongs to the
optimizing-based methods. The data-driven manner of meta
optimization is always utilized to learn the sample weights
or the hyperparameters (Ren et al. 2018; Shu et al. 2019).

Theoretical Investigation
This section conducts theoretical analyses to assess the in-
fluence of two different perturbation directions and varied
bounds on adversarial training in three typical binary classi-
fication cases. Proofs are presented in the online material.

Notation
We denote the sample instance as x ∈ X and y ∈ Y as the
label, where X ⊆ Rd indicates the instance space, and Y =
{−1,+1} indicates the label space. The classification model
f is a mapping from the input data space X to the label space
Y . It can be parametrized by using linear classifiers or deep
neural networks. The overall natural error of f is denoted as
Rnat(f) :=Pr(f(x) ̸=y). The overall robust error is denoted
as Rrob(f) :=Pr(∃δ ||δ||≤ϵ, s.t.f (x+ δ) ̸=y).

Case I: Classes with Different Difficulties
In this case, the binary setting established by Xu et al. (2021)
is followed. The data from each class follow a Gaussian dis-
tribution D that is centered on θ and −θ, respectively. A K-
factor difference is found between two classes’ variances:
σ+1 : σ−1 = K : 1 and K > 1. The data follow

y
u.a.r∼ {−1,+1}, θ = (η, . . . , η) ∈ Rd, η > 0,

x ∼
{

N
(
θ, σ2

+1I
)
, if y = +1,

N
(
−θ, σ2

−1I
)
, if y = −1.

(3)

Class “+1” is harder because the optimal linear classifier
will give a larger error to class “+1” than class “−1”. Xu
et al. (2021) proved that adversarial training with an equal
bound will exacerbate the performance gap (including nat-
ural and robust errors) between classes and hurt the harder
class. We show that adversarial training with unequal bounds
on two classes can tune the performance gap and the trade-
off between the robustness and accuracy of the model. Let
σ−1 = σ. The following theorem is first proposed.

Theorem 1 For a data distribution D in Eq. (3), assume
that the perturbation bounds of class “−1” and “+1” are ϵ
and ρ×ϵ (0 ≤ ϵ, ρϵ < η), respectively. The natural errors of
the optimal robust linear classifier frob for two classes are

Rnat (frob,−1) = Pr

{
N (0, 1) ≤ B −K ·

√
B2 + q(K)−

√
d

σ
ϵ

}
,

Rnat (frob,+1) = Pr

{
N (0, 1) ≤ −K ·B +

√
B2 + q(K)−

√
dρ

Kσ
ϵ},

(4)

where B = 2
K2−1

√
d(η− ϵ(1+ρ)

2 )

σ , and q(K) = 2 logK
K2−1 .

The robust errors are shown in the online material. The
natural and robust errors change with different ρ values. A
corollary is derived in accordance with Theorem 1.
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Figure 1: (a) Variation of performance gaps between classes as ρ increases. (b) Scope of the classification boundary of different
manners. The values of parameters are K = 2, η = 2, ϵ = 0.2, and σ = 1. The bounds for class “+1” and “−1” are denoted
as ρ+ × ϵ and ρ− × ϵ (−η/ϵ < ρ+, ρ− < η/ϵ), respectively. ρ+(ρ−) < 0 denotes that class “+1(−1)” is anti-adversarially
perturbed. The online material provides the formulas of boundaries. (c) Logistic regression classifier boundaries (natural and
robust) on simulated data in Eq. (3). (d) Logistic regression classifier boundaries (natural and robust with different directions).

Corollary 1 The data and perturbations in Theorem 1 are
followed. When K < exp(d(η − ϵ)2/2σ2), the adversari-
ally trained model will increase and decrease the natural
and robust errors of class “−1” and class “+1”, with the
increase in ρ, respectively.

