The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

Controllable Image Captioning via Prompting

Ning Wang, Jiahao Xie, Jihao Wu, Mingbo Jia, Linlin Li

Huawei Inc.

wn6149 @mail.ustc.edu.cn, jh_xie@tongji.edu.cn, {wujihao, jiamingbo, lynn.lilinlin} @ huawei.com

Abstract

Despite the remarkable progress of image captioning, exist-
ing captioners typically lack the controllable capability to
generate desired image captions, e.g., describing the image
in a rough or detailed manner, in a factual or emotional view,
etc. In this paper, we show that a unified model is qualified

to perform well in diverse domains and freely switch among
multiple styles. Such a controllable capability is achieved by
embedding the prompt learning into the image captioning
framework. To be specific, we design a set of prompts to fine-
tune the pre-trained image captioner. These prompts allow the
model to absorb stylized data from different domains for joint
training, without performance degradation in each domain.
Furthermore, we optimize the prompts with learnable vec-
tors in the continuous word embedding space, avoiding the
heuristic prompt engineering and meanwhile exhibiting su-
perior performance. In the inference stage, our model is able
to generate desired stylized captions by choosing the corre-
sponding prompts. Extensive experiments verify the control-
lable capability of the proposed method. Notably, we achieve
outstanding performance on two diverse image captioning
benchmarks including COCO Karpathy split and TextCaps
using a unified model.

1 Introduction

Image captioning is one of the fundamental tasks in com-
puter vision, which aims to automatically generate natural
and readable sentences to describe the image contents. The
last decade has witnessed the rapid progress of image cap-
tioning, thanks to the development of sophisticated visual
representation learning (Zhang et al. 2021; Fang et al. 2021),
cross-modal fusion (Pan et al. 2020; Huang et al. 2019; Li
et al. 2020), vision-language pre-training (Hu et al. 2021;
Li et al. 2022; Wang et al. 2021b), etc. Image captioning is
a challenging task that requires the captioners to recognize
the objects and attributes, understand their relationships, and
properly organize them in the sentence.

Despite the remarkable advances, current image caption-
ing algorithms generally lack the controllable capability to
generate desired captions. In other words, once the caption-
ing model is trained, the caption generation process can
hardly be influenced. Typical cases include the control of
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COCO-style Caption

A black and white photo
of a street sign

TextCap-style Caption

Ablack and white sign
that says zone on it

Positive Caption

Short-length Caption

A street sign on a pole on
a street

Medium-length Caption

A black and white photo
of a street sign in a city

High-length Caption

A black and white photo
of a street sign with a
picture of a man holding
awoman's hand

A very pretty street sign
in a big city
Negative Caption

A black and white photo of
a lonely street sign

Figure 1: Leveraging a unified model, the proposed method
is able to generate diverse captions such as COCO-style [ ],
TexCap-style [ ], Positive [], Negative ["], and different
caption lengths including Short-length [ ], Medium-length
[*7], and High-length [FF]. Best view in color.

caption length and description style. (1) Length controllable
capability. Sometimes, a brief description is required to get
an overview of the image, while in other circumstances, a
detailed caption is preferred to acquire more information.
This can be roughly reflected by the controllable capabil-
ity of the caption length, which is a basic demand in prac-
tical applications, but has been largely overlooked in exist-
ing methods. (2) Style controllable capability. An image can
be described in quite different views. For example, given an
image with textual contents (e.g., a poster or sign), some
people care about the objects, but some may pay more at-
tention to the textual words. Besides, people may generate
non-factual captions, e.g., emotional descriptions that con-
tain positive or negative expressions. It is of vital importance
to insert different styles in the captioning model to enhance
its expressibility. How to simultaneously maintain multiple
styles and freely switch among them is an open problem.
Existing captioning approaches typically separately handle
each scenario, e.g., train a captioner on the COCO dataset
(Lin et al. 2014) and train another model on the TextCaps
dataset (Sidorov et al. 2020). As a result, these captioners
are domain-specific, without style controllability.

