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Abstract

Advances in machine learning have enabled the prediction
of immune system responses to prophylactic and therapeu-
tic vaccines. However, the engineering task of designing vac-
cines remains a challenge. In particular, the genetic variabil-
ity of the human immune system makes it difficult to design
peptide vaccines that provide widespread immunity in vac-
cinated populations. We introduce a framework for evaluat-
ing and designing peptide vaccines that uses probabilistic ma-
chine learning models, and demonstrate its ability to produce
designs for a SARS-CoV-2 vaccine that outperform previous
designs. We provide a theoretical analysis of the approxima-
bility, scalability, and complexity of our framework.

Introduction

Peptide vaccines that expand and activate T cells have
emerged as a promising prophylactic and therapeutic ap-
proach for addressing health related challenges including in-
fectious diseases and cancer (Malonis, Lai, and Vergnolle
2019). In contrast to more conventional live-attenuated vac-
cines that are based on entire organisms, or subunit vaccines
that are based on entire protein subunits, peptide vaccines
are based on a small set of protein fragments (peptides) that
are sufficient to induce a T cell immune response, enabling
the elicitation of far more targeted responses that avoid al-
lergenic and reactogenic responses (Li et al. 2014).

The design of a peptide vaccine consists of selecting im-
munogenic protein fragments, usually referred to as epitopes
(Li et al. 2014), that when included in a vaccine expand epi-
tope specific T cells. Advances in machine learning have en-
abled our ability to predict which peptides will be presented
by major histocompatibilty complex (MHC) molecules for
surveillance by the adaptive immune system (Ching et al.
2018; Reynisson et al. 2020), which can be used to identify
which epitopes will be displayed (Sohail et al. 2021).

The epitopes displayed by an individual depend upon the
specific alleles of their MHC genes, and thus the peptides
displayed by the immune system can vary greatly from indi-
vidual to individual (Zaitouna, Kaur, and Raghavan 2020).
Therefore, the engineering task of finding a set of peptides
that is predicted to be displayed by a large portion of the pop-
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ulation remains challenging despite progress on the peptide-
MHC display task.

In this work we introduce a framework for evaluating and
designing peptide vaccines that uses probabilistic interpreta-
tions of machine learning models, and demonstrate its ability
to produce designs for the SARS-CoV-2 vaccine design task
that outperform previous designs. We complement this with
a theoretical analysis of the approximability, scalability, and
complexity of our framework, which may be of independent
interest.

Our Contribution

To improve the effectiveness of a vaccine it is important to
introduce redundancies into its design so the failure of a sin-
gle displayed peptide to elicit an immune response does not
become a single point of failure (Liu et al. 2022). Vaccines
designed with an n-times coverage objective aim to obtain at
least n immunogenic peptide “hits” in each person. Having
more than one “hit” provides redundancy to expand multiple
T cell clonotypes in an individual to fight disease, protects
against peptide sequence drift resulting from pathogen or tu-
mor mutations, protects against the loss of an MHC gene,
and accounts for the variability of peptide immunogenicity
between individuals.

We show that optimizing the population coverage for
strict n-times coverage guarantees cannot be tractably ap-
proximated to any constant factor assuming the intractability
of the GAP-SMALL-SET EXPANSION problem (Raghaven-
dra and Steurer 2010), a result which may be of independent
interest. We therefore propose a diminishing returns frame-
work that uses a soft redundancy guarantee as its objective.
The resulting objective is both submodular and monotonic,
and can therefore be approximated via a greedy approach
which we call Optivax-P. We supplement the theoretical im-
provement with an empirical comparison of vaccines de-
signed using our approach and previous designs. Our pro-
posed framework also contributes the following desirable
properties: it makes explicit the utility of having redundancy,
does not discount the benefits of being covered without re-
dundancy, and is able to reason with uncertainty. We demon-
strate how uncertainty values for epitope identification can
be derived by calibrating state-of-the-art peptide-MHC dis-
play predictors.

While redundancies in a design are important, it is also



important that they be dissimilar redundancies, since rea-
sons for failure may be shared between similar peptides.
This additional constraint that selected peptides be dissim-
ilar is problematic as it allows the problem formulation to
encode NP-hard graph problems that in general cannot be
approximated to any constant factor. However, by parame-
terizing on the structure of the constraints, we can derive
lower bounds for the performance of the greedy approach
which show that the greedy approach can still provide ap-
proximation guarantees under certain assumptions. These
bounds may also be of independent interest.

Related Work

The use of computational methods to aid vaccine design has
taken on an increasingly important role in the vaccine de-
sign process over the past two decades (Moise et al. 2015).
Much of the advancement stems from improvements in the
epitope identification task, which has seen impressive im-
provements with advances in data collection strategies and
machine learning (Ching et al. 2018; Reynisson et al. 2020).
While good epitope prediction tools are essential to vaccine
design, the focus of this work is on the downstream task of
calibrating the predictions and selecting defined epitopes for
vaccine inclusion.

Earlier works on vaccine design are reviewed in Oyarzun
and Kobe (2015), and employ discrete optimization tech-
niques such as integer linear programming and genetic al-
gorithms to optimize population coverage. However, they do
not anticipate or solve the problem of coverage with dissimi-
lar redundancies (Liu et al. 2022), which we do in this work.
Furthermore, they do not consider the epistemic uncertainty
associated with epitope predictions, which we do.

Our work is closely related to the work in (Liu et al. 2022),
where the use of an objective that accounts for dissimilar re-
dundancies is proposed. However, approximating their pro-
posed objective to any constant factor appears to be an in-
tractable problem, while our objective permits constant fac-
tor approximations in polynomial time. Our framework also
allows for reasoning about redundancies with uncertainty,
which theirs does not.

Presentation

In the remaining four sections of the paper we present
the optimization problem that we wish to solve (A Dimin-
ishing Returns Objective Enables Theoretical Performance
Guarantees), provide an algorithm for solving the prob-
lem and analyze its runtime and approximation guarantees
(Methods), apply our framework to the SARS-CoV-2 vac-
cine design problem (Results), and conclude with a discus-
sion (Discussion). Theorems are presented where appropri-
ate throughout. Proofs, including intuitive descriptions, are
relegated to Appendix A for improved flow (see Data Avail-
ability regarding appendices).

A Diminishing Returns Objective Enables
Theoretical Performance Guarantees

Our goal in this section is to formalize the vaccine design
problem as an optimization problem. We first show theoret-
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ical barriers to obtaining performance guarantees for previ-
ous formalizations, and then introduce the diminishing re-
turns framework which addresses this.

Peptide vaccines are designed by considering the peptide
sequence(s) of a target of interest, for example the proteome
of a virus, and selecting a small set of peptides within the
target sequences to include in the vaccine. Vaccine peptides
are selected such that they elicit an immune response in a
large portion of a susceptible population that we wish to vac-
cinate. This is done by selecting vaccine peptides that are
displayed on the cell surface by MHC proteins. The result-
ing peptide-MHC complexes activate the cellular immune
system. The challenge of selecting a set of peptides arises
from the polymorphism present in MHCs within a popula-
tion. Different MHC alleles have different peptide binding
properties, so the peptides must be carefully chosen in order
to elicit widespread immune responses from a given popula-
tion.

Preliminaries

Let R=° denote non-negative real numbers. Let S be some
finite set of elements. Let F' : 25 — RZ9 We say F is
submodular if F(S; U {e}) — F(S1) > F(S2 U {e}) —
F(S3) whenever S; C S; and e € S, and we say that F' is
monotonically increasing if S; C So = F(S1) < F(Ss)
for all S1,5, C S.

Suppose G = (V, E) is a graph. For simplicity, we will at
times use Gy to denote its vertex set V and G g to denote its
edge set F. The kth power of G, denoted G*, is defined as
the graph (G%,, G%), where G}, = Gy and G%, contains all
pairs of vertices between which there exists a path of length
less than or equal to k in G.

We will use 1 x to denote an indicator that evaluates to 1
if X is true and O otherwise for any proposition X .

Optimizing Population Coverage with
Redundancies Is Computationally Difficult

It is important for a vaccine to cause the display of multiple
epitopes in individuals to provide redundancy in the acti-
vation of T cell clonotypes, to expand multiple T cell clono-
types in an individual to fight disease, to protect against pep-
tide sequence drift as a consequence of pathogen or tumor
mutations, to protect against the loss of an MHC gene, and
to account for the variability of peptide immunogenicity be-
tween individuals (Liu et al. 2022). In Liu et al. (2022), the
authors showed that previous vaccine designs fail to cover
significant portions of the population when coverage criteria
include these redundancies. To address this, they introduce
the n-times coverage framework, which involves solving the
max n-times coverage problem. The problem is defined as
follows:

Definition 1. Given a ground set, a set of weights over the
ground set, a collection of multisets whose elements are from
the ground set, and some cardinality constraint k, find a col-
lection of k multisets such that the aggregate weights of the
elements in the ground set that are covered at least n times
is maximized.



The sum of the weights of the the elements that are cov-
ered at least n times is then called the n-times coverage. For
vaccine design, the ground set corresponds to MHC geno-
types, the weights correspond to the percentage of the popu-
lation with the genotypes, and each multiset corresponds to
a peptide, which covers certain genotypes a variable number
of times. Solving this problem with cardinality constraint k
then gives a vaccine design consisting of k peptides, with
the objective that a large portion of the population display at
least n peptides (i.e. have at least n peptide-MHC hits).

While this is a natural extension of earlier vaccine de-
sign paradigms that do not account for redundancies, it
is a computationally difficult problem. The authors have
shown in their work that this is an NP-hard optimiza-
tion problem, and so they propose heuristic approaches.
However their proposed approaches have no performance
guarantees. Here, we show that this problem is related to
GAP-SMALL-SET EXPANSION, which suggests that find-
ing any constant factor approximation cannot be achieved
in polynomial time.

Theorem 1. For any ¢ > 0, if there exists a poly-
nomial time algorithm that can achieve an approxima-
tion factor of € to max n-times coverage, then there
exists a polynomial time algorithm that can decide
GAP-SMALL-SET EXPANSION(n) for some n € (0,0.5).

There is currently no known polynomial time algo-
rithm for GAP-SMALL-SET EXPANSION(7) for any n €
(0,0.5). The Small Set Expansion Hypothesis conjectures
that GAP-SMALL-SET EXPANSION(7) is NP-hard for any
n € (0,0.5), and is currently an open problem related to the
Unique Games Conjecture (Raghavendra and Steurer 2010).

A Diminishing Returns Framework for Vaccine
Design Provides a Submodular Optimization
Objective

A key reason underlying the complexity of the max n-times
coverage problem is that the utility of a peptide may be hid-
den until we are close to reaching n-times coverage. This
makes it difficult select peptides optimally before its utility
becomes apparent. To address this, we propose a diminish-
ing returns framework, where peptides will improve the ob-
jective at any coverage level. Intuitively, this provides a “gra-
dient” along which an optimization procedure can climb.
Formally, let U R0 — R2Y pe some non-
negative monotonically increasing concave function such
that U(0) = 0. Let M denote the set of MHC genotypes
observed in the population. Let w : M — RZ% be a
weight function that gives the frequency of each genotype
in the population. Let P denote the set of candidate pep-
tides from which a subset is selected for the vaccine de-
sign. If p € P and m € M, let display(p, m) denote the
predicate of whether p is displayed in an individual with
genotype m. To model uncertainty, we let display(p,m)
vary over the sample space of some probability space, and
we assume that the subset of the probability space where
display(p, m) evaluates to true is always measurable. The
objective, parametrized by U, can then be written as follows:
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Where S C P is the set of peptides selected for vaccine
inclusion. This objective is a monotonically increasing sub-
modular function.

Theorem 2. Forany U : RZ° — R=° that is monotonically
increasing and concave, Fy is a monotonically increasing
submodular function.

As a consequence, we can attain a (1 — efl)-factor ap-
proximation using the greedy approach if no additional con-
straints are given aside from the cardinality of the peptide
set (Nemhauser, Wolsey, and Fisher 1978). Beyond sub-
modularity, this objective contributes the following desirable
properties: first, it accounts for the fact that having peptide-
MHC hits is useful, even if the redundancy does not obtain
a given threshold. While having high redundancy is better
than having low redundancy, having low redundancy is bet-
ter than not displaying any peptides. Second, the utility we
expect from attaining a given number of peptide-MHC hits
is made explicit through U. Third, it allows reasoning with
uncertainty by allowing display(p, m) to be an uncertain
event. Many prediction models output a soft classification
instead of a hard one, which we can calibrate to attach un-
certainties to the classifications.

For an arbitrary distribution over the set of indicator vari-
ables 1 g;spiay(p,m) We may need to approximate the expec-
tation in Fy; via sampling. However, we can compute the
objective Fyy exactly and efficiently if we suppose that for
a given MHC genotype m, the set of indicator variables
L gsspiay(p,m) are independent. This is almost certainly false
given a sufficiently large pool of peptide sequences, since
we should be able to significantly improve the performance
of a predictor by training it on a sufficiently large number of
peptide sequences. However, we can weaken this assump-
tion to k-wise independence if we only consider vaccine de-
signs that include at most & peptides. For values of & that are
reasonable in the context of designing peptide vaccines, this
assumption is more reasonable than the full independence
assumption.

Under the independence assumption we can calculate the
objective by computing the distribution of the sum via iter-
ated convolutions of Bernoulli distributions, and then tak-
ing the expectation using the distribution (see Appendix C
for additional details). This runs in time O(|M||S|?), where
| M| is the number of genotypes and |S| is the number of
peptides in the vaccine design.

Peptide Selections Need to Be Constrained to Avoid
Unreasonable Designs

We impose two types of constraints on the set of peptides
selected for vaccine inclusion: a cardinality constraint, and
a set of pairwise constraints.

The cardinality constraint is necessary since our objective
function is monotonically increasing. Therefore, the full set
of candidate peptides P will maximize it. This is undesir-
able, since peptide vaccines need to be compact to permit



effective delivery and to induce effective intolerance in the
context of limited immune system capacity. Therefore, we
will impose a cardinality constraint on the set of selected
peptides such that it cannot exceed a given size k.

The pairwise constraints are required to avoid very similar
peptides from being included. Peptide candidates for vaccine
inclusion are generated by sliding windows of various sizes
across the protein sequence we wish to target. The produces
peptides that are highly similar in sequence, such as nested
sequences, and including highly related sequences does not
truly improve the effectiveness of the vaccine. Furthermore,
the assumption that the variables indicating peptide-MHC
interactions are independent likely does not hold when pep-
tides are very similar, since it is possible that the predictor
makes use of similar features, which result in systematic er-
rors. Therefore, we introduce a set of pairwise constraints G
as a graph where the vertex set Gy = P, and where edges
exist between peptides that are deemed redundant. We then
require that the peptides in the vaccine design form an inde-
pendent set within G.

Methods

A Greedy Approach Provides Performance
Guarantees under the Diminishing Returns
Framework

Our goal is the following: given a peptide set P, a set of
MHC genotypes M, binding credences between all pep-
tides and MHCs, a monotonically increasing concave utility
function U : RZ% — R=% with U(0) = 0, a cardinality
constraint k, and pairwise constraints G, find a set S C P
that satisfies all the constraints and maximizes the objective
function F;(S). We define the binding credence between a
peptide p and an MHC m as the measure of the subset of
the probability space where display(p, m) evaluates to true.
Practically, these values behave like probabilities. We use
the term credence to emphasize the epistemic nature of the
uncertainty.

We present Optivax-P, a greedy approach outlined in Al-
gorithm 1, to produce a solution to this problem. The proce-
dure is straightforward: at each iteration we add the peptide
that maximally improves the solution to the solution set, then
eliminate that peptide and all similar peptides from consid-
eration for all future steps.

Runtime Analysis of Optivax-P The naive runtime is
O(k3|P||M|): the objective function is evaluated |P| times
to compute the arg max, the arg max is computed at most
k times, and each evaluation of the objective function takes
time O(k?|M]|) since the designs will never contain more
than k elements.

We can improve the runtime by evaluating the marginal
improvement rather than the full objective, bringing the
overall runtime down to O(k?|P||M]) (see Appendix C).
We can further vectorize the computation to evaluate the
argmax in O(1) vector operations, reducing the runtime
to O(k) vector operations and O(|P|k) operations for con-
straint handling (see Appendix C). However, vector oper-
ations require batching if | M| and |P] are large, so those
parameters still play a significant role in the runtime.
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Algorithm 1: Optivax-P

Input: A ground set of candidate peptides P, a cardinality
constraint k, a similarity graph (P, F'), and a monotone
submodular function F : 27 — R=% where F()) = 0
Output: A set S C P such that |S| < k
S0
QP
while (Q # 0) A (S| < k) do
T < argmax,q F(SU{x})
S+ Suz
N« {yl{z,y} € B} U {x}
Q+Q\N

end while

return S

Our implementation can generate designs of size k ~ 102
over a peptide set of size |P| ~ 10% with | M| ~ 10° geno-
types in approximately 5 minutes when parallelized over 8
Titan RTX GPUs. See Appendix C for additional details.

Approximation Ratio of Optivax-P Let S* denote the
true optimum of the optimization problem. If we let each
peptide and MHC genotype interact with probability 1 and
let k be sufficiently large, then the desired optimization is
equivalent to finding the maximum independent set within
G. Finding any constant factor approximation to max-clique
is NP-hard (Zuckerman 2006), which then immediately im-
plies that S* cannot be approximated to any constant factor.
Therefore, the quality of the solution produced by Optivax-P
cannot be unconditionally bounded by a constant factor with
respect to S*, since Optivax-P runs in polynomial time.

However, we can bound the solution by looking at the
graph structure of G. Since we are considering cases where
similarity relations are mostly generated from sliding win-
dows over linear sequences, we might expect the resulting
graph to be of low degree. Let A(G) denote the degree of
G. Note that in the special case where A(G) = 0, there
are no pairwise constraints, so the problem reduces to the
optimization of a monotonic submodular function under a
cardinality constraint. It is well established that the greedy
approach attains an approximation ratio of (1 — e~!) in this
case (Nemhauser, Wolsey, and Fisher 1978), and that attain-
ing an approximation ratio of (1 — e~! + ¢€) for any € > 0 is
NP-hard (Feige 1998).

Another property we can look at is the graph power of G.
We may expect that in the case where a graph looks like a
path, taking the graph power would not add too many extra
constraints, in which case replacing G with its graph power
GP would not yield a optimum that is too different. Let Sy,
denote the solutions to the more constrained optimizations:

S*

p

Fu(9) 2)

arg max
SCP: |S|<k
v1,v2€S8 = {v1,v2}¢G%,

We can then bound the output of Optivax-P by incorpo-
rating these extra graph parameters:

Theorem 3. Let S be the output of Optivax-P. Then:



1. If A(G) = 0, then Fy(S) > Fy(S*)(1 —e™ )

2. If A(G) > 0, then Fr(8) > max(F22), Fuis )

We can upper bound the best possible performance of
polynomial time algorithms.

Theorem 4. Unless P = NP, there exists no polynomial time

algorithm that can output an approximation S that guaran-
tees either of the following on all inputs for any € > 0:

1. Fu(S) > Fu(S35) (1 —e ' +e)
2. Fu(S) = Fu(S*) (gra@y) "
Using Machine Learning Based Models to Attain
Binding Credences

We define display(p, m) as a random event in a probability
space of beliefs that peptide p is presented by MHC geno-
type m. We use well established state-of-the-art neural net-
work based models (NetMHCpan4.1 and NetMHCpanll4.0
(Reynisson et al. 2020)) to generate predictions that we use
to derive Pr(display(p,m)). We will assume that the de-
rived beliefs are independent (although it is sufficient to as-
sume k-wise independence, and only between events that
share a genotype - see prior section titled “A Diminishing
Returns Framework for Vaccine Design Provides a Submod-
ular Optimization Objective”). While this may not neces-
sarily be true for closely related sequences, we circumvent
this by constraining our designs so that they do not contain
closely related sequences (see prior section titled “Peptide
Selections Need to Be Constrained to Avoid Unreasonable
Designs”™).

There are two classes of MHC molecules that we need
to design our vaccine to bind to. However, due to molec-
ular differences between the two molecules the peptides
they bind are largely disjoint. We can therefore simplify the
problem to that of producing two separate designs, one for
Class I MHCs and one for Class II MHCs. NetMHCpan4.1
provides predictions between peptides and Class I MHCs
while NetMHClIIpan4.0 provides predictions between pep-
tides and Class II MHCs. For simplicity, we will refer to
these predictors together as NetMHCpan.

Having fixed our class of interest, we then define an MHC
genotype to be a set of 3-6 distinct alleles. NetMHCpan
provides binding predictions between peptides and individ-
ual alleles rather than genotypes, so to attain credences for
whether a peptide is displayed by a genotype we assume in-
dependence between our beliefs that the peptides are dis-
played by individual alleles and compute the credence as the
following:

Pr(display(p,m)) =1 — H (1—cps)

rem

3

Where ¢, ., is the credence for binding between a peptide
p and a specific allele z.

NetMHCpan outputs likelihoods for binding between any
given peptide p and any given MHC molecule x. However, it
is important to ensure that this likelihood is well calibrated.
By default, NetMHCpan calibrates itself by comparing the
scores it outputs against a repertoire of naturally occurring
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Figure 1: Calibration curves for Class I MHC with uncal-
ibrated (A) and calibrated (B) predictions. Matching plots
for Class I MHC can be found in Appendix B. The curve is
made of 20 equally spaced bins between 0 and 1. Populated
bins and the fraction of positive samples they contain are in-
dicated by a “+”, with the surrounding column indicating the
interquartile (IQR), interventile (IVR) and full range of a set
of 1000 bootstrapped values.

peptides and classifying a sequence as being displayed if it
scores higher than 99.5% of those peptides when character-
izing binding to Class I MHC and 98% of those peptides
when classifying binding to Class Il MHC.

To attain well calibrated credences, we make use of pub-
licly available datasets that were used to validate NetMHC-
pan, which contain no overlap with the dataset used to train
NetMHCpan (Reynisson et al. 2020). The dataset consists
of a set of epitopes, the MHC molecule they bind to, and
the natural context they occur in. The epitopes were used
as positive samples while the context sequences were used
to generate negative samples. The samples were weighted
such that the ratio of the weight of all positive samples to
that of all negative samples is 1 : 199 for Class I MHC and
1 : 49 for Class I MHC to match the fraction of natural pep-
tides that NetMHCpan implicitly assumes to be binders. The
samples were then all fed into NetMHCpan to produce pre-
dictions. See Appendix B for additional details. The samples
were then binned into 20 equally sized bins and the weighted
fraction of positive samples within each bin was calculated
to produce a calibration curve, which we present in Figure
1A. We then generate a calibration function 4 by minimiz-
ing the following objective:

i i1 Wit (H(@is5)

Z] 1 Wity

Where all samples are indexed by an integer between 1

—y11+j))2 )
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Figure 2: For each design size between 1 and 64 inclusive,
we compute the fraction of the 2000 settings under which
Optivax-P outperforms both baselines, and test the hypoth-
esis of whether Optivax-P outperforms the best score ob-
tained by the baselines via a one-sided Wilcoxcon signed-
rank test. The fraction and p-values (corrected for multiple
hypothesis by a factor of 64) are then plotted as a function
of the number of peptides selected.

and n, x; denotes the NetMHCpan predicted value of the
sample, y; is 1 if the sample is positive and O if the sample
is negative, and w; is the weight assigned to the sample. The
samples are ordered such that x; < x;47 forall 0 < ¢ < n,
so n/ can be interpreted as the window size. We constrain H
to be non-decreasing and non-negative, so this is a form of
isotonic regression. Additional details can be found in Ap-
pendix B.

If NetMHCpan outputs y on an input peptide p and MHC
m, we set our credence that p binds to m as H(y). A cali-
bration curve of the calibrated predictions of the validation
dataset is shown in Figure 1B.

Results
Greedy Selection Outperforms Baseline Methods

Optivax-P has good worst case theoretical guarantees which
are even optimal in the absence of pairwise constraints
unless P=NP. Here we empirically check its performance
against two baseline approaches in random settings. The first
baseline is the random approach, where peptides are chosen
randomly. The second baseline is via linear approximation,
where the concave function U in Equation 1 is removed to
produce a surrogate objective. This surrogate is linear, so it
can be trivially optimized to produce a solution.

We compare the algorithms by generating peptide vaccine
designs of 64 different sizes in 2000 randomly generated set-
tings, where each setting randomizes the number of geno-
types and peptides, the display credences, and the concave
function U in the objective F; (Equation 1). Details can be
found in Appendix D. We find that Optivax-P outperforms
the baselines in most settings (Figure 2).

Designing a SARS-CoV2 Vaccine with Optivax-P

We apply Optivax-P in a practical setting by producing vac-
cine designs for SARS-CoV2. To design our vaccine, we use
a set of candidate peptides sourced from Liu et al. (2022)
which includes peptides from SARS-CoV2 that have been
filtered for undesirable properties like high mutation rates,
cleavage, and glycosylation. Peptides that were present in
the human proteome were also removed, since they may
trigger adverse autoimmune responses. Liu et al. (2022)
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have also published a set of genotypes and their frequen-
cies which we use. These frequencies are derived from di-
verse populations and have been selected to be represen-
tative of the global population. We calculated binding cre-
dences for each peptide-genotype pair as described in the
section titled “Using Machine Learning Based Models to
Attain Binding Credences”. Additionally, if a peptide was
not present in representative genomes of the Omicron BA.1
and Omicron BA .2 variants of SARS-CoV2 (accession num-
ber OM873778 and OW 123901 respectively, both retrieved
from the The COVID-19 Data Portal (Harrison et al. 2021))
then we set the credence of that peptide being displayed on
any MHC molecule to 0.

We applied Optivax-P to design vaccines with peptide sets
of size 1 and 150 inclusive. Designs were constrained such
that no pair of peptides can be within 3 edits (insertions,
deletions, or substitutions) of each other for the MHC Class
I design, and 5 edits for the MHC Class II design. Designs
were optimized for the objective F;,. for T between 1 and
20 inclusive, where Ur is defined as:

Ur(xz) = min(z,T) (5)

T can be viewed as a threshold parameter. This corre-
sponds to a model where each peptide-MHC hit provides
incremental protection until a person attains 7" hits, at which
point they are fully protected and stop seeing additional ben-
efits. A comparison between Optivax-P designs and previous
designs is shown in Figure 3, where we can see all Optivax-
P designs score substantially higher on F¢;,. Evaluations on
Fu, for other T' show similar trends and are presented in
Appendix D.

While this demonstrates that our optimization procedure
works and that there are deficiencies in previous designs that
are addressed through our designs if our utility model is re-
flective of reality, it may not be entirely surprising that vac-
cine designs optimized for Fy;, score well on Fy;,., even for
mismatching 7'. To control for this, we also evaluate designs
produced by Optivax-P on the n-times coverage objective
proposed by Liu et al. (2022) and described in the section ti-
tled “Optimizing Population Coverage with Redundancies Is
Computationally Difficult”. We modify our credences such
that they are only O or 1, and such that they closely match the
values used by Liu et al. (2022) (i.e. Pr(display(p,m)) =1
if and only if the genotype m is present within the peptide p,
where peptides are viewed as multisets of genotypes in the
max n-times coverage framework).

We then produced designs of size 19 using Ur for all T’
between 1 and 10 inclusive. These designs were then as-
signed a score equal to their n-times coverage for n between
1 and 20 inclusive. In Figure 4 we compare these scores to
the scores attained by designs generated by Liu et al. (2022),
which also each contain 19 peptides. We see that Optivax-P
is highly competitive even when evaluated on a objective
separate from the one it was optimized for.

Discussion

We have introduced the diminishing returns framework and
Optivax-P for designing epitope based peptide vaccines. The
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Figure 3: For each vaccine design S we compute Fy, (.5),
divide it by 5, and plot it as a function of |S|. Designs for
both MHC Class I (A) and MHC Class II (B) are given.
For each design size we plot the entire range of designs
of that size generated using Optivax-P optimized for Fi;,.
with 1 < T < 20 (OP), and the interquartile (IQR), in-
terdecile (IDR), interventile (IVR), and full range of 1000
designs of that size sampled uniformly at random. We also
plot the locations of the ILP n=3 (ILP3), ILP n=5 (ILPS5),
and MarginalGreedy (MG) designs from Liu et al. (2022) as
well as 29 other designs (Other) (Abdelmageed et al. 2020;
Ahmed, Quadeer, and McKay 2020; Nazneen Akhand et al.
2020; Alam et al. 2020; Banerjee, Santra, and Maiti 2020;
Baruah and Bose 2020; Bhattacharya et al. 2020; Fast, Alt-
man, and Chen 2020; Gupta, Mishra, and Niraj 2020; Herst
et al. 2020; Lee and Koohy 2020; Mitra et al. 2020; Po-
ran et al. 2020; Ramaiah and Arumugaswami 2021; Saha
and Prasad 2020; Singh et al. 2020; Srivastava et al. 2020;
Tahir ul Qamar et al. 2020; Vashi, Jagrit, and Kumar 2020).

framework is based on constrained submodular optimiza-
tion, which permits Optivax-P to provide performance guar-
antees despite the NP-hardness of the problem, unlike pre-
vious approaches. We also show how we can probabilisti-
cally interpret the outputs of machine learning models to
allow reasoning with uncertainty within the framework. Fi-
nally, we demonstrated that Optivax-P achieves superior per-
formance against past vaccine designs on the SARS-CoV-2
vaccine design task, and achieves comparable performance
even when evaluated against previous objectives.

Optivax-P is highly scalable, allowing us to optimize over
potentially millions of candidate peptides for a single vac-
cine. The ability to reason with uncertainty also gives us a
much richer language for expressing the properties of a pep-
tide: for instance, instead of filtering out peptides prone to
mutation, we can consider the probability of sequence drift.
These factors allow us to consider a far wider range of pep-
tide vaccine design tasks, which we plan to use in the future.
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Figure 4: We compare designs generated by Optivax-P (OP)
to designs generated by the ILP and MarginalGreedy (MG)
approaches from Liu et al. (2022) using the n-times cover-
age objective. A white square at position (x, ) indicates that
the design proposed by Optivax-P optimized against Fy,
outperforms both the ILP and MarginalGreedy design when
evaluated with z-times coverage. A black square indicates
that the Optivax-P design was outperformed by the ILP or
MG design, and a gray square indicates that the Optivax-P
design was outperformed by either the ILP or MG design.
Comparisons for both MHC Class I (A) and MHC Class 11
(B) are given.

Data Availability

Code, data, appendices, and demo are accessible from
https://gifford-lab.github.io/DiminishingReturns.
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