Accordingly, the performance gaps of Rnat and Rrob de-
crease with the increase in ρ, and better fairness can be
achieved, as shown in Fig. 1 (a). In Fig. 1 (c), the boundary
shifts toward the easy class “−1”. From Fig. 1 (b), adversar-
ial training with varied bounds contributes to larger scope of
the boundary compared with TRADES (Zhang et al. 2019).
Thus, a better tradeoff can be attained. Therefore, fairness
and tradeoff can be tuned with different ρ values. Next, anti-
adversaries are considered. Assume that samples in class
“−1” perform anti-adversarial perturbation. Similar to The-
orem 1, a theorem calculating the natural and robust errors is
proposed as shown in the online material. A corollary is then
derived, indicating that the combination of adversaries and
anti-adversaries can tune the performance gap and tradeoff.

Corollary 2 For a data distribution D in Eq. (3), as-
sume that class “−1” is anti-adversarially perturbed with
the bound ϵ, and class “+1” is adversarially perturbed
with the bound ρ × ϵ (0 ≤ ϵ, ρϵ < η). When K <
exp(d(η − ϵ)2/2σ2), the adversarially trained model will
increase and decrease the natural and robust errors of class
“−1” and class “+1”, with the increase in ρ, respectively.

In accordance with Corollaries 1 and 2, the adversarial
training and the combination strategy can nearly attain the
same performance. However, the combination strategy can
contribute to the largest scope of the boundary, as shown in
Fig. 1 (b). Thus, the combination strategy is more effective
in achieving a better tradeoff and fairness theoretically. As
shown in Figs. 1 (c) and (d), the combination strategy has
a more pronounced effect under the same bound (i.e., the
same ρ), indicating that it needs smaller bounds when the
same performance is achieved. Thus, the combination strat-
egy is more efficient than only the adversarial perturbation,
indicating that anti-adversaries are valuable.

Case II: Classes with Imbalanced Proportions
In this case, the two variances in Eq. (3) are assumed to be
identical3, that is, σ+1 = σ−1 = σ. However, p(y = +1)
(p+) is no longer equal to p(y = −1) (p−). Without loss of
generality, let p+ : p− = 1 : V and V > 1.

Class “−1” is the majority category, and an optimal linear
classifier will give a smaller natural error for class “−1” than
class “+1”, as proved in the online material. Similarly, we
proved that standard adversarial training will exacerbate the
performance gap between classes and hurt the smaller class.
We then show that adversarial training with unequal bounds
on the two classes will tune the performance gap between
classes and the tradeoff between robustness and accuracy.
The following theorem is first proposed.

Theorem 2 For a data distribution DV described above
with the imbalance factor V , assume that the perturba-
tion bounds of classes “−1” and “+1” are ϵ and ρ × ϵ
(0 ≤ ϵ, ρϵ < η), respectively. The natural errors of the opti-
mal robust linear classifier frob for the two classes are

Rnat (frob,−1) = Pr

{
N (0, 1) ≤ −A− log V

2A
−

√
d

σ
ϵ

}
,

Rnat (frob,+1) = Pr

{
N (0, 1) ≤ −A+

log V

2A
−

√
dρ

σ
ϵ

}
,

(5)

where A =
√
d(η − ϵ(1 + ρ)/2)/σ.

A corollary is derived on the basis of Theorem 2.

Corollary 3 The data and perturbations in Theorem 2 are
followed. When V < exp(d(η − ϵ)2/2σ2), the adversari-
ally trained model will increase and decrease the natural
and robust errors of class “−1” and class “+1”, with the
increase in ρ, respectively.

From Corollary 3, the performance gaps between classes
can be decreased with different ρ values. The boundary can
be moved within the scope with different ρ values that cov-
ers the boundary of standard adversarial training. There-
fore, a better tradeoff can be attained by adversarial training

3The case with different variances can be explored similarly.
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with varied bounds. Next, the anti-adversaries are consid-
ered. We assume that samples in class “−1” perform anti-
adversarial perturbation. Similar to Theorem 2, a theorem
that portrays the training occasion where the adversaries and
anti-adversaries are combined is proposed, as shown in the
online material. A corollary is then derived.