In this paper, we show that a unified model is able to gen-
erate captions with different lengths and styles. As shown
in Figure 1, our approach describes an image semantically



accurately in diverse views. This captioning controllable ca-
pability is achieved by designing prompts within the cross-
modal language model. After large-scale pre-training, the
image captioner has already gained the ability to generate
diverse captions, but is largely overwhelmed in the down-
stream fine-tuning, e.g., on a certain stylized dataset such as
COCO (Lin et al. 2014). In this work, we aim to unveil the
potential hidden in the pre-trained model to flexibly switch
captioning styles. Our approach is motivated by the recent
advance in prompt learning techniques (Liu et al. 2021) in
natural language processing (NLP). In the proposed frame-
work, prompts serve as the anchor points to gather data from
different domains, facilitating the multi-domain joint train-
ing. By virtue of prompt engineering, captions with different
lengths, different styles, and different emotions can be prop-
erly separated within a unified model. The prompts, together
with the image-text pair, jointly serve as the training cor-
pus to optimize the captioning model. Furthermore, instead
of manually designing prompts, we encourage the captioner
to automatically learn the prompt embeddings in an end-to-
end manner. This continuous auto-prompt learning searches
the suitable prompt representations in the entire word em-
bedding space, which not only avoids the heuristic prompt
design but also exhibits superior performance.

In the inference stage, different prompts serve as the pre-
diction hints to guide the caption generation. By automat-
ically learning multiple prompt embeddings, the proposed
approach has the following merits. Our approach (i) is free
of manual prompt engineering, which requires domain ex-
pertise and careful word tuning; (ii) is able to generate di-
verse stylized captions via a single model, which is infeasi-
ble for most existing state-of-the-art captioners such as BLIP
(Li et al. 2022), LEMON (Hu et al. 2021), and SimVLM
(Wang et al. 2021b); (iii) does not degrade the performance
on different domains such as COCO (Lin et al. 2014) and
TextCaps (Sidorov et al. 2020), and outperforms the tradi-
tional training strategy using a prefixed prompt; (iv) is sim-
ple and general, which is ready to perform on more domains
by incorporating other stylized data.

In summary, the contributions of this work are three-fold:

* To our knowledge, we are the first to propose the prompt-
based image captioning framework, which provides a
simple yet effective manner to control the caption style.

e We validate the manually designed prompts. We fur-
ther introduce auto-prompt learning to avoid the heuristic
prompt design and achieve superior results.

¢ Qualitative and quantitative results verify the control-
lable capability of the proposed framework. Leveraging
a unified model, we achieve outstanding performance on
several benchmarks including COCO Karpathy set (Lin
etal. 2014), NoCaps (Agrawal et al. 2019), and TextCaps
(Sidorov et al. 2020).

