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Abstract

Many AI-related reasoning problems are based on the prob-
lem of satisfiability of propositional formulas with some
cardinality-minimality condition. While the complexity of the
satisfiability problem (SAT) is well understood when con-
sidering systematically all fragments of propositional logic
within Schaefer’s framework, this is not the case when such
minimality condition is added. We consider the CARDMIN-
SAT problem, which asks, given a formula ϕ and an atom x,
whether x is true in some cardinality-minimal model of ϕ.
We completely classify the computational complexity of the
CARDMINSAT problem within Schaefer’s framework, thus
paving the way for a better understanding of the tractability
frontier of many AI-related reasoning problems. To this end
we use advanced algebraic tools.

Introduction
In many AI-related reasoning problems some notion of min-
imality is involved. Typically in belief change, e.g. revision
or update, one of the basic principles is the principle of min-
imal change. We want to revise/update an agent’s belief set
by some new information. To this end we retain only those
models of new information that have minimal distance to
the models of the original agent’s belief set. In the belief
revision context distance between models is defined by the
symmetric set difference of the atoms assigned to true in
the compared models, and Dalal’s operator (Dalal 1988), for
instance, seeks to minimize the cardinality of this set. In ab-
duction we search for an explanation (a set of literals) that is
consistent with a given theory and which, together with this
theory, logically entails all manifestations. It is natural to
be interested not in all explanations but only in the minimal
ones. Different notions of minimality might be considered,
in particular minimality w.r.t set inclusion or w.r.t. cardinal-
ity (Eiter and Gottlob 1995).

In this paper, we focus on cardinality-minimality. With
such a minimality condition the related reasoning tasks often
give rise to ΘP

2 -complete problems (the class ΘP
2 is located

at the second level of the polynomial hierarchy: polynomial
time with only a logarithmic number of calls to the NP-
oracle). For instance, model checking and implication are
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ΘP
2 -complete for Dalal’s revision operator (Eiter and Gott-

lob 1992; Liberatore and Schaerf 2001). The relevance prob-
lem for abduction with a cardinality-minimality condition,
deciding whether a literal belongs to a cardinality-minimal
explanation, is ΘP

2 -complete when dealing with Horn for-
mulas (Eiter and Gottlob 1995).

Propositional formulas play an important role in AI-
reasoning problems. Since most relevant problems are
intractable in full propositional logic, it is a natural ques-
tion whether syntactic restrictions on the involved formulas
can lead to tractable problems. Schaefer’s framework offers
an ideal framework to investigate this issue. It considers for-
mulas in generalized conjunctive normal form and allows to
systematically consider all fragments of propositional logic.
Indeed, Schaefer’s famous theorem (Schaefer 1978) shows
that the SAT problem becomes tractable under some syntac-
tic restrictions such as Horn, dual Horn, Krom or affine for-
mulas, and remains intractable in all other, nontrivial, cases.
Since then Schaefer’s approach has been taken on numerous
problems, among others on circumscription, abduction, and
argumentation problems (Nordh 2004; Creignou and Zanut-
tini 2006; Nordh and Zanuttini 2008; Creignou, Egly, and
Schmidt 2014). Tools from universal algebra prove to be
a valuable tool for such endeavors, in particular when the
problem questions are stable under introduction of existen-
tially quantified variables and equality constraints (Creignou
and Vollmer 2008). Unfortunately, cardinality is not pre-
served under such introduction. Therefore, in this paper, we
resort to advanced algebraic tools built around the concept of
a weak base (Schnoor and Schnoor 2008; Lagerkvist 2014).

There is a prototypical satisfiability problem for the class
ΘP

2 , that could enlighten the complexity of many reasoning
problems involving a cardinality-minimality condition: It is
the CARDMINSAT problem, which asks, given a formula
ϕ and an atom x, whether x is true in some cardinality-
minimal model of ϕ. It provides a standard hard problem
that can be useful to prove hardness results, especially in the
context of knowledge representation and belief change. For
instance, in (Creignou, Pichler, and Woltran 2018) the rele-
vance problem for abduction mentioned above was proved
to be ΘP

2 -complete for the combined Horn-Krom case.
The ΘP

2 -hardness reduction used in (Creignou, Pichler, and
Woltran 2018) is much easier than the one previously ob-
tained in (Eiter and Gottlob 1995) for the Horn case, be-
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cause it starts from the more closely related problem CARD-
MINSAT, restricted to conjunctions of positive 2-clauses.
Similarly, the model checking and implication problems as-
sociated with Dalal’s operator were proved in (Creignou,
Pichler, and Woltran 2018) to be ΘP

2 -complete for the com-
bined Horn-Krom case by a reduction from the CARDMIN-
SAT problem. Also the model checking problem associ-
ated with a syntactic revision operator for belief bases us-
ing a cardinality-maximality criterion was proved to be ΘP

2 -
complete for the combined Horn-Krom case in this way
(Creignou, Ktari, and Papini 2017).

Our main contribution is a complete complexity classifi-
cation of the CARDMINSAT problem in Schaefer’s frame-
work, which opens the door for a better understanding of
the complexity of many reasoning problems. As an illustra-
tion we prove that the above mentioned relevance problem
for abduction remains ΘP

2 -complete when restricted to affine
formulas (conjunctions of XOR-clauses). Due to space lim-
itations, for results marked with a * the full proof can be
found in the technical report of the paper (Creignou, Olive,
and Schmidt 2023).

Preliminaries
Propositional Logic. We assume familiarity with propo-
sitional logic. A literal is a variable (or an atom) x (pos-
itive literal) or its negation ¬x (negative literal). A clause
is a disjunction of literals. For any integer k ≥ 1, a k-
clause is a clause containing at most k literals. An XOR-
clause is a clause in which the usual connective “or” is
replaced by the exclusive-or connective, denoted by ⊕. A
CNF-formula (resp., an XOR-CNF-formula) is a conjunc-
tion of clauses (resp., XOR-clauses), a k-CNF-formula is a
conjunction of k-clauses. For space economy we use occa-
sionally the shorthands x := ¬x and xy := x ∧ y. Given a
formula ϕ, we denote by var(ϕ) the variables of ϕ. A map-
ping σ : var(ϕ) 7→ {0, 1} is called an assignment to the vari-
ables of ϕ. An assignment σ satisfies a (XOR-)CNF-formula
ϕ if σ satisfies all (XOR-)clauses simultaneously. In this case
σ is called a model of ϕ. We call a variable x ∈ var(ϕ)
frozen if x is assigned the same value in all models of ϕ. The
weight or cardinality of an assignment σ, denoted by |σ|, is
the number of variables x such that σ(x) = 1. A cardinality
minimal model of ϕ is a model of ϕ of minimum cardinal-
ity among all models of ϕ. For two formulas ψ, ϕ we write
ψ |= ϕ if every model of ψ also satisfies ϕ. The two formulas
are equivalent, ψ ≡ ϕ, if they have the same set of variables
and the same set of models. Observe that any XOR-clause is
equivalent to a linear equation over the two-elements field,
of the form x1 ⊕ . . .⊕ xn = a where a ∈ {0, 1}.

Schaefer’s Framework. A Boolean relation of arity k ∈
N is a relation R ⊆ {0, 1}k, and a constraint C is a formula
C = R(x1, . . . , xk), where R is a k-ary Boolean relation,
and x1, . . . , xk are (not necessarily distinct) variables. An
assignment σ satisfiesC, if (σ(x1), . . . , σ(xk)) ∈ R. A con-
straint language Γ is a finite set of Boolean relations, and
a Γ-formula is a conjunction of constraints using relations
from Γ. Note that we do not consider infinite constraint lan-
guages in this paper. Finally, a Γ-formula ϕ is satisfied by an

assignment σ, if σ simultaneously satisfies all constraints in
it. In such a case σ is also called a model of ϕ. We say that a
k-ary relation R is defined by a formula ϕ if ϕ is a formula
over k distinct variables x1, . . . , xk and ϕ ≡ R(x1, . . . , xk).

Moreover, we say that a Boolean relation R is:

• Horn (resp., dual-Horn) if it is definable by a CNF-
formula ϕ that contains at most one positive (resp., neg-
ative) literal per each clause,

• Krom if it is definable by a 2-CNF-formula,
• affine it is definable by an XOR-CNF formula, or equiva-

lently by a formula ϕ that is a conjunction of linear equa-
tions of the form x1 ⊕ . . .⊕ xn = a, where a ∈ {0, 1},

• width-2-affine it is definable by an XOR-2-CNF formula,
or equivalently by a formula ϕ that is a conjunction of lin-
ear equations involving each at most two variables, that
is either of the form x1 = a or of the form x1 ⊕ x2 = a,
where a ∈ {0, 1}.

• 1-valid (resp., 0-valid) if (1, . . . , 1) ∈ R (resp.,
(0, . . . , 0) ∈ R).

• complementive if for every tuple (t1, . . . , tk) ∈ R also
(1− t1, . . . , 1− tk) ∈ R.

Furthermore, we say a relation is Schaefer if it is Horn, dual-
Horn, Krom, or affine. Finally, for a property P of a relation,
we say that a constraint language Γ is P if all relations in Γ
are P .
We define the unary relations T = {1}, F = {0}, and the
6-ary relation R1/3

3 ̸= = {100011, 010101, 001110}. We de-
note by ORk the k-ary OR, by NANDk the k-ary NAND,
and by XORk the k-ary XOR. The relation EVENk con-
tains all k-ary tuples which contain an even number of 1’s.
The relation EVENk

k ̸= denotes the 2k-ary relation defined
by EVENk(x1, . . . , xk)∧ (x1 ̸= xk+1)∧ · · · ∧ (xk ̸= x2k).

In the following definition we introduce different notions
of closure for a constraint language.

Definition 1. 1. The set ⟨Γ⟩ is the smallest set of relations
that contains Γ, the equality constraint, =, and which
is closed under primitive positive first order definitions,
that is, if ϕ is a Γ ∪ {=}-formula and R(x1, . . . , xn) ≡
∃y1 . . . ∃ylϕ(x1, . . . , xn, y1, . . . , yl), then R ∈ ⟨Γ⟩. In
other words, ⟨Γ⟩ is the set of relations that can be ex-
pressed as a Γ ∪ {=}-formula with existentially quanti-
fied variables.

2. The set ⟨Γ⟩ ̸∃ is the set of relations that can be expressed
as a Γ ∪ {=}-formula (no existentially quantified vari-
ables are allowed).

3. The set ⟨Γ⟩ ̸∃,̸= is the set of relations that can be expressed
as a Γ-formula (neither the equality relation nor existen-
tially quantified variables are allowed).

Example 1. Let Γ = {R}, R(x1, x2) = (x1 → x2), and
S(x1, x2) = (x1 = x2). We can express S as Γ-formula via
S(x, y) ≡ R(x, y) ∧R(y, x). Thus, S ∈ ⟨Γ⟩ ̸∃,̸=.

The set ⟨Γ⟩ is called a relational clone or a co-clone with
base Γ (Böhler et al. 2005). Notice that for a co-clone C and
a constraint language Γ the statements Γ ⊆ C, ⟨Γ⟩ ⊆ C,
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⟨Γ⟩ ̸∃ ⊆ C, and ⟨Γ⟩ ̸∃,̸= ⊆ C are equivalent. Throughout
the paper, we refer to different types of Boolean relations
and corresponding co-clones following Schaefer’s terminol-
ogy (Schaefer 1978). Important co-clones and weak bases
for this paper are given in table 1. For a complete list we re-
fer to (Lagerkvist 2014) or to the technical report (Creignou,
Olive, and Schmidt 2023). For clause type descriptions and
simpler bases (not minimal weak bases) we refer to (Nordh
and Zanuttini 2008) and (Böhler et al. 2005), respectively.

A graph representation of the co-clone structure can be
found in figure 1. This graph is usually called Post’s lat-
tice (Post 1941). Some important properties/names are la-
beled besides the respective co-clone. Informally explained,
every vertex corresponds to a co-clone while the edges
model the containment relation in this lattice structure.

Complexity Classes. All complexity results in this paper
refer to classes in the Polynomial Hierarchy (PH) (Papadim-
itriou 1994). The building blocks of PH are the classes P
and NP of decision problems solvable in deterministic, resp.
non-deterministic, polynomial time. The class ∆P

2 is the
class of decision problems that can be decided by a deter-
ministic Turing machine in polynomial time using an ora-
cle for the class NP. One can put restrictions on the num-
ber of oracle calls. If on input x with |x| = n at most
O(log n) calls to the NP oracles are allowed, then we get the
class PNP[O(log n)], which is also referred to as ΘP

2 . A large
collection of ΘP

2 -complete problems can be obtained from
(Krentel 1988; Gasarch, Krentel, and Rappoport 1995). For
the reductions we employ polynomial many-one reductions,
denoted by ≤P

m.

CARDMINSAT
We aim at studying the following natural variant of SAT and
analyzing its complexity.

CARDMINSAT
Instance : A propositional formula ϕ and an atom x.
Question : Is x true in a cardinality-minimal model

of ϕ?

This problem is one of the prototypical problems of the
class ΘP

2 , see (Wagner 1988; Creignou, Pichler, and Woltran
2018). It makes sense to study whether syntactic restrictions
on the formulas make the problem easier and to go through
a more fine-grained complexity study of CARDMINSAT, in
the following also denoted CMS. To this aim we propose
to investigate this problem within Schaefer’s framework.
Hence we consider the following problem, in which Γ is a
constraint language, i.e., a finite set of Boolean relations.

CMS(Γ)
Instance : A Γ-formula ϕ and an atom x.
Question : Is x true in a cardinality-minimal model

of ϕ?

Analogously we denote by SAT(Γ) the Boolean satisfia-
bility problem for Γ-formulas. Our goal is to obtain a com-
plete complexity classification of CMS(Γ), depending on Γ.
This issue has already been settled in the literature within
the Krom fragment.

Theorem 1. (Creignou, Pichler, and Woltran 2018) Let Γ be
a Krom constraint language. If Γ is width-2 affine or Horn,
then CMS(Γ) is decidable in polynomial time. Otherwise it
is ΘP

2 -complete.
We extend this result and obtain a complete complexity

classification in all fragments of propositional logic.
Theorem 2. Let Γ be a constraint language. If Γ is width-
2 affine or Horn or 0-valid, then CMS(Γ) is decidable in
polynomial time. Otherwise it is ΘP

2 -complete.
Note that CMS(Γ) is trivial for 0-valid formulas (the an-

swer is always ”no”). The complexity classification of CMS
in the Krom fragment had been obtained by means of partial
frozen co-clones. While these partial frozen co-clones are
well described within the Krom fragment (Nordh and Zanut-
tini 2009), they are only partially known in the full range of
propositional logic. For this reason in order to get the com-
plete classification we use another set of tools. In particular
we will use a restricted notion of closure, and build on the
notion of weak bases introduced in (Schnoor and Schnoor
2008). This is described in the next section.

Technical Tools
Proof’s Method
The above introduced closure operator ⟨·⟩ on sets of Boolean
relations is relevant in order to obtain complexity results for
the satisfiability problem. Indeed, assume that Γ1 ⊆ ⟨Γ2⟩.
Then a Γ1-formula can be transformed into a satisfiability-
equivalent Γ2-formula, thus showing that SAT(Γ1) can be
reduced in polynomial time to SAT(Γ2) (Jeavons 1998).
Hence, the complexity of SAT(Γ) depends only on the co-
clone ⟨Γ⟩. Accordingly, in order to obtain a full complexity
classification for the satisfiability problem one only has to
study the co-clones.

Unfortunately, since we are here interested in cardinality-
minimal models, we cannot a priori only study the co-
clones. Indeed, existential variables and equality constraints
that may occur when transforming a Γ1-formula into a
satisfiability-equivalent Γ2-formula are problematic, as they
can change the set of models and the cardinality of each
model. Therefore, we will use a more restricted notion
of closure, namely the above introduced closure operator
⟨·⟩ ̸∃,̸=. This operator avoids existential quantifiers and equal-
ity constraints. The only operation to express relations in
⟨Γ⟩ ̸∃,̸= is conjunction of Γ-constraints (see e.g. example 1).
Consequently, when replacing in a reduction a relation R ∈
⟨Γ⟩ ̸∃,̸= by its representing Γ-formula, R is represented ex-
actly: no new variables are introduced and no constraints
other than those built on Γ are allowed (in particular no
equality constraints). Therefore, any reduction based on the
closure operator ⟨·⟩ ̸∃,̸= preserves exactly the set of models,
and, a fortiori, all cardinality-minimal models. Hence, we
obtain the following property.
Proposition 3. Let Γ be a constraint language and R be a
relation.

If R ∈ ⟨Γ⟩ ̸∃,̸= then CMS(R) ≤P
m CMS(Γ).

The proof of our complete classification will consist in a
systematic exploration of the co-clones lattice, yet reduc-
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Co-clone Minimal weak base Name/Indication
II2 R1/3

3 ̸= (x1, . . . , x6) ∧ F(x7) ∧ T(x8) all Boolean relations
II1 (x1 ∨ x2) ∧ (x1x2 ↔ x3) ∧ T(x4) 1-valid
IN2 EVEN4

4 ̸=(x1, . . . , x8) ∧ x1x4 ↔ x2x3 complementive
IL1 XOR3(x1, x2, x3) ∧ T(x4) affine and 1-valid
IL2 EVEN3

3 ̸=(x1, . . . , x6) ∧ F(x7) ∧ T(x8) affine
IL3 EVEN4

4 ̸=(x1, . . . , x8) -
IV1 (x1 ↔ x2x3) ∧ (x2 ∨ x3 → x4) ∧ T(x5) dualHorn and 1-valid
IV2 (x1 ↔ x2x3) ∧ F(x4) ∧ T(x5) dualHorn
ISk

0, k ≥ 2 ORk(x1, . . . , xk) ∧ T(xk+1) positive of width k
ISk

02, k ≥ 2 ORk(x1, . . . , xk) ∧ F(xk+1) ∧ T(xk+2) essentially positive of width k
ISk

01, k ≥ 2 ORk(x1, . . . , xk) ∧ (xk+1 → x1 · · ·xk) ∧ T(xk+2) -
ISk

00, k ≥ 2 ORk(x1, . . . , xk) ∧ (xk+1 → x1 · · ·xk) ∧ F(xk+2) ∧ T(xk+3) IHS-B+ of width k

Table 1: Important co-clones with minimal weak bases from Lagerkvist (2014).

tions can only be obtained via the restrictive operator ⟨·⟩ ̸∃,̸=,
not via the more expressive, co-clone generating, operator
⟨·⟩. In this context, the concept of a weak base is important
(Schnoor and Schnoor 2008). A weak base B for a co-clone
C has the property that (1) ⟨B⟩ = C, and (2) B ∈ ⟨Γ⟩ ̸∃
for any Γ such that ⟨Γ⟩ = C. The existence of a weak base
for each co-clone has been shown by Schnoor and Schnoor
(2008). For a finitely generated co-clone C there even exists
a single relation weak base. If such a weak baseB is in addi-
tion irredundant (that is, the matrix representation does not
contain redundant columns), it holds even that B ∈ ⟨Γ⟩ ̸∃,̸=
for any Γ such that ⟨Γ⟩ = C. Lagerkvist (2014) has identi-
fied minimal weak bases for all finitely generated co-clones.
A relation R is minimal, if (1) R is irredundant, (2) R con-
tains no fictitious coordinates, (3) there is no R′ ⊊ R,
such that ⟨R⟩ = ⟨R′⟩. A coordinate i is called fictitious if
its value has no influence on the membership of a tuple,
that is, (x1, . . . , xi−1, 0, xi+1, . . . , xk) ∈ R if and only if
(x1, . . . , xi−1, 1, xi+1, . . . , xk) ∈ R. Table 1 contains im-
portant co-clones with minimal weak bases, a complete list
is found in (Lagerkvist 2014), or in the technical report.

The proof method to obtain our complete classification
will use the minimal weak bases as follows. In order to show
a hardness result for all constraint languages generating a
certain co-clone C, we pick a minimal weak base B of C
and show that CMS(B) is hard. This implies then hardness
of CMS(Γ) for any Γ such that ⟨Γ⟩ = C by applying Proposi-
tion 3 (because B is a minimal weak base, it is irredundant,
and we hence have that B ∈ ⟨Γ⟩ ̸∃,̸=). We state this in the
following proposition.
Proposition 4. Let C be a co-clone and B be a minimal
weak base of C. Then it holds that CMS(B) ≤P

m CMS(Γ) for
any Γ such that ⟨Γ⟩ = C.

To start with, we need hardness results for some specific
relations, and this is the aim of the next section.

Specific Hardness Results
We give here some hardness results for some specific rela-
tions, they will be used in order to get hardness results for
co-clones in the next section. The classification obtained in
Theorem 1 for the Krom fragments implies the following
result.

Lemma 5. CMS(OR2) is ΘP
2 -hard.

The next result will also be a cornerstone in our classifi-
cation proof.

Lemma 6 (*). CMS(XOR3) is ΘP
2 -hard.

Proof sketch. Recall that XOR3(x, y, z) ≡ (x⊕ y⊕ z) and
XOR4(x, y, z, u) ≡ (x⊕ y ⊕ z ⊕ u). Here we will also use
the ternary relation NAE3 = {0, 1}3 \ {000, 111} and the
problem CMS∗(Γ), defined as follows:

CMS∗(Γ)
Instance : A Γ-formula ϕ, atom x, integer k.
Question : Is x true in a cardinality-minimal model

of ϕ and is this cardinality ≤ k?

The proof consists of the following sequence of reductions.

1. CMS(OR2) ≤P
m CMS(NAE3)

2. CMS(NAE3) ≤P
m CMS∗(XOR3)

3. CMS∗(XOR3) ≤P
m CMS(XOR4)

4. CMS(XOR4) ≤P
m CMS(XOR3, XOR2)

5. CMS(XOR3, XOR2) ≤P
m CMS(XOR3)

Then the result follows from Lemma 5.
We now give the reductions 1., 4., and 5. Reductions 2.

and 3. can be found in the technical report.

1. CMS(OR2) ≤P
m CMS(NAE3).

To each constraint OR2(x, y) we associate the constraint
NAE3(x, y, f) where f is a fresh variable. Observe that
OR2(x, y) ≡ NAE3(x, y, 0). Therefore the idea is to use f
in the place of 0 as a global variable (that is the same for all
constraints) and to force it to take value 0 in all cardinality-
minimal models. This can be done by giving a weight N to
f big enough. For this we add the constraint NAE3(f, f, t),
which expresses f ̸= t, and N constraints NAE3(fj , fj , t),
where the fj , for j = 1, . . . , N, are fresh variables. This
ensures that if f = 1 then f1, . . . , fN = 1. Observe more-
over that since NAE3 is a complementive relation, the built
NAE3-formula is satisfiable if and only if it has a model
with f = 0. Taking N > n where n is the number of
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Figure 1: Complexity overview for CARDMINSAT illustrated on Post’s Lattice.

variables of the original formula ensures that f = 0 in any
cardinality-minimal model.

4. CMS(XOR4) ≤P
m CMS(XOR3, XOR2).

Observe that XOR4(x1, x2, x3, x4) ≡ ∃y, z :
XOR3(x1, x2, y)∧XOR3(x3, x4, z)∧XOR2(y, z). The two
fresh variables y and z take complementary values, so they
will together contribute a weight 1 in any case.

5. CMS(XOR3, XOR2) ≤P
m CMS(XOR3).

Let (ϕ, x) be an instance of CMS(XOR3, XOR2). If ϕ is
unsatisfiable, we map (ϕ, x) to a trivial negative instance of
CMS(XOR3), e.g. (XOR3(x1, x2, x3), x).

Otherwise, we replace any constraint XOR2(x, y) by

XOR3(x, y, w) where w is a fresh variable of weight im-
pact N big enough, say bigger than the number of variables
of the original formula. This assures that the cardinality-
minimal models of the formula are the models of ϕ ex-
tended with w = 0. The variable w can be given the needed
weight impact by adding the constraints XOR3(t, t, t) ∧∧N

i=1 XOR3(t, w,wi) where t and the wi’s are fresh vari-
ables.

Proof of Main Theorem
We prove here Theorem 2. The classification can be visual-
ized on Post’s Lattice, see figure 1. The classification obeys
the borders among co-clones and, as discussed in the previ-
ous section, will be obtained by a systematic exploration of
the co-clones.
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Observe that Theorem 1, the previously obtained classi-
fication in the Krom fragment, concerns co-clones in the
lower part of the lattice, namely every co-clone C such that
C ⊆ ID2. In the depiction of Post’s Lattice in figure 1
the color coding is as follows. The “white” co-clones, for
which the problem CMS is trivial, are the co-clones that con-
tain only 0-valid relations. For those ones the cardinality-
minimum solution is the all-0 solution, and the answer is
always “no”. The “grey” co-clones, for which the problem
CMS is decidable in polynomial time, correspond to co-
clones C such that either C ⊆ IE2 or C ⊆ ID1. In the
first case, all relations are Horn, and therefore there exists a
unique cardinality-minimal model that can be found by unit
propagation in polynomial time. In the second case, all re-
lations are width-2-affine and the tractability result follows
from Theorem 1.

Finally, to obtain the complexity classification it remains
to prove hardness for the ”black” co-clones, namely II2, II1,
IN2, IL2, IL3, IL1, IV2, IV1, and, for any k ≥ 2, for the co-
clones ISk00, ISk01, ISk02, ISk0. The ”black” co-clone ID2 is dealt
with by Theorem 1.

As we have discussed in the previous section, for each
remaining co-clone C, given one of its weak bases B we
will show that CMS(B) is hard. This will be done by a
reduction from a known hard problem, either CMS(OR2)
or CMS(XOR3). For example, given an instance (ϕ, x)
of CMS(OR2), where ϕ is a conjunction of OR2-clauses,
we will build a B-formula ϕ′ such that x belongs to a
cardinality-minimal model of ϕ if and only if x belongs to
a cardinality-minimal model of ϕ′. The construction of ϕ′
is obtained by a local replacement of each clause of ϕ by
an equivalent B-formula. Usually this requires introduction
of fresh (existentially quantified) variables. Some of these
additional variables will be frozen, which means that their
truth value is the same in all models, and thus their contribu-
tion to the weight of any model is fixed. In order to be sure
that the weight of the non-frozen additional variables will
not compromise the cardinality-minimal models, the trick is
to neutralize them by adding for each such variable y, an-
other one y′ and to force them to take complementary val-
ues, i.e. y ̸= y′. Thus the weight contribution of y and y′
together will always be 1 in all models. Sometimes, to do
so we will have to express the truth value 0. When this is
not possible directly, the idea is to replace 0 by a variable f ,
and then introduce a big number of copies of f such that any
cardinality-minimal model of the formula has to set f to 0.

In the following when we speak about the minimal
weak base of a co-clone we mean the weak base given in
(Lagerkvist 2014) (cf. also table 1 and the technical report).
In the proofs, we will always restate the exact definition of
the corresponding weak base, and, where convenient, also
its matrix representation.

The following proposition provides the missing hardness
results.

Proposition 7 (*). Let Γ be a constraint lan-
guage. Then CMS(Γ) is ΘP

2 -hard if ⟨Γ⟩ ∈
{II2, II1, IN2, IL2, IL3, IL1, IV2, IV1, IS

k
00, IS

k
01, IS

k
02, IS

k
0},

for any k ≥ 2.

The first five cases are proven in the following lemmas.
Proofs for the remaining cases can be found in the technical
report.

Lemma 8. Let ⟨Γ⟩ = II2. Then CMS(Γ) is ΘP
2 -hard.

Proof. Let RII2
be the minimal weak base of II2, that

is, R1/3

3 ̸= (x1, . . . , x6) ∧ F(x7) ∧ T(x8), where R1/3

3 ̸= =
{100011, 010101, 001110}.

The matrix representation is as follows.

RII2
=

(
10001101
01010101
00111001

)

We show that CMS(OR2) ≤P
m CMS(RII2

). Then the result
follows from Lemma 5 and Proposition 4.

Let (ϕ, x) be an instance of CMS(OR2), where ϕ =∧p
i=1(x

1
i∨x2i ). Let {ai, bi, ci, di, a′i, b′i, c′i, d′i | i = 1 . . . p}∪

{t, f} be fresh variables. For each constraint (x1i ∨ x2i ) we
build the constraint RII2

(ai, bi, ci, di, x
1
i , x

2
i , f, t). Observe

that OR2(x1i , x
2
i ) ≡

∃ai, bi, ci, di, f, t RII2
(ai, bi, ci, di, x

1
i , x

2
i , f, t).

The existential variables are uniquely determined. The vari-
ables f and t are frozen, while the values of ai, bi, ci, di
are not. Nevertheless their values can be neutralized by
the introduction of additional fresh variables a′i, b

′
i, c

′
i, d

′
i

who are forced to take complementary values. In the
case of ai and a′i this can be achieved by the con-
straint RII2

(ai, a
′
i, f, a

′
i, ai, t, f, t). Analogous constraints

are added for bi, b′i, ci, c
′
i and di, d′i.

Consider ϕ′ the conjunction of all these constraints. Ob-
serve that the formulas ϕ and ϕ′ are equivalent when quan-
tifying on the fresh variables. Moreover, the models of ϕ
and ϕ′ are in one-to-one correspondence. Each model σ of
ϕ can be extended to a model σ′ of ϕ′ whose weight is
|σ′| = |σ|+4p+1. Consequently, x belongs to a cardinality-
minimal model of ϕ if and only if x belongs to a cardinality-
minimal model of ϕ′, thus concluding the proof.

Lemma 9. Let ⟨Γ⟩ = II1. Then CMS(Γ) is ΘP
2 -hard.

Proof. Let RII1
be the minimal weak base of II1, that is,

RII1
(x1, x2, x3, x4) = (x1 ∨ x2) ∧ (x1x2 ↔ x3) ∧ T(x4).

The matrix representation is as follows.

RII1
=

(
0101
1001
1111

)

We show that CMS(OR2) ≤P
m CMS(RII1

). Then the result
follows from Lemma 5 and Proposition 4.

Let (ϕ, x) be an instance of CMS(OR2), where ϕ =∧p
i=1(x

1
i ∨ x2i ). For each constraint (x1i ∨ x2i ) we build

the constraint RII1
(x1i , x

2
i , yi, t). Observe that (x1i ∨ x2i ) ≡

∃yi∃tRII1
(x1i , x

2
i , yi, t). The variable t is frozen to 1. The

variable yi is not, but we can neutralize its weight by adding
the constraint RII1

(yi, zi, f, t), which will force zi ≡ ¬yi as
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soon as f is evaluated to 0. We force f to be evaluated to 0
in any cardinality-minimal model by adding the constraints
RII1

(f1j , f
2
j , f, t), for j = 1, . . . , N . If f = 1, these con-

straints force all the f1j , f
2
j to 1, that is, 1 + 2N variables.

If f = 0, one of the f1j , f
2
j is forced to 1 and the other to 0,

that is, the weight contribution is only N .
Consider ϕ′ the conjunction of all these constraints. Ob-

serve that the formulas ϕ and ϕ′ are equivalent when quanti-
fying on the fresh variables. Moreover, the models of ϕ and
the models of ϕ′ in which f = 0 are in one-to-one corre-
spondence. Each model σ of ϕ can be extended to a model σ′

of ϕ′ with σ′(f) = 0, whose weight is |σ′| = |σ|+p+N+1.
Observe that ϕ is always satisfiable and therefore, by the

above observation, ϕ′ always admits a model with f = 0.
Moreover, the models of ϕ′ in which f = 1 are of cardinality
at least 2N + 2, while the models of ϕ′ in which f = 0 are
of cardinality at most n+ p+N +1, where n is the number
of variables of ϕ. Now, if we choose N big enough, e.g.
N ≥ p + n, we ensure that an assignment with f = 1 can
never be a cardinality-minimal model. Consequently, putting
all together shows that x belongs to a cardinality-minimal
model of ϕ if and only if x belongs to a cardinality-minimal
model of ϕ′, thus concluding the proof.

Lemma 10. Let ⟨Γ⟩ = IN2. Then CMS(Γ) is ΘP
2 -hard.

Proof. Let RIN2
be the minimal weak base of IN2, that is,

RIN2
= EVEN4

4 ̸=(x1, . . . , x8) ∧ x1x4 ↔ x2x3. The matrix
representation is as follows.

RIN2
=


00001111
00110011
01010101
10101010
11001100
11110000


We show that CMS(OR2) ≤P

m CMS(RIN2
). Then the re-

sult follows from Lemma 5 and Proposition 4. Observe that
OR2(x1i , x

2
i ) ≡

∃ai, bi, ci, di RIN2
(0, ai, bi, ci, di, x

1
i , x

2
i , 1).

In this co-clone we can express f ̸= t, but not f = 0
and t = 1. The idea is to use f and t in place of 0
and 1 as global variables (that is, the same for all con-
straints) and to force them to take the appropriate values in
all cardinality-minimal models. This can be done by adding
the constraint RIN2

(f, f, f, f, t, t, t, t), which expresses f ̸=
t, and by adding a number N big enough of constraints
RIN2

(fj , fj , fj , fj , t, t, t, t), where the fj , for j = 1, . . . , N ,
are fresh variables.

In choosing N bigger than the number of variables of
the original formula, we can assure that in any cardinality-
minimal model f is assigned 0 and t is assigned 1. In us-
ing this trick we can mimic the reduction proposed in the
proof of Proposition 8 and hence transform an OR2-formula
into an RIN2

-formula in preserving the cardinality-minimal
models, thus providing the reduction from CMS(OR2) to
CMS(RIN2

).

Lemma 11. Let ⟨Γ⟩ = IL2. Then CMS(Γ) is ΘP
2 -hard.

Proof. Let RIL2
be the minimal weak base of IL2, that is,

RIL2
= EVEN3

3 ̸=(x1, . . . , x6) ∧ F(x7) ∧T(x8). The matrix
representation is as follows.

RIL2
=

 00011101
01110001
10101001
11000101


We show that CMS(XOR3) ≤P

m CMS(RIL2
). Then the result

follows from Lemma 6 and Proposition 4.
Let (ϕ, x) be an instance of CMS(XOR3), where

ϕ =
∧p

i=1(x
1
i ⊕ x2i ⊕ x3i ). Let {ui, vi, wi, u

′
i, v

′
i, w

′
i |

i = 1 . . . p} ∪ {t, f} be fresh variables. For each
constraint (x1i ⊕ x2i ⊕ x3i ) we build the con-
straint RIL2

(ui, vi, wi, x
1
i , x

2
i , x

3
i , f, t). Observe that

XOR3(x1i , x
2
i , x

3
i ) ≡

∃f, t, ui, vi, wi RIL2
(ui, vi, wi, x

1
i , x

2
i , x

3
i , f, t).

The variables f, t are frozen, and the other existential vari-
ables are uniquely determined and can be neutralized by
adding three additional variables u′i, v

′
i, w

′
i and the constraint

RIL2
(ui, vi, wi, u

′
i, v

′
i, w

′
i, f, t).

Consider ϕ′ the conjunction of all these constraints. Ob-
serve that the formulas ϕ and ϕ′ are equivalent when quan-
tifying on the fresh variables. Moreover, the models of ϕ
and ϕ′ are in one-to-one correspondence. Each model σ of
ϕ can be extended to a model σ′ of ϕ′ whose weight is
|σ′| = |σ|+3p+1. Consequently, x belongs to a cardinality-
minimal model of ϕ if and only if x belongs to a cardinality-
minimal model of ϕ′, thus concluding the proof.

Lemma 12. Let ⟨Γ⟩ = IL3. Then CMS(Γ) is ΘP
2 -hard.

Proof. Let RIL3
be the minimal weak base of IL3, that is,

RIL3
= EVEN4

4 ̸=(x1, . . . , x8).
We show that CMS(XOR3) ≤P

m CMS(RIL3
). Then the re-

sult follows from Lemma 6 and Proposition 4.
All relations in the co-clone IL3 are complementive.

In particular, up to some permutation of the variables
(columns) RIL3

is the complementive closure of RIL2
. Thus,

we use the same reduction idea as for IL2, and then proceed
analogously as we have done for the case of IN2: replace 0
and 1 by f and t, express f ̸= t ≡ RIL3

(f, f, f, f, t, t, t, t)
and put a big weight on f , hence forcing f = 0 and t = 1 in
any cardinality-minimal model.

This concludes the proof of Theorem 2. We restate here
Theorem 2 in terms of co-clones.

Theorem 13. Let Γ be a finite constraint language. The
problem CMS(Γ) is

• ΘP
2 -complete if C ⊆ ⟨Γ⟩ ⊆ II2 for C ∈ {IS20, IL3, IL1},

• polynomial time solvable if either ID ⊆ ⟨Γ⟩ ⊆ ID1 or
IR1 ⊆ ⟨Γ⟩ ⊆ IE2,

• trivial otherwise (Γ is 0-valid)
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Example of Application
Let us now consider the following relevance problem for ab-
duction. A propositional abduction problem (PAP) P con-
sists of a tuple ⟨V,H,M, T ⟩, where V is a finite set of vari-
ables, H ⊆ V is the set of hypotheses, M ⊆ V is the set of
manifestations, and T is a consistent theory in the form of a
propositional formula. A set S ⊆ H is a solution (also called
explanation) to P if T ∪ S is consistent and T ∪ S |= M
holds. Often, one is not interested in any solution of a given
PAP P but only in minimal solutions, where minimality is
defined w.r.t. set inclusion or smaller cardinality.

For subset-minimality the relevance problem has been
completely classified in Schaefer’s framework by Creignou
and Zanuttini (2006). Here we consider the following deci-
sion problem.

CARD-MIN-RELEVANCE

Instance : PAP P = ⟨V,H,M, T ⟩ and hypothesis
h ∈ H .

Question : Is h relevant, i.e., does P admit a
cardinality-minimal solution S such that
h ∈ S?

It is known that the CARD-MIN-RELEVANCE problem is
ΘP

3 -complete in its full generality and ΘP
2 -complete in the

Horn case (Eiter and Gottlob 1995). The Krom case has
been considered afterwards (Creignou, Pichler, and Woltran
2018). The complexity results obtained so far for the CARD-
MIN-RELEVANCE problem were restricted, due to an in-
complete picture of the complexity of CARDMINSAT. With
the help of Theorem 2 we extend these results in showing
that the complexity of CARD-MIN-RELEVANCE in the affine
case matches the Horn and Krom cases.

Theorem 14. CARD-MIN-RELEVANCE is ΘP
2 -complete

even if the theory is restricted to XOR-CNF-formulas.

Proof. Membership follows from the fact that one can de-
cide the satisfiability of an XOR-CNF formula in polyno-
mial time. The hardness proof is obtained via a reduction
from CMS(XOR3).

Consider an arbitrary instance (ϕ, xi) of CMS(XOR3).
Let ϕ =

∧p
i=1(x

1
i ⊕ x2i ⊕ x3i ) over variables X =

{x1, . . . , xn} and let G = {g1, . . . , gp} be a set of
fresh, pairwise distinct variables. We define the PAP P =
⟨V,H,M, T ⟩ as follows:

V = X ∪G
H = X

M = G

T = {(x1i ⊕ x2i ⊕ x3i ⊕ ḡi) | 1 ≤ i ≤ p}

It is easy to verify that the models of ϕ coincide with the
solutions of P . Hence, xi is in a cardinality-minimal model
of ϕ if and only if xi is in a cardinality-minimal solution of
P .

Note that, more precisely, the proof shows the hardness of
CARD-MIN-RELEVANCE for XOR4-formulas.

Conclusion
In this paper we obtained a complete complexity classifi-
cation of the problem CARDMINSAT(Γ) for all finite con-
straint languages Γ: if Γ is width-2-affine, Horn or 0-valid,
CARDMINSAT(Γ) is solvable in polynomial time, other-
wise it is ΘP

2 -complete. The weak base method developed
by Schnoor and Schnoor (2008), completed with the de-
scription of minimal weak bases for co-clones by Lagerkvist
(2014) proved to be a valuable tool for this endeavor. As de-
scribed in the introduction understanding the complexity of
CARDMINSAT is crucial for the study of several reasoning
tasks in artificial intelligence that are based on minimizing
cardinality. As we have motivated and outlined above we be-
lieve the establishment of the complete complexity picture
of CARDMINSAT(Γ) is a cornerstone for future research in
this direction: it will allow the precise analysis of the com-
putational complexity of problems such as relevance ques-
tions and belief revision operators. To obtain a richer picture
we further plan to investigate the parametrized complexity
of such problems. For instance, in (Mahmood, Meier, and
Schmidt 2021) a rich picture of the parametrized complex-
ity of abduction problems is obtained. Yet, the named ab-
duction relevance problem in this picture is missing. With
the now established complete complexity classification of
CARDMINSAT it seems in reach to complete this picture.
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