Corollary 4 For a data distribution DV in Theorem 2, the
perturbations in Corollary 2 are followed. When V <
exp(d(η − ϵ)2/2σ2), the adversarially trained model will
increase and decrease the natural and robust errors of class
“−1” and class “+1”, with the increase in ρ, respectively.

In accordance with Corollary 4, the performance gaps be-
tween classes can be tuned by the combination strategy. In
addition, it can contribute to the larger scope of the classifi-
cation boundary compared with only adversaries, and a bet-
ter tradeoff can be attained. When the same performance is
achieved, combining adversaries and anti-adversaries has a
smaller bound. Therefore, the combination strategy is more
efficient than only the adversarial perturbation. More details
are presented in the online material.

Case III: Classes with Noisy Labels
In this case, the two classes’ variances and prior probabil-
ities are assumed to be identical, that is, σ+1 = σ−1 and
p+ = p−. Without loss of generality, class “−1” is assumed
to contain flipped noisy labels. Two main conclusions are
obtained. 1) The adversaries of noisy samples will harm the
tradeoff and fairness of the robust model. 2) If noisy samples
are anti-adversarially perturbed with a bound ρ×ϵ and clean
samples are adversarially perturbed with a bound ϵ, then the
natural and robust errors of class “−1” and class “+1” will
be decreased and increased with the increase in ρ, respec-
tively. Thus, the combination strategy with varied bounds
is effective in achieving a lower performance gap between
classes and a better tradeoff between the accuracy and ro-
bustness on noisy data. The relevant theorems are shown in
the online material.

Summarization
Our theoretical analysis comprehensively reveals that the
perturbation directions and bounds remarkably influence the
generalization, robustness, and fairness of the robust model
under three typical learning scenarios. Adversarial training
with different perturbation directions and bounds can better
tune the performance gap between classes and the tradeoff
between robustness and accuracy. Existing studies ignored
anti-adversaries that are valuable. Thus, a new optimized ob-
jective considering anti-adversaries is proposed.

Methodology
Illuminated by the theoretical analysis, a new objective func-
tion is first established. Accordingly, a meta learning-based
method that combines adversaries and anti-adversaries
(CAAT) in training with a varied bound for each sample is
proposed to solve the optimization, as shown in Fig. 2.

Figure 2: Overall structure of CAAT. The red and green lines
represent the learning loops of the classifier network and
weighting network, respectively.

Proposed Objective Function
Ideally, the objective function that combines adversaries and
anti-adversaries can be formulated as

min
W ,α,β

Ex{αxℓ(fW
(xadv) , y)+βxℓ(fW

(xat-adv), y)},

s.t. αx + βx = 1 and αx, βx ∈ {0, 1},
(6)

where xadv and xat-adv are calculated by using Eqs. (1) and
(2) with varied bound ϵx for each sample x, respectively;
αx and βx are the combination weights; f

W
is the classifier

network with the parameter W . When αx ≡ 1, Eq. (6) can
be reduced to the objective of standard adversarial training.

To solve Eq. (6), we first assume that the values of αx and
βx depend on the training characteristics of sample x. Ac-
cordingly, their values are produced by a weighting network
fΩ (parameterized by Ω), where its input is a series of train-
ing characteristics ζx of x shown in Fig. 2. ℓ(f

W
(xadv), y)

can be divided into ℓ(f
W
(x), y) and ℓ(f

W
(x), f

W
(xadv))

to achieve a better tradeoff between the accuracy and ro-
bustness (Zhang et al. 2019). To improve the fairness among
classes, we further stress f to satisfy two fairness constraints
following Ref. Xu et al.(2021). Thus, our adopted objective
function is

min
W ,Ω

Ex{αx[ℓ(fW
(x), y) + λℓ (f

W
(x), f

W
(xadv))]

+ βxℓ (fW
(xat-adv), y)},

s.t.

{
[αx, βx] = fΩ(ζx), ∀x ∈ X ,
Rnat(fW

, c)−Rnat(fW
) ≤ τ1, ∀c ∈ Y,

Rbdy(fW
, c)−Rbdy(fW

) ≤ τ2, ∀c ∈ Y,
(7)

where Rbdy is the boundary error of the model, denoted as
Rbdy(fW

) = Pr(∃xadv ∈ B(x, ϵ), f
W
(xadv) ̸= f

W
(x)};

Rnat(fW
, c) = Pr(f

W
(x) ̸= y | y = c}; Rbdy(fW

, c) =
Pr(∃xadv ∈ B(x, ϵ), f

W
(xadv) ̸= f

W
(x) | y = c}; fΩ is

a multilayer perception (MLP) network with a hidden layer
and a τ -softmax layer: Softmax((hω + b)/τ); λ > 0 is a
regularization parameter that adjusts the influence of the nat-
ural and boundary errors on the model; τ1 and τ2 are small
and positive predefined parameters. The approach for solv-
ing the two fairness constraints is the same as that in Ref. Xu
et al.(2021), where a Lagrangian is formed.

Extraction of Training Characteristics (ζx)
Our theoretical investigation reveals that different training
samples can have different perturbation directions. The per-
turbation direction of a training sample depends on a series
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Algorithm 1: CAAT
Input: #Iteration T , step sizes η0, η1, and η2, batch size n, meta
batch size m, bound ϵ, #iterations K in inner optimization, classi-
fier network fW , weighting network fΩ, Dtrain, Dmeta.
Output: Trained robust network fW .
1: Initialize networks fW and fΩ;
2: for t = 1 to T do
3: Sample n and m samples from Dtrain and Dmeta;
4: for i = 1 to n (in parallel) do
5: xadv

i =xi+0.001N (0, I) and xat-adv
i =xi+0.001N (0, I),

whereN (0, I) is the Gaussian distribution;
6: Calculate the perturbation bound ϵi for sample xi;
7: for k = 1 to K do
8: xadv

i ←ΠB(xi,ϵi)(η0sign(∇xadv
i
ℓ(fW (xi), fW (xadv

i )))

+xadv
i ), where Π is the projection operator;

9: xat-adv
i ←ΠB(xi,ϵi)(−η0sign(∇xat-adv

i
ℓ(fW (xat-adv

i ), yi))

+xat-adv
i );

10: end for
11: end for
12: Formulate Ŵ

(t)
(Ω) by Eq. (9);

13: Update Ω(t+1) by Eq. (10) and update W (t+1) by Eq. (11);
14: end for

of factors, including learning difficulty, class proportion, and
noise degree. Therefore, six training characteristics of each
training sample x, namely, loss (ζx,1), margin (ζx,2), the
norm of loss gradient for the logit vector (ζx,3), the infor-
mation entropy of the softmax output (ζx,4), class propor-
tion (ζx,5), and the average loss of each class (ζx,6), are
extracted, as shown in the extraction module in Fig. 2. The
calculation detail of each characteristic is shown in the on-
line material.

Perturbation Bound (ϵx) Calculation
We employ two types of varied bound in our framework.
Following Ref. Xu et al.(2021), the class-wise perturbation
bound named ReMargin, which is suitable for imbalanced
data, is utilized. A sample-wise bound is proposed to handle
noise. It is inspired by the intuition that noisy samples have
a large norm of loss gradient in general and these samples
should exhibit the greatest degree of anti-adversarial train-
ing. Thus, the Grad-Based bound can be calculated as

ϵx = (αxgxadv
+ βxgxat-adv

+ ε)× ϵ, (8)

where gxadv
and gxat-adv

are the normalized

||∂ℓ(fW (x),f
W

(xadv))

∂xadv
||2 and ||∂ℓ(fW (xat-adv),y)

∂xat-adv
||2, respec-

tively. ϵ is a predefined perturbation bound, and ε is a
hyperparameter that is set to 0.9 in our experiments. This
bound is also effective on imbalanced data because samples
in tail classes have large norms of loss gradient, and they
should do the greatest degree of adversarial training.

Training with Meta-Learning
On the basis of the extracted characteristics and calculated
bounds, an online learning strategy is adopted to alterna-
tively update W and Ω using a single optimization loop, as
shown in Fig. 2. Assume that we have a small amount of un-
biased meta data Dmeta={xmeta

i , ymeta
i }Mi=1, where M ≪ N .

Even if meta data are lacking, they can be compiled from
the training data Dtrain (Zhang and Pfister 2021). The main
steps are shown below. Here, we ignore the regularization
terms introduced by the fairness constraints, while the on-
line material provides the complete formulas.

Ω is treated as the to-be-updated parameter, and the pa-
rameter of the updated classifier W , which is a function of
Ω, is formulated. Stochastic gradient descent (SGD) is uti-
lized to optimize the training loss. Specifically, a minibatch
of training samples {xi, yi}ni=1 is selected in each iteration,
where n is the size of the mini-batch. The updating of W
can be formulated as

Ŵ
(t)
(Ω) = W (t) − η1

1

n

∑n

i=1
∇

W
{αi[ℓ(fW

(xi), yi)+

λℓ(f
W
(xi), fW

(xadv
i ))] + βiℓ(fW

(xat-adv
i ), yi)}|

W (t)
,

(9)

where η1 is the step size. The parameter of the weighting
network Ω after receiving feedback from the classifier net-
work can be updated on a minibatch of meta data as follows:

Ω(t+1) = Ω(t) − η2
1

m

∑m

i=1
∇Ω[ℓ

meta(f
Ŵ (t)(Ω)

(xi), yi)

+ λℓmeta(f
Ŵ (t)(Ω)

(xi), f
Ŵ (t)(Ω)

(xadv
i )) + ℓmeta(f

Ŵ (t)(Ω)
(xat-adv

i ), yi)]|Ω(t) ,

(10)
where m and η2 are the minibatch size of meta data and
the step size, respectively. The parameters of the classifier
network are updated with the obtained weights by fixing the
parameters of the weighting network as Ω(t+1):

W (t+1) = W (t) − η1
1

n

∑n

i=1
∇

W
{αi[ℓ(fW

(xi), yi)+

λℓ(f
W
(xi), fW

(xadv
i ))] + βiℓ(fW

(xat-adv
i ), yi)}|

W (t)
.

(11)

The steps of our CAAT method are shown in Algorithm 1.

Experiments
Experiments are conducted to verify our theoretical findings
and the effectiveness of the proposed CAAT in improving
the accuracy, robustness, and fairness of the robust models.

Experimental Settings
Benchmark adversarial learning datasets: CI-
FAR10 (Krizhevsky 2009) and SVHN (Netzer et al.
2011) are adopted in our experiments, including the noisy
and imbalanced versions of the CIFAR data (Shu et al.

Figure 3: (a): Ratio of adversaries in each class during train-
ing on standard CIFAR10. (b): Average loss of each class
during training on standard CIFAR10.
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Avg. Nat. Worst Nat. Avg. Bdy. Worst Bdy. Avg. Rob. Worst Rob.

PGD Adv. Training 15.5 33.8 40.9 55.9 56.4 82.7
TRADES (1/λ = 1) 14.6 31.2 43.1 64.6 57.7 84.7
TRADES (1/λ = 6) 19.6 39.1 29.9 49.5 49.3 77.6
Baseline ReWeight 19.2 28.3 39.2 53.7 58.2 80.1
FRL (ReWeight) 16.0 22.5 41.6 54.2 57.6 73.3
FRL (ReMargin) 16.9 24.9 35.0 50.6 51.9 75.5
FRL (ReWeight+ReMargin) 17.0 26.8 35.7 44.5 52.7 69.5
CAAT (Grad-Based) 14.6 23.6 14.4 23.3 28.6 48.1
CAAT (ReMargin) 13.9 24.3 15.4 24.9 29.3 44.4

Table 1: Average and worstclass natural, boundary, and robust errors (%) for various algorithms on CIFAR10.

2019). For the two datasets, PreAct-ResNet18 (He et al.
2016) and Wide-ResNet28-10 (WRN28-10) (Zagoruyko
and Komodakis 2016) are adopted as the backbone network.
This section only represents the results of PreAct-ResNet18.
Others are presented in the online material. The compared
methods include three popular adversarial training algo-
rithms, namely, PGD (Madry et al. 2018), TRADES (Zhang
et al. 2019), and FRL (Xu et al. 2021). A debiasing
method (Alekh et al. 2018) is also compared which is to
upweight the loss of the class with the largest robust error
in the training data. The results of TRADES and FRL are
calculated by using the codes in their official repositories.

The training and testing configurations used in Ref. Xu et
al. (2021) are followed. The number of iterations in an ad-
versarial attack is set to 10. Following Xu et al. (2021), 300
samples in each class with clean labels are selected as the
meta dataset, which helps us tune the hyperparameters and
train the weighting network. Adversarial training is trained
on PGD attack setting ϵ = 8/255 with cross-entropy loss.
For our method and FRL (ReMargin), the predefined per-
turbation bound is also set to 8/255. All the models are
trained by using SGD with momentum 0.9 and weight de-
cay 5× 10−4. The value of λ is selected in {2/3, 1, 1.5, 6}.
During the evaluation phase, we report each model’s average
and worstclass natural, boundary, and robust error rates.

Experiments on Standard Dataset
Tables 1 shows the performance of our proposed CAAT
and the compared methods on standard CIFAR10. Those
on SVHN are shown in the online material. Considering

Avg. Nat. Avg. Bdy. Avg. Rob.

PGD Adv. Training 15.6 37.1 52.8
TRADES (1/λ = 1) 15.6 31.0 46.5
TRADES (1/λ = 6) 16.4 21.0 37.4
FRL (ReWeight) 15.3 36.0 51.4
FRL (ReMargin) 15.2 36.0 51.1
FRL (ReWeight+ReMargin) 15.7 34.3 50.0
CAAT (Grad-Based) 14.6 13.9 28.5
CAAT (ReMargin) 14.7 14.7 29.4

Table 2: Average natural, boundary, and robust errors (%) for
various algorithms on CIFAR10 with 20% pair-flip noise.

that our training/testing configuration is the same as that
in Ref. Xu et al.(2021), the results of the above competing
methods reported in the FRL (Xu et al. 2021) paper are di-
rectly presented.

From the results, our methods with two types of bound
reduce the average natural and robust errors under differ-
ent degrees, indicating that CAAT obtains better accuracy
and robustness of the model. Compared with other meth-
ods, CAAT decreases the average and worst robust error
rates by 21% and 25% on CIFAR10. Baseline ReWeight can
only decrease the worst intraclass natural error but cannot
equalize boundary or robust errors. FRL (Xu et al. 2021)
has only a limited ability to reduce the worst boundary and
robust errors, resulting in limited fairness between classes.
Our method more effectively decreases the worst intraclass
errors. Thus, CAAT achieves better fairness among classes
compared with other methods. Although FRL (ReWeight)
obtains the lowest worst natural error, it has large average
and worst robust errors, which is inferior to CAAT. Hard
classes (classes with a large average loss) have a higher ra-
tio of adversaries than easy ones, as shown in Fig. 3, which
helps improve the performance of hard classes and effec-
tively enhances the fairness among classes. The same con-
clusions can also be obtained on the SVHN dataset.

Experiments of Noisy Classification
Two settings of corrupted labels, including uniform and pair-
flip noises, are adopted (Shu et al. 2019). The values of
the noise ratio are set to 20% and 40%. CIFAR10 dataset,

Figure 4: (a): Ratio of adversaries for noisy and clean sam-
ples on CIFAR10 with 20% uniform noise during training.
(b): Average adversarial and anti-adversarial perturbation
bounds for clean and noisy samples during training.
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Figure 5: (a) and (b): Natural and robust errors for each class of different methods on CIFAR10 with imbalance factor 10. (c)
and (d): Natural and robust errors for each class of different methods on CIFAR10 with imbalance factor 100.

Avg. Nat. Avg. Bdy. Avg. Rob.

PGD Adv. Training 20.1 42.8 62.9
TRADES (1/λ = 1) 16.8 32.3 49.1
TRADES (1/λ = 6) 23.6 23.8 47.4
FRL (ReWeight) 16.9 38.1 55.0
FRL (ReMargin) 17.5 35.6 53.1
FRL (ReWeight+ReMargin) 17.2 35.1 52.3
CAAT (Grad-Based) 15.8 14.2 30.0
CAAT (ReMargin) 16.2 13.7 29.9

Table 3: Average and worstclass natural, boundary, and ro-
bust errors (%) on CIFAR10 with imbalance factor 10.

which is popularly used for the evaluation of noisy labels, is
adopted. Here, we only show the average errors of CIFAR10
with 20% pair-flip noise. Others are presented in the online
material. From the results in Table 2 and the online material,
CAAT achieves the lowest average and worst natural and ro-
bust errors, indicating that it obtains the best generalization,
robustness, and fairness compared with other methods.

As shown in Fig. 4 (a), most of the noisy samples are
anti-adversarially perturbed during training, which is in ac-
cordance with our theoretical findings. From Fig. 4 (b), the
average anti-adversarial perturbation bound for noisy sam-
ples is the largest, implying that noisy samples exhibit the
largest degree of anti-adversarial training. Thus, the nega-
tive influence of noisy samples can be decreased. The ratio
of adversaries for clean samples increases with the progress
of training, demonstrating that clean samples are playing a
more important role than noisy ones during training.

Experiments of Imbalanced Classification
The long-tailed version of CIFAR10 compiled by Cui et
al. (2019) is utilized. The values of the imbalance factor are
set to 10 and 100. Here, we only show the average results
when the imbalance factor equals 10. Others are presented
in the online material. Compared with other methods, CAAT
achieves the minimum average and worst natural and robust
errors, as shown in Table 3. As shown in Fig. 5, CAAT
decreases the natural and robust errors for most classes
and achieves the lowest performance gap among different
classes. We also verify that the first head class has the lowest
ratio of adversaries and tail classes have a high ratio of ad-
versaries, which is consistent with our theoretical findings.

Avg. Nat. (%) Avg. Bdy. (%) Avg. Rob. (%)

Setting I 16.0 41.6 57.6
Setting II 16.1 35.8 51.9
Setting III 14.9 13.8 28.7
Setting IV 13.9 15.4 29.3

Table 4: Ablation studies of CAAT on standard CIFAR10.

The details are presented in the online material.

Ablation Studies
Four variations of CAAT are considered, including adversar-
ial training with the same perturbation direction and bound
(Setting I), adversarial training with the same perturbation
direction and different bounds (Setting II), adversarial train-
ing with different perturbation directions (adversaries and
anti-adversaries) and the same bound (Setting III), and ad-
versarial training with different perturbation directions and
bounds (Setting IV). PreAct-ResNet18 is used. The results
are shown in Table 4. Settings III and IV obtain better per-
formance compared with Settings I and II. Thus, the combi-
nation strategy is more effective. Compared with Setting III,
Setting IV further decreases the average natural error, indi-
cating that the varied bound is more valid in some cases. The
worst errors are shown in the online material.

Conclusions
This study theoretically investigates the role of adversar-
ial training with different directions (adversarial and anti-
adversarial) and bounds for the robust model. Three typi-
cal occasions are considered, including classes with differ-
ent difficulties, imbalance learning, and noisy label learning.
A series of theoretical findings are obtained, illuminating a
new objective function that combines adversaries and anti-
adversaries in training. Consequently, an adversarial train-
ing framework (CAAT) is proposed to solve the objective,
in which meta learning is utilized to optimize the combined
weights of the adversary and anti-adversary for each sam-
ple in accordance with its learning characteristics. Extensive
experiments verify the rationality of our theoretical findings
and the effectiveness of CAAT in achieving better accuracy,
robustness, and fairness of the robust models compared with
other adversarial training methods.
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