2 Related Work

General Image Captioning. Image captioning aims to gen-
erate a textual description of the image contents (Vinyals
et al. 2015), which typically contain a visual encoder to
extract the image features and a multi-modal fusion model
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such as LSTM and Transformer for text generation. To rep-
resent the visual contents, previous methods (Huang et al.
2019; Anderson et al. 2018; Deng et al. 2020; Cornia et al.
2020; Fei 2022; Ji et al. 2021) utilize the Region-of-Interest
(Rol) features from object detectors (Ren et al. 2016). Re-
cent captioning algorithms (Fang et al. 2021; Xu et al. 2021;
Wang et al. 2021b) shed light on the grid features for high
efficiency and potentially better performance due to end-to-
end training. As for the cross-modal model, classic caption-
ers (Anderson et al. 2018; Huang et al. 2019; Pan et al.
2020; Song et al. 2021) typically utilize the LSTM, while
the recent approaches (Li et al. 2020; Zhang et al. 2021; Li
et al. 2022; Wang et al. 2021b; Wang, Xu, and Sun 2022;
Luo et al. 2021) leverage the attention-based models to fuse
vision-language representations and predict the captions.
Controllable Image Captioning. Despite the impressive
progress, fewer efforts have been made to control the caption
generation. Cornia et al. (Cornia, Baraldi, and Cucchiara
2019) utilize image regions to generate region-specific cap-
tions. Chen et al. (Chen et al. 2020a) propose the abstract
scene graph to represent user intention and control the gen-
erated image captions. Length-controllable captioning ap-
proach is proposed in (Deng et al. 2020), which learns length
level embeddings to control the caption length. Shuster et
al. (Shuster et al. 2019) release an image captioning dataset
with personality traits as well as a baseline approach. Zhang
et al. (Zhang et al. 2022) propose a multi-modal relational
graph adversarial inference (MAGIC) framework for diverse
text caption. SentiCap (Mathews, Xie, and He 2016) uti-
lizes a switching recurrent neural network with word-level
regularization to generate emotional captions. Chen et al.
(Chen et al. 2018) present a style-factual LSTM to generate
captions with diverse styles such as humorous and roman-
tic. However, some of the aforementioned methods (Cornia,
Baraldi, and Cucchiara 2019; Chen et al. 2020a, 2018) rely
on additional tools or expensive annotations for supervision.
In (Kobus, Crego, and Senellart 2016), domain/tag embed-
dings are involved to control the style, and thus the model ar-
chitecture is tag-related. Some methods (Mathews, Xie, and
He 2016; Chen et al. 2018) can be regarded as the ensemble
framework, which include two groups of parameters for fac-
tual and stylized branches, increasing the model complexity.
In this work, we control the image captioning style from
a different view, i.e., prompt learning. The proposed frame-
work merely involves lightweight learnable prompt embed-
dings while keeping the baseline architecture unchanged,
which is conceptually simple and easy to implement.
Vision-language Pre-training. Vision-language (VL) pre-
training is a popular manner to bridge vision and language
representations (Dou et al. 2021). CLIP (Radford et al. 2021)
and ALIGN (Jia et al. 2021) use the cross-modal contrastive
learning to align the VL representations. Recent VL pre-
training approaches (Zhou et al. 2020; Chen et al. 2020b;
Huang et al. 2021) generally adopt the attention mechanism
(Vaswani et al. 2017) to fuse the VL representations. After
large-scale pre-training on the image-text corpus, these mod-
els are further fine-tuned on the downstream datasets to con-
duct a variety of VL tasks such as image captioning. SOHO
(Huang et al. 2021) extracts compact image features via a



COCO-style Caption

Baseball player runs
toward base while
others stand around

A laxative with pleasant
flavor packed in a bottle
with a yellow flavor

A yellow fire hydrant
with a couple of eyes
drawing on it

weight sharing weight sharing
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Figure 2: An overview of the proposed prompt-based image captioning framework. Our model optimizes multiple learnable
prompt embeddings to absorb stylized data from different domains to jointly train the image captioner. In the inference stage,
the model is able to generate diverse captions by feeding different prompts.

learned visual dictionary and trains the whole framework in
an end-to-end manner. ALBEF (Li et al. 2021) conducts the
cross-modal alignment using contrastive learning technique
(Radford et al. 2021) before representation fusion. SimVLM
(Wang et al. 2021b) utilizes prefix language modeling for
model optimization on the large-scale VL corpus. Inspired
by previous arts, we also involve VL pre-training to improve
the captioning quality.

Prompt Learning. Prompt learning has gained increasing
popularity in natural language processing (NLP) (Liu et al.
2021). Prompt learning allows the language model to be
pre-trained on the large-scale corpus, and is able to per-
form downstream tasks by defining a proper prompting func-
tion. Jiang et al. (Jiang et al. 2020) propose mining-based
and paraphrasing-based approaches to automatically gener-
ate high-quality prompts. Shin et al. (Shin et al. 2020) search
for the proper prompts via a gradient-based approach. Re-
cently, continuous prompt learning has been explored, which
directly optimize prompt vectors in the continuous word
embedding space (Zhong, Friedman, and Chen 2021; Li
and Liang 2021; Lester, Al-Rfou, and Constant 2021; Zhou
et al. 2021). It is worth mentioning that prompt learning has
been rarely touched in the image captioning. Different from
the traditional usage of prompt learning that aims to elicit
knowledge for higher performance, we focus on the control-
lable capability of the captioning algorithm. In the proposed
framework, except for the superior performance, the more
attractive characteristic is that we can freely switch diverse
styles via prompting, which greatly enhances the controlla-
bility and expressibility of the image captioner.

3 Approach

In this section, we introduce the method details of the pro-
posed controllable image captioner. First, in Section 3.1, we
revisit autoregressive image captioning, which serves as the
baseline of our approach. Then, in Section 3.2, we elabo-
rate the manual prompt engineering for image captioning.
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Finally, we exhibit how to optimize the learnable prompts in
Section 3.3 and the inference details in Section 3.4.

3.1 Revisiting Autoregressive Image Captioning

In our method, we adopt the unidirectional language model-
ing (LM) based image captioning framework as the baseline.
Such a framework typically utilizes a transformer block to
fuse the image v and text sequence © = {x1,Z2, - ,Zn }.
The token x; is generated in an autoregressive manner based
on the previous tokens x ;. The training objective of the
cross-modal LM loss is as follows:

Liv = ~Ewayen| D logP (@ilg(v), fl@<)) [, ()
t

where ¢(-) denotes the visual encoder, f(-) represents the
word embedding layer, P(-|-) can be regarded as the cross-
modal fusion model (e.g., transformer decoder in Figure 2),
which receives the visual features g(v) and previous token
embeddings f(x<;) to predict the next word token ;.

During inference, the autoregressive models take a special
token [BOS] as input to predict the first token 1, then z;
is fed into the model to obtain the next token x5. This au-
toregressive prediction process is continued until the special
token [EOS] is predicted.

3.2 Prompt-based Image Captioning

Model Pre-training. Following previous works (Zhang
et al. 2021; Hu et al. 2021; Li et al. 2022; Wang et al.
2021b), we also adopt the large-scale pre-training on the
noisy image-text corpus to improve the downstream caption-
ing task. Besides the language modeling (LM) loss, we also
adopt the image-text contrastive loss (Radford et al. 2021;
Jia et al. 2021) and image-text matching loss (Chen et al.
2020b; Li et al. 2021, 2022) to jointly optimize the visual
encoder and cross-modal fusion model, as follows:

2

LPre—train = EContrast + EMatCh + L:LM-



The contrastive loss measures the similarity of the image-
text pairs via a light fusion manner such as dot-product,
while the matching loss measures the image-text similar-
ity via a heavy fusion manner such as cross-attention. It
has been widely recognized that both of them can facilitate
cross-modal alignment (Li et al. 2022). Therefore, although
we focus on the image captioning, we additionally include
the Lconrast and Lyaeh in the pre-training stage. As for more
details, please refer to BLIP (Li et al. 2022).

Prompt Engineering. After pre-training, the model already
acquires zero-shot captioning capability thanks to the lan-
guage modeling loss Ly . Therefore, previous LM-based
image captioners such as SImVLM (Wang et al. 2021b) and
BLIP (Li et al. 2022) leverage a pre-defined prompt such
as “a picture of” or “a photo of” to facilitate the
image captioning. In this work, we aim to unveil the model
potential of generating diverse captions via prompting.

In contrast to single prompt engineering, in the fine-tuning
stage, we design multiple prompts as the anchors to dis-
tinguish the training data from different domains. In this
way, different stylized captions do not disturb their coun-
terparts and together contribute to a stronger model. The
manually designed prompts are illustrated in Table 1. (i)
For the cross-domain scenario, e.g., evaluating a model on
both COCO (Lin et al. 2014) and TextCaps (Sidorov et al.
2020), it is straightforward to assign different prompts for
these datasets to learn domain-specific descriptions. (ii) As
for the caption length control, we divide the image captions
from COCO and TextCaps into three levels depending on the
caption length. Captions whose length is in the range [0, 10),
[10,16), and [16, 4+00) are divided. Each of these subsets is
assigned with a specific prompt, as shown in Table 1. (iii)
Finally, current image captions are typically factual. Never-
theless, each image in the COCO dataset is labeled by five
annotators, inevitably containing emotional descriptions. To
this end, we collect the positive and negative captions in the
COCO dataset to form the non-factual subsets, which con-
tain the pre-defined positive words such as “great, nice,
cute” and negative words such as “ugly, terrible,
disgusting”. Despite these non-factual captions being
rare, our method still learns satisfying styles using limited
samples, justifying the few-shot learning ability of prompt
engineering. The entire positive and negative words, and
other potentially effective manual prompts are presented in
the supplementary material.

Model Fine-tuning. In our framework, multiple training
sets are mixed together to train a unified model. Compared
to Eq. (1), we predict token x; based on the visual features
g(v), prompt token embeddings f(p), and previous token
embeddings f(x.). Different stylized data is assigned with
a specific prompt as illustrated in Table 1. During training,
we prepend these hand-crafted prompts to caption tokens as
the textual description of the image. We assemble different
stylized datasets to jointly train the captioning model using
a prompt-based LM loss as follows:

*Z [Emm,m)em [ZlogP (wtlg(v),f(pi),f(ma))]
1 t 3)
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Caption Style
COCO-style
TextCap-style
Short-length
Medium-length
High-length
Positive
Negative

Manual Prompt p

a normal picture that shows

a textual picture that shows
a picture with a short caption that shows

a picture with a medium caption that shows

a picture with a long caption that shows

a positive picture that shows

a negative picture that shows

Table 1: Illustration of the manual prompts.

where p; denotes the manual prompt for :-th dataset D;.
Note that the prompt tokens p; and caption tokens x - share
the same embedding mapping layer f(-). In this framework,
we keep the baseline model architecture unchanged without
additional learnable blocks, which is parameter-efficient.

3.3 Auto-prompt Learning

To avoid the laborious manual prompt engineering in Sec-
tion 3.2, we further encourage the network to automatically
learn the prompts in an end-to-end manner, as shown in Fig-
ure 2. Given a sequence of the manual prompt tokens such as
“a textual picture that shows”, the model first
maps each token to a unique numeric ID using WordPiece
technique. Then, for a BERT-base model, the token IDs are
projected to 768-dim word embeddings via the token em-
bedding layer f(-) as the input of the vision-language fusion
model, i.e., f(p) € RN*758 where N represents the prompt
length. Instead of the manual prompt engineering, we pro-
pose to learn the caption prompt embeddings P as follows:

P = [Pli[P]y---[P]n, )

where each embedding vector [P (k € 1,---, N) has the
same dimension as the word embedding. In other words,
P € RV*768 gerves as an alternative of the manual prompt
embedding f(p). In the training stage, prompt embeddings
P are jointly optimized with the captioning network as fol-
lows:

- Z lE(v’w)EDi {Zlogp (xtg(v)aPiaf($<t)):|‘| .
[ t (5)

The proposed framework learns specific prompt embed-
dings P; for each domain-specific dataset D;. During the
end-to-end training, the gradients can be effectively back-
propagated to optimize the prompt embeddings. To this end,
the captioner is able to fully explore the suitable prompt rep-
resentations in the continuous word embedding space.

3.4 Prompt-based Inference

After prompt learning, our model is able to generate diverse
captions using different prompts. In the manual prompt
framework, after encoding the special token [BOS], we se-
quentially embed the prompt tokens via f(p) and feed them
to the language model to generate the caption in an autore-
gressive manner. In the auto-prompt framework, we directly
concatenate the token embedding of [BOS] and learned
prompt embeddings P as the input of the language model.



By switching different prompts, the proposed captioner is
able to generate a certain stylized caption.

4 Experiment
4.1 Datasets and Metrics

Pre-training Data. In the experiments, following our base-
line approach (Li et al. 2022), we collect the image-text pairs
from Visual Genome (Krishna et al. 2017), COCO (Lin et al.
2014), SBU Captions (Ordonez, Kulkarni, and Berg 2011),
Conceptual Captions (Sharma et al. 2018), Conceptual 12M
(Changpinyo et al. 2021), and a filtered version of LAION
(115M images) (Schuhmann et al. 2021) to form the pre-
training data. Following BLIP (Li et al. 2022), these data
are filtered by a large model to form the high-quality boot-
strapped dataset. In total, the pre-training corpus consists of
about 129 million images.

Evaluation Datasets and Metrics. We evaluate the pro-
posed method on the COCO caption dataset (Lin et al.
2014) of Karpathy split (Karpathy and Fei-Fei 2015), No-
Caps (Agrawal et al. 2019), and TextCaps (Sidorov et al.
2020). To evaluate the quality of the generated captions, we
use standard metrics in the image captioning task, includ-
ing BLEU@4 (Papineni et al. 2002), METEOR (Banerjee
and Lavie 2005), CIDEr (Vedantam, Lawrence Zitnick, and
Parikh 2015), and SPICE (Anderson et al. 2016). In the in-
ference stage, beam search (beam size = 3) is adopted in all
experiments. More details and visualization results can be
found in the supplementary material.

4.2 Implementation Details

Our model is implemented in Python with PyTorch. In the
pre-training stage, the model is trained on 32 V100 GPUs.
The image encoder is initialized from ViT-B/16 pre-trained
on the ImageNet (Dosovitskiy et al. 2020), and the text en-
coder is initialized from BERT-base (Devlin et al. 2018). We
pre-train the whole model for 32 epochs using a batch size
of 2880. We use AdamW optimizer (Loshchilov and Hut-
ter 2017) with a weight decay of 0.05. The learning rate is
warmed-up to 3 x 10~ and decayed linearly with a rate of
0.85. We take random image crops of resolution 224 x 224
during pre-training.

In the fine-tuning stage, we train the model using a
small learning rate of 1 x 10~° and linearly decay it. The
model is fine-tuned for 5 epochs. Following previous works
(Wang et al. 2021b), the image resolution is increased to
384 x 384 during fine-tuning. As for the prompt embedding
P c RVX768 we randomly initialize it and set N = 16.
We optimize our algorithm using standard cross-entropy loss
without reinforcement learning. The proposed Controllable
Captioner is denoted as ConCap.

4.3 Ablation Study

Manual Prompt v.s. w/o Prompt. Previous works such as
BLIP utilize a pre-defined prompt “a picture of” to
facilitate the caption generation. However, as shown in Ta-
ble 2, in the zero-shot evaluation without model fine-tuning
(® and @), an empty prompt is even more effective. After
downstream model fine-tuning (@ and ®), we observe that
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Configuration COCO Test | TextCaps Val
B@4 C |B@4 C
w/o Fine-tuning (Frozen Model)
® w/o Prompt 339 106.6] 18.6 48.6
® Manual Prompt 237 83.8 | 145 384
@ Learned Prompt 38.3 125.1]20.7 56.7
Multi-dataset Individual Training
@ w/o Prompt 39.1 13241 304 1134
® Manual Prompt 394 132.6|30.1 111.2
® Learned Prompt 40.5 133.5|31.2 1159
Multi-dataset Joint Training
@ w/o Prompt 39.2 131.9]30.1 111.6
Shared Manual Prompt 393 132.2130.0 1104
® Multi-prompt 39.6 132.8]30.7 1135
@® Multi-prompt 40.5 133.7 | 31.3 116.7

Table 2: Ablation comparisons on the COCO Karpathy test
split (Lin et al. 2014) and TextCaps validation set (Sidorov
et al. 2020), where B@4 and C denote BLEU @4 and CIDEr
scores, respectively.

this hand-crafted prompt is beneficial to COCO dataset but
harmful to TextCaps. These results show that the heuristic
prompt is not always a good choice, which potentially re-
quires the laborious manual design for different datasets.
Effectiveness of Learned Prompt. For a frozen image cap-
tioner, we only optimize the prompt embeddings in setting
® in Table 2. The results show that learned prompt embed-
dings greatly unveil the potential of a pre-trained model with
a good zero-shot performance of 125.1 CIDEr on COCO.
After joint training of prompt embeddings and captioning
model, the performance of the learned prompt is still supe-
rior to the manual prompt (® v.s. ®).

Multi-dataset Individual Training v.s. Joint Training.
Previous works typically train the model individually on dif-
ferent datasets. In setting ® in Table 2, we separately fine-
tune the image captioner on COCO and TextCaps. In set-
ting ® in Table 2, we merge the datasets of COCO and
TextCaps, and use a shared prompt “a picture of” for
both datasets. By analyzing the results of ® and ®, we can
observe that simply combining two diverse datasets with dif-
ferent styles will degrade the performance. This is consis-
tent with common sense that data from diverse domains will
challenge the model training.

Single Prompt v.s. Multi-prompt. In setting @ of Table 2,
we still combine the COCO and TextCaps to jointly train a
unified captioner, but separate multi-domain data using dif-
ferent prompts. It is interesting that “multi-prompt for joint
training” (@) not only outperforms the “single prompt for
joint training” (®), but also surpasses “single prompt for in-
dividual training” (®), indicating that multiