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Abstract

In conventional recognition tasks, models are only trained to
recognize learned targets, but it is usually difficult to col-
lect training examples of all potential categories. In the test-
ing phase, when models receive test samples from unknown
classes, they mistakenly classify the samples into known
classes. Open set recognition (OSR) is a more realistic recog-
nition task, which requires the classifier to detect unknown
test samples while keeping a high classification accuracy of
known classes. In this paper, we study how to improve the
OSR performance of deep neural networks from the perspec-
tive of representation learning. We employ supervised con-
trastive learning to improve the quality of feature representa-
tions, propose a new supervised contrastive learning method
that enables the model to learn from soft training targets, and
design an OSR framework on its basis. With the proposed
method, we are able to make use of label smoothing and
mixup when training deep neural networks contrastively, so
as to improve both the robustness of outlier detection in OSR
tasks and the accuracy in conventional classification tasks.
We validate our method on multiple benchmark datasets and
testing scenarios, achieving experimental results that verify
the effectiveness of the proposed method.

Introduction

Traditional recognition algorithms work under a closed set
assumption that the training data and test data share the same
labels and feature space. However, it is usually difficult to
collect training examples covering all potential classes of
test samples in reality, and a traditional classifier would clas-
sify any test sample into one of the training classes, even if
its true category has not been learned. A realistic recognition
scenario for this challenge is open set recognition (OSR),
where samples from unknown classes may appear during
testing, and the recognition algorithm is required to detect
unknown test samples while keeping a high classification
accuracy of known classes (Scheirer et al. 2012).

In a traditional multi-class classification network, the
output layer usually uses the softmax function to produce
a probability distribution over the training classes. The
softmax function does not estimate the probability of un-
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known classes due to its closed nature, so it is not suit-
able for OSR. A direct solution is thresholding the soft-
max scores (Hendrycks and Gimpel 2016) to reject estima-
tions with low confidence, which provides a simple baseline
for OSR research. However, the over-confidence phenom-
ena have been witnessed when test samples from unknown
categories are input to deep neural networks.

Although great progress has been made in the OSR re-
search area, a recent study (Vaze et al. 2021) suggests that
simply using state-of-the-art training mechanisms on closed-
set classifiers could significantly boost their performances in
OSR tasks. This discovery shows the potential of using bet-
ter representation learning techniques to improve the OSR
capability of the classifier. Inspired by this discovery, we
intend to develop a more effective representation learning
mechanism specifically for OSR tasks.

Open Space
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Figure 1: Overview of the proposed method. Supervised
contrastive learning pulls the positive examples from the
same class towards the anchor example, while pushing the
negative examples away. Virtual examples generated by the
mixup algorithm simulate unknown samples in the open
space.

In our research, we use supervised contrast learning to
learn high-quality representations by comparing the posi-
tive and negative pairs of training examples. We observed
that the contrastively learned representations work better for
detecting unknown targets. We also use the mixup algo-
rithm to generate semantically vague virtual examples, so
that the model could contrast real training examples from



known classes with unknown virtual examples in the train-
ing phase. In order to bring virtual examples with soft labels
into the contrastive learning framework, we further design
an enhanced supervised contrastive learning method that al-
lows similarity-based relationships between pairs of training
examples. This modification improves the performances in
both OSR and closed-set classification tasks.

The contributions of this paper are summarized as fol-
lows:

1. We propose a contrastive learning based open set recog-
nition method named ConOSR. We experimentally analyse
the reason why contrastively learned features could boost the
performance of a classifier in OSR tasks.

2. We enhance the Supervised Contrastive Learning al-
gorithm with the ability to learn from soft targets. The en-
hanced method SupCon-ST outperforms the vanilla SupCon
in closed-set classification, and also improves the perfor-
mance of ConOSR to outperform state-of-the-art OSR meth-
ods.

Related Work
Open Set Recognition

Open Set Recognition was first defined in (Scheirer et al.
2012), together with important related definitions like open
space and open space risk. A recent survey (Geng, Huang,
and Chen 2020) categorizes OSR methods into discrimina-
tive methods and generative methods. The majority of recent
discriminative methods are DNN-based methods, which en-
able deep networks with the ability of unknown detection
by enhancing the output layer with various outlier detection
mechanisms. Openmax (Bendale and Boult 2016) estimates
the probability of a test sample belonging to an unknown
class by measuring the distance between its activation vec-
tor and the mean activation vectors of known classes. Re-
ciprocal Points Learning (Chen et al. 2020a) introduces a
novel concept named reciprocal point, so as to model the
latent open space for each known class in the feature space.
PROSER (Zhou, Ye, and Zhan 2021) assigns placeholders to
unknown classes in the feature space, trying to imitate open-
set classes and predict the distribution of unknown data.
PROSER also uses feature mixup to generate virtual exam-
ples as placeholders. CVAECapOSR (Guo et al. 2021) uses
the capsule network as the feature encoding model, in order
to learn compact feature representations for known classes.

Generative methods can be further categorized into in-
stance generation methods and non-instance generation
methods. The first group usually generates pseudo-examples
using GANs (Goodfellow et al. 2014) to mimic unknown
test samples in the open space. G-Openmax (Ge et al. 2017)
extends Openmax by training DNNs with unknown sam-
ples generated by a conditional GAN. OSRCI (Neal et al.
2018) trains an encoder-decoder GAN to generate counter-
factual instances close to training examples but not belong
to any classes, and enhances the training data with coun-
terfactual instances. Recently, OpenGAN (Kong and Ra-
manan 2021) proposes to use GAN-discriminator as open-
set likelihood function and real-world data as outliers to
improve the training of GANSs, and it significantly outper-
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forms prior OSR methods in image classification and pixel
segmentation tasks. Non-instance generation methods train
encoder-decoder networks to assist unknown sample de-
tection. CROSR (Yoshihashi et al. 2019) utilizes both the
prediction of the classification layer and the latent repre-
sentation for reconstruction in the unknown detection step.
GFROSR (Perera et al. 2020) uses the reconstruction model
as data augmentation, forcing the network to learn features
that capture object structure. Generative methods provide
more background information for the recognition system by
modeling data distribution, but training generative models
significantly increase the total training cost of the recogni-
tion system.

Contrastive Learning

Contrastive learning is an area of representation learning that
has attracted much research attention in recent years. Most
contrastive learning methods are self-supervised (Van den
Oord, Li, and Vinyals 2018; He et al. 2020; Chen et al.
2020b; Chen and He 2021), which do not rely on task-
specific supervision. A major problem in self-supervised
contrastive learning is how to get positive and negative
pairs without supervision. MOCO (He et al. 2020) and Sim-
CLR (Chen et al. 2020b) use multiple views of a single train-
ing example as positive pairs and different training exam-
ples as negative pairs, but they require a large number of
negative pairs to achieve good performances. BYOL (Grill
et al. 2020) and SimSiam (Chen and He 2021) use siamese
network structure and stop-gradient to avoid using negative
pairs, so they could work with smaller batches of train-
ing data. In the ImageNet classification task, recent self-
supervised contrastive learning methods have achieved com-
parable results with supervised learning.

Supervised contrastive learning (SupCon) (Khosla et al.
2020) sets its basis on learning representations that maxi-
mize the similarities between positive pairs from the same
class and the differences between negative pairs from differ-
ent classes. SupCon outperforms self-supervised methods in
terms of classification accuracy by a large margin. SupCon
also outperforms plain CNN networks in multiple closed-
set classification tasks. However, SupCon does not attract as
much research attention as self-supervised methods because
it can not work with unlabelled data.

Contrastive Open Set Recognition

In this section, we describe the proposed Contrastive Open
Set Recognition (ConOSR) in detail. An overview of the
proposed ConOSR training pipeline is shown in Figure 2.
Our method consists of a contrastive learning step and a clas-
sifier training step.

In the contrastive learning step, the data preprocessing
module generates augmented views of the training data Dy,
using RandAugment, and then mixes them up to get a batch
of virtual examples. After that, the encoder network and
the projection network are optimized to minimize the con-
trastive loss computed on both the augmented data D, 4 and
the mixed data D,,,;..

In the classifier training phase, D, is preprocessed by
the RandAugment algorithm, and then forward propagated
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Figure 2: Overview of the ConOSR training pipeline.

through the fixed encoder network to obtain the feature rep-
resentations. Then the classification network is optimized
to minimize the cross entropy loss. After convergence, the
thresholds for rejecting unknown test samples are estimated
using Dy,.. Details of the components in the framework will
be described introduced in the following subsections.

Data Augmentation and Contrastive Learning

As shown in Figure 2, we adopt two different data augmen-
tation techniques. RandAugment (Cubuk et al. 2020) and
Mixup (Zhang et al. 2017) are state-of-the-art data augmen-
tation methods widely used in various fields. An illustration
of the augmentation methods is shown in Figure 3.

/
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(a) RandAugment (b) Mixup

Figure 3: The data augmentation techniques used in the pro-
posed framework. (a) RandAugment conducts random vi-
sual transformations on the input image, while keeping its
semantic content; (b) Mixup generates a virtual example by
linearly mixing the contents and the labels of two examples.

RandAugment Given a training image, RandAugment
randomly selects NV transformations from 14 available trans-
formations, and then applies the selected transformations on
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the image sequentially. The magnitude of the transforma-
tion is controlled by a global hyper-parameter M. RandAug-
ment enriches the visual information of training examples,
while keeping their semantic contents unchanged, so that the
model can learn transform invariant feature representations.

For each training example (&, y;,) in a batch (;, y;); ;.
we use RandAugment to generate two augmented views @o,
and Tyj+1. The randomly selected augmentation functions
ensure the visual difference between X5y, and Tox 1 during
multiple epochs of training.

While augmenting the images with RandAugment, we
also enhance the labels of training examples with label
smoothing. If the total number of classes is m and the train-
ing example (x;,y,;) belongs to the k-th class, then the

smoothed label ¥y, = (¥i1, ¥i2, - - - , Yim ) is formulated as:
o ji=k
PyP— 1— 1
Yis o otherwise M

Mixup Mixup constructs virtual examples by linearly
mixing pairs of training examples. Given two training ex-
amples (;,y;) and (x;, y;) randomly sampled from Dy,
a virtual example (&, ) is constructed as:

z =y, + (1 - 7)z;, 2

y=19;+1-7y; 3)
where v € [0, 1] is randomly selected from the uniform dis-
tribution.

Mixup is important in the ConOSR framework because
it generates virtual examples with ambiguous semantics, so
that the virtual examples could simulate unknown examples
in the training phase. In order to contrast real examples with
virtual examples, we use Dg,yg and D,y at the same time
in the contrastive learning step.

Supervised Contrastive Learning with Soft Targets

The network structures in contrastive learning consists of a
feature encoder ¢(-) and a projection network ) (-). The en-
coder network maps a training example x; to a representa-
tion vector h; € R9. Then the projection network further
maps h; to a projection vector z; € R, which is used
for calculating the contrastive loss. The target of contrastive
learning is maximizing the difference of similarity between
positive pairs and negative pairs in the projection space. In
the vanilla SupCon algorithm, the contrastive loss is defined
as:

exp(z; - 25/7)
Z exp(z; - 2k /T)’

e =Y 3o

JEP;

“4)

where P, is is the set of positive examples belonging to the
same class as i, and 7 is the temperature hyper-parameter.
SupCon distinguishes positive examples and negative ex-
amples according to their labels. However, the hard partition
of positive and negative examples conflicts with the soft la-
bels in our augmented training set. Therefore, we propose



an enhanced version of SupCon, which could take training
examples with soft labels as inputs.

Our contrastive learning framework allows a similarity-
based relationship between samples, rather than dividing
them into positive and negative pairs. Given a pair of labeled
samples (z;,y;) and (z;,y;), a pairwise similarity metric
s(y;,y;) is defined using the label vectors. We also want
s(y;,y j) to incorporate into equation (4) without changing
its result. So when y, and y; are limited to one-hot vectors,
s(y;,y;) = Lify, = y;, otherwise s(y;,y;) = 0. Consid-
ering this condition, we define s(y;,y,) as the cosine simi-
larity by default:

Y Y

yilllly;l°
then we define the SupCon-ST loss function as:

s(Y;,9;) = (5)

s(y;,9,) exp(z; - 25/7)
Escat J 10 J .
T Sy ) %8S exp(z - za/7)

Ay i
(6)

The form of equation (6) is similar to the cross entropy
loss. When all the labels vectors are one-hot vectors, equa-
tion (6) is equivalent to equation (4). Comparing to the
vanilla SupCon loss, the major advantage of the SupCon-
ST loss is that it allows the labels to be arbitrary real vec-
tors, so that we can employ label smoothing and mixup in
the contrastive learning framework. SupCon-ST also makes
it possible to enhance supervised contrastive learning with
other training schemes that use soft targets like knowledge
distillation.

Classifier Training and Unknown Detection

The second phase of the framework is training a light-weight
classifion network f(-) on top of the feature encoder ¢(-). In
this phase, we still uses RandAugment and label smoothing
to preprocess training data.

Given a training example (x, y), the probability of x be-
longing to class ¢ is estimated by the softmax function:

ofi(b())

Yi (y ‘ ) Z§:1 o (®(@) @)
then the cross entropy loss is derived as:
—> yilogy;. ®)

The parameters of f(-) are optimized by minimizing the
loss, while the parameters of ¢(-) are fixed.

At the end of the training phase, the rejection thresh-
olds for detecting unknown instances are estimated. For each
training example (x, y) in class 4, if i = arg max; f;(¢(x)),
ie. (x,y) is correctly classified, then the output logit
fi(¢(x)) is added to the class-wise logit set T;. After all
training examples are processed, the A percentile of each set
T; is recorded as the class-wise rejection theshold e;.

During the test phase, a test sample @ is labeled as an un-
known sample if max; f;(¢(x)) < €;. The rejection thresh-
olds can be manually adjusted by tuning the hyper-parameter

A. We set the A = 5 by default, which represents the desired
false negative rate on the training set. However, the actual
false negative rate on the test data is usually higher than A.

Analysis

In this section, we put forward some analysis for the pro-
posed SupCon-ST method. For the conciseness of equations,
we denote the components in equation (6) as:

s(Yi y,) exp(z; - zj/7)
Sij = ==, P = 5 )
T sy Y X exp(zi 2k /7)
ki ki

so that the SupCon-ST loss function can be rewritten as:

ﬁscst Z[’ — ZZﬁw = —ZZSileQPij

i i i i
(10

Gradient Derivation of SupCon-ST Loss

In this subsection, we study the property of the SupCon-ST
by analyzing its gradient derivation. We start by analyzing
the gradients for the pairwise losses with respect to a specific
sample (x;, y;) when the sample plays three different roles.

When (x;,y;) is the anchor, the gradient for the pairwise
loss L;; with respect to the projection vector z; is:

zrexp(z; -z /T
0z; 7 > exp(z; - 2 /T)
ki arn

Sij
=~ 292 3" Pz,
. (25 ik Zk)

ki

Similarly, when (;, y;) is the positive sample:

8[,ﬂ - _7{2. . Zj exp(zj : Z,;/T)
Oz 1T 7Y exp(zy- z/7T)
k#j (12)
__Sji
= (1—Pj)z;.

When (x;,y;) is a negative sample in the contrast loss of
the anchor (x;, y;) and the positive example (2, Y» ), the
gradient for £, with respect to z; is:

OLjn Sjn{ zjexp(zj - z;/T) - SjnPjiz_
Oz; Z exp(z; - zx/T) r
j
(13)

Then we can derive the gradients for sample-wise con-
trastive losses £; and £;:

oL, 852
o D e SEITED DL DLIEN
b = gEL kA
:fZ i~ 5u)
J7#i

(14)



8/Jj N 8£ﬂ Z aﬁjn
0z; 0z 0z;
ST S
1
= ;(SjiniZj — Siij + Z SjnPjiZj)
ng{i,j}
1 1
= ;(Z SinPjizj = Sijzj) = —(Pji = Sji)2j-
n#j
(15)
Finally, we get the gradients for £5¢5%:
aﬁscst
0z; 8z, Z 3Zz
(16)
= ; Z(P S” — Sji)Zj.
J#i

The final form of gradients is simple and easy to explain.
Given the anchor z;, P;; can be seen as the estimated prob-
ability distribution of the positive sample z;, while S;; is
the expected output calculated from labels of samples. Min-
imizing £5°5* optimizes the network parameters to make P,
align with Sj;.

Rethinking the Properties of Contrastive Learning

As has been discussed in (Khosla et al. 2020) the self-
supervised InfoNCE loss (Chen et al. 2020b) is a special
case of SupCon. The differences between these loss func-
tions and SupCon-ST are caused by different definitions
of s(-,-). We discuss the properties of different contrastive
losses in this subsection.

Two key properties of the InfoNCE contrastive loss are
pinpointed in (Wang and Isola 2020). Alignment: the fea-
ture encoding of the anchor should be close to the encodings
of positive examples. Uniformity: normalized feature vec-
tors should be uniformly distributed on the unit hypersphere.
According to this analysis, £5¢*! can be decomposed into
Latign and Lon; form as following:

S Zi Z
L5680 = — T] Zi zZj + ZlogZexp(fk)

ji i ki
= £align + ‘Cuniform-

%

7)
From this decomposition, we can see that the definition
of s(-,-) only affects Lgign. Si; represents the magnitude
of alignment between the pair of samples ¢ and j. Self-
supervised InfoNCE only aligns the anchor with its alter-
native view, and SupCon extends the range of alignment to
the samples from the same class. SupCon-ST further extends
the range of alignment to all the samples. There is a perfectly
aligned encoder that maps all the inputs to a single feature
vector, but the uniformity property prevents the existence of
this feature collapse.
On the other hand, Lyp;form is irrelevant with s(-,-),
therefore the uniformity property is identical in all variations
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of the InfoNCE loss. Ly form is minimized when the distri-
bution of feature encodings follows the uniform distribution
on the unit hypersphere.

The uniformity property also induces the intrinsic hard
negative mining property. Specifically, when 7 — 0, we
have the following approximation of Ln; form With respect
to the anchor i:

Wm LY form = hm logZeXp 25 /T)

T—0t
J#i

(18)

lim = max z; - Zj.
T—=0t T j#i

When 7 is small, the uniformity loss concentrates on
pushing away the nearest samples. However, the uniformity
loss does not consider the semantic similarity between sam-
ples. As a result, the ability of mining hard negative samples
is weakened in supervised contrastive learning, where the
nearest samples are more likely to belong to the same class
as the anchor.

This phenomenon is described as the negative-positive-
coupling effect in (Yeh et al. 2022), which also proposes
a decoupled contrastive loss to remove this effect. The de-
coupled contrastive loss removes the positive example from
the sum-up term in the denominator of the InfoNCE loss.
From the above analysis, we can see that this modifica-
tion removes the positive examples from Ly form, S0 that
Lyniform can focus on negative examples. We consider im-
plementing the decoupling modification in SupCon-ST as a
potential improvement in future research.

Experiment

In this section, we experimentally compare the proposed
method with state-of-the-art OSR methods on benchmark
datasets. The performances of the proposed method in con-
ventional closed-set classification and open-set recognition
tasks are tested. In all the experiments, the feature encoder
backbone of ConOSR is the same as that used in (Neal et al.
2018). The projection network in the contrastive learning
step is an MLP with two fully connected layers, both consist-
ing of 128 nodes. The classification network is also an MLP
with a 128-node fully connected layer. An implementations
of our method can be found at https://github.com/NJU-
RINC/ConOSR.

Unknown Detection

Recent research works on OSR usually follow the proto-
col defined in (Neal et al. 2018). A multi-class classifica-
tion dataset is divided into two subsets by randomly select-
ing k classes as known data, leaving the remaining classes
to simulate the open space in OSR scenarios. The split of
the dataset significantly affects the results of OSR experi-
ments. The performance of a deep OSR network is also pos-
itively related to the learning ability of its backbone network.
Therefore, for a fair comparison, we use the same backbone
network and dataset splits with ARPL (Chen et al. 2021).

The benchmark datasets are listed as following:

MNIST \ SVHN \ CIFAR-10: These datasets are clas-
sification datasets with 10 classes, of which 6 classes are



Dataset | MNIST | SVHN | CIFAR-10 | CIFAR+10 | CIFAR+50 | TinylmageNet
Openness | 22.54% | 22.54% | 22.54% | 46.55% | 7278% |  68.38%
Softmax 97.8 88.6 67.7 81.6 80.5 57.7
OpenMax 98.1 89.4 69.5 81.7 79.6 57.6
G-OpenMax 98.4 89.6 67.5 82.7 81.9 58.0
OSRCI 98.9 91.0 69.9 83.8 82.7 58.6
C2AE 98.9 89.2 71.1 81.0 80.3 58.1
RPL++ 99.3 95.1 86.1 85.6 85.0 70.2
GFROSR N.R 93.5 80.7 92.8 92.6 60.8
PROSER N.R 94.3 89.1 96.0 95.3 69.3
ARPL 99.7 96.7 91.0 97.1 95.1 78.2
ConOSR (vanilla SupCon) | 99.7 98.8 93.7 97.9 97.0 79.6
ConOSR (SupCon-ST) 99.7 99.1 94.2 98.1 97.3 80.9

Table 1: Open Set recognition results in terms of the AUC-ROC curve. Results are averaged among five trials. N.R means the

original paper does not report the corresponding result.

selected as known classes and the other 4 classes are used as
unknown.

CIFAR+10 \ CIFAR+50: 4 classes from CIFAR-10 are
selected as known classes, and 10\50 classes selected from
CIFAR-100 are used as unknown.

TinyImageNet: TinyImageNet consists of 200 classes.
We select 20 classes as known classes and use the remaining
180 classes as unknown.

On each benchmark dataset, we conduct the experiment
over five trials using the same data split as (Chen et al.
2021), and report the mean results. Area Under the ROC
curve (AUROC) is used as evaluation metric. AUROC is
a threshold-independent metric which can be interpreted as
the probability that a positive example is assigned a higher
detection score than a negative example (Geng, Huang, and
Chen 2020).

The complexity of each OSR experiment is measured by
Openness, defined as Openness = 1 — /K/M in (Neal
et al. 2018), where K and M denote the number of training
and test classes respectively.

In these experiments, we compare our method with the
baselines including Softmax Thresholding (Hendrycks and
Gimpel 2016), OpenMax (Bendale and Boult 2016), G-
OpenMax (Ge et al. 2017), OSRCI (Neal et al. 2018),
C2AE (Oza and Patel 2019), RPL++ (Chen et al. 2020a),
GFROSR (Perera et al. 2020), PROSER (Zhou, Ye, and
Zhan 2021), and ARPL (Chen et al. 2021)

Table 1 shows the results of this experiment. The baseline
performances are cited from (Zhou, Ye, and Zhan 2021;
Chen et al. 2021). N.R means that the original paper has not
reported the corresponding result. We report the results of
two variations of the ConOSR framework. The first variation
uses the vanilla SupCon algorithm in the contrastive learning
step, while the second uses the proposed SupCon-ST.

From Table 1, we can see that almost all the methods have
achieved good results on digital number datasets MNIST
and SVHN. In particular, the results on MNIST are al-
most saturated. However, our method still raises the AUROC
on SVHN to 99.1. On natural image datasets, our method
also achieves better results than SOTA methods PROSER
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and ARPL. Compared with the second best method ARPL,
ConOSR with SupCon-ST improves the results on TinyIm-
ageNet by a margin of 2.7.

The results in Table 1 also show that better unknown de-
tection results can be achieved by replacing the vanilla Sup-
Con with SupCon-ST. SupCon-ST improves the AUROC by
0.2 — 0.5 on simple datasets such as SVHN and CIFAR,
and its advantage increases to 1.3 on the most challenging
dataset TinyImageNet.

Closed Set Classification

We validate the effectiveness of the proposed SupCon-ST
on conventional classification tasks by comparing it with
vanilla SupCon and plain CNN. When training Plain CNNss,
we use the same data augmentation methods as SupCon-ST.
In this group of experiments, we train the network on the
full sets of CIFAR-10/100, and the first 100 classes of Tiny-
ImageNet. The averaged results over 5 random trials are re-
ported in Table 2.

Dataset | CIFAR-10 | CIFAR-100 | TinylmageNet
Plain CNN 94.0 71.6 63.7

ARPL 94.1 72.1 N.R.

SupCon 94.1 72.4 63.7
SupConST | 946 | 730 | 661

Table 2: Comparison of average closed set classification ac-
curacy.

From the results, we can see that the accuracy of vanilla
SupCon is similar to that of the plain CNN, while SupConST
outperforms them by a relatively large margin. These re-
sults indicates that supervised contrastive learning boosts the
classification accuracy on traditional closed-set recognition
tasks. However, due to its incompatibility with soft targets,
vanilla SupCon uses less training tricks than others, which
leads to its interior performance.

We also cited the results of ARPL (Chen et al. 2021) for
comparison. ARPL uses ResNet-34 as its backbone, which



is a stronger network than the backbone in our implementa-
tions. On the other hand, the authors of (Chen et al. 2021)
do not apply as many data augmentations as we do in their
experiments. To the extent of our knowledge, the majority
of existing OSR methods have report degraded results in
closed-set classification tasks. ARPL is one of the methods
that outperform the plain CNN baseline. ARPL also sets its
basis on improving the representation learning part of the
OSR system, and hence boots its classification accuracy in
conventional closed-set tasks. The strong positive relation-
ship between closed-set accuracy and OSR performance has
been studied in (Vaze et al. 2021).

Open Set Recognition

We use another group of experiments to verify the perfor-
mance of the proposed method in OSR tasks. In these exper-
iments, we follow the protocol used in (Zhou, Ye, and Zhan
2021). At training time, the whole dataset is used for training
OSR models. During testing, samples from another dataset
are added to the test set, and combined as a new class. The
evaluation metric in these experiments is macro-averaged
F1-scores over all the classes in the training set and the novel
class of unknown test samples, so that the performances on
both known and unknown data are evaluated.

We conduct the first experiment using MNIST as the
training set, and test samples from three other datasets:
Omniglot (Lake, Salakhutdinov, and Tenenbaum 2015),
MNIST-Noise, and Noise. Following (Zhou, Ye, and Zhan
2021), we set the number of unknown samples as 10,000 so
that their number is equal to the number of test samples of
the known classes. The test set of Omniglot contains 13,180
samples, so we select the first 10,000 images sorted by as-
cending index of file names. We synthesize the Noise dataset
by sampling each pixel of generated images between [0, 1]
from a uniform distribution. MNIST-Noise is synthesized by
adding the generated noise images atop the MNIST testing
samples.

Dataset | Omniglot | Noise-MNIST | Noise
Softmax 59.5 64.1 82.9
OpenMax 68.0 72.0 82.6
CROSR 79.3 82.7 82.6
PROSER 86.2 87.4 88.2
ConOSR | 954 | 987 | 988

Table 3: Open set recognition on MNIST with samples from
various datasets added to the test set. We report macro F1 in
11 classes.

The second experiment uses CIFAR-10 as the training set,
and introduces the test sets of two other data sets as unknown
samples: TinyImageNet and LSUN (Yu et al. 2015). CIFAR-
10, TinyImageNet and LSUN all have a test set consisting
of 10,000 images. To remove the difference of image size
between CIFAR-10 and TinyImageNet & LSUN, we use two
different ways to process the unknown images: (1) resizing
the images to 32 x 32; (2) cropping a 32 x 32 patch from
each image.
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Dataset TIN TIN LSUN | LSUN

atase (Crop) | (Resize) | (Crop) | (Resize)
Softmax 63.9 65.3 64.2 64.7
OpenMax 66.0 68.4 65.7 66.8
OSRCI 63.6 63.5 65.0 64.8
CROSR 72.1 73.5 72.0 74.9
GFROSR 75.7 79.2 75.1 80.5
PROSER 84.9 82.4 86.7 85.6
ConOSR \ 89.1 \ 84.3 \ 91.2 \ 88.1

Table 4: Open set recognition on CIFAR-10 with samples
from TinyImageNet (TIN) and LSUN datasets added to the
test set. We report macro F1 in 11 classes.

The results of these experiments are shown in Table 3
and Table 4, where the results of other methods are cited
from (Zhou, Ye, and Zhan 2021). The balance of classifi-
cation accuracy between unkown and unknown classes is
largely affected by the hyperparameter A, thus affecting the
F1 score. Therefore, we optimize A through grid search in
[1,15] and report the best macro F1.

In Table 3, we can see that when the background of train-
ing images is clean, detecting noisy images is a simple
task. Detecting samples from Omniglot is most challeng-
ing, mainly because the unknown samples are as clean as
the training examples. In this group of experiments, our pro-
posed method significantly outperforms the other methods.
The accuracy gap between ConOSR and the second best
method is larger than 10% when unknown samples come
from Noise-MNIST and Noise.

ConOSR also outperforms other methods on all the
datasets in the second experiment. We can see from Table 4
that the advantage of OSR is more obvious when unknown
samples are obtained by cropping. This phenomenon indi-
cates that ConOSR works better at detecting semantically
meaningless images, because the contrastive learning algo-
rithm focuses on learning the most distinctive features be-
tween classes, while patches randomly cropped from large
images often contain fewer such features. On the resized
datasets, ConOSR has an advantage of about 2% compared
with the second best method PROSER.

The macro-F1 metric is easily affected by the value of
the hyper-parameter A, so we use this group of experiments
to analyse how A affects the results. We set the value of A
by grid search in range [0, 15], and show how the macro F1
scores and accuracies of known classes and the class of un-
known examples change with it. The results with varying A
are illustrated in Fig.4.

Naturally, increasing A increases the classification accu-
racy of unknown instances while reducing classification ac-
curacy of known instances. In simple tasks, such as detect-
ing noise outliers from MNIST images, the accuracy of un-
known instances easily reaches 100% when A = 1, so fur-
ther increasing A only results in degraded results. In the
CIFAR-10 experiment, the accuracy of unknown instances
could not reach its limit without setting a large A. The best
macro F1 scores are usually obtained near the points where
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Figure 4: Classification accuracy and macro F1 against varying A.

the accuracies of known instances approximate the accu-
racies of unknown instances, and remain stable before the
testing accuracies for unknown instances are approximately
saturated. The recommended default value A = 5 results in
good F1 scores in the CIFAR-10 experiments.

Analytical Experiment

We conduct another experiment to analyse the reason why
contrastive learning could boost the ability of open set
recognition. Here, we first put forward a brief analysis.
Similar to many DNN-based discriminative OSR meth-
ods, ConOSR detects unknown samples by thresholding the
network outputs, and rejects the samples with low outputs.
We can infer from the principle of DNNs that this detection
mechanism rejects test images which do not contain enough
features to sufficiently activate the nodes in the penultimate
layer. In other words, these methods work by detecting the
absence of necessary features for identifying a test sample
as any known class, rather than detecting novel features oc-
curring in the image. A recent study (Dietterich and Guyer
2022) names this property “the familiarity hypothesis”, and
presents strong evidence to support this hypothesis.
Compared with plain CNN networks, supervised con-
trastive learning focuses on learning the most distinctive fea-
tures between known classes. As a result, these features are
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less likely to exist in the unknown samples, hence reducing
the difficulty of unknown detection. On the other hand, they
could not generalize well on another domain.

In order to validate the analysis above, we conduct an
experiment to compare contrastively learned features with
the features learned by plain CNN networks on the CIFAR-
100 and TinyImageNet datasets. Each dataset is divided into
two halves according to label index. The first half is used
as the training data in OSR tasks, and the second half is
used to simulate the unknown data in the testing phase. We
first train and test the models under the common OSR pro-
tocol, recording the AUROC scores and closed-set classifi-
cation accuracies. Then, the parameters of feature encoders
are fixed, and new classifiers are trained atop them with the
training data of unknown classes. Finally, we record the ac-
curracies of the new classifiers on the unknown classes to
see how the features generalize on the unknown data.

The results of this experiment are shown in Table 5.
The closed set classification results on known classes are
similar to the results in Table 2. SupCon and plain CNN
achieve comparable accuracies, while SupCon-ST signifi-
cantly outperforms both of them. When we transform the
feature encoders to another domain, plain CNN in turn out-
performs contrastive learning methods. Comparing the AU-
ROC scores, we can see that both variations of ConOSR are



Dataset | CIFAR-100 | TinyImageNet
. Accuracy | Accuracy Accuracy | Accuracy
Metric ‘ (Known) ‘ (Unknown) AUROC ‘ (Known) | (Unknown) AUROC
Plain CNN 77.2 62.6 76.7 63.7 49.1 68.1
ConOSR (SupCon) 77.8 59.3 77.9 63.8 41.3 71.6
ConOSR (SupCon-ST) 79.5 60.5 79.1 66.1 454 72.1

Table 5: Comparison of OSR performance and transferrability of feature representations.

better at unknown detection than the plain CNN. Specif-
ically, the vanilla SupCon gets similar results with plain
CNN in terms of closed-set classification accuracy, but still
achieves much better AUROC scores. SupCon-ST outper-
forms the vanilla SupCon in terms of all evaluation metrics,
suggesting the superiority of using mixup and label smooth-
ing.

The results in this experiment provide support for our
analysis above, which suggests that the supervised con-
trastive learning is more “focused” on distinguishing the
classes they learned. As a result, the learned features could
not be transferred to a totally novel domain as well as the
commonly learned features. However, this property makes it
easier for classifiers to detect the absence of features, which
is beneficial for their performances in OSR tasks.

In order to better present this property of the proposed
method, we use class activation maps to illustrate the dif-
ference between the features learned by contrastive learning
and plain CNN networks. We randomly choose 4 pairs of
known/unknown images from CIFAR-100, computing the
class acvtivation maps of both images using the classifier
weights of the known classes. In each pair, the heatmaps
are computed according to the minimum/maximum activa-
tion value in the two images. The class activation maps are
shown in Fig.5. From the comparison of class activation

CAM
plain CNN

CAM
ConOSR

CAM
plain CNN

CAM

Image Image ConOSR

known

N

unknown

\%

ZN

known

AEAad

E .
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Figure 5: Class activation maps (CAMs) of plain CNN net-
works and the proposed ConOSR. We randomly choose 4
pairs of known/unknown images from CIFAR-100, com-
puting the class activation maps of both images using the
weights of the known classes.

maps, we can see that the hot zones in ConOSR CAMs are
much smaller than the hot zones in plain CNN CAMs, fo-
cusing on the important part of the objective. By comparing
the CAMs of unknown images, we can see that the colors
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of most areas in ConOSR CAMs are much deeper than the
CAMs of plain CNNs, indicating that ConOSR is not inter-
ested in any regions of the unknown images. These results
also support our analysis that contrastive learning learns the
most discriminative features of each class, making it easier
to detect the absence of important features.

Conclusion

In real world recognition scenarios, collecting training ex-
amples to cover the categories of all potential test instances
is difficult. Open set recognition (OSR) is a realistic type of
recognition task targeting this difficulty, which requires the
classifiers to distinguish test samples from unseen classes
while maintaining a high classification accuracy of seen
classes. From a representation learning perspective, we pro-
pose a contrastive learning method for OSR (ConOSR)
based on Supervised Contrastive Learning with Soft Targets
(SupCon-ST). With the SupCon-ST, we are able to utilize
label smoothing and mixup in the contrastive training phase,
resulting in deep networks with better robustness in OSR
tasks and better accuracy in closed-set classification.

However, the proposed method is not computationally ef-
ficient compared to common deep learning methods. First,
contrastive learning requires more training epochs to con-
verge than conventional training pipelines. Second, SupCon-
ST requires more GPU memory to work properly. In our ex-
periments, we have to vary the batch-size of training data re-
garding the number of classes, so that each mini-batch con-
tains a few positive pairs of examples from each class. What
makes it worse is that, for a mini-batch of n training exam-
ples in the contrastive learning phase, 2n views are gener-
ated via RandAugment, and another 2n virtual examples are
generated via mixup. Therefore, the cost of memory space
increases drastically as the number of classes grows.

In future, we will study how to combine the proposed
method with clustering methods, so that our method could
work with less space cost. Extending open set recognition to
life-long learning scenarios is also an interesting direction
for future research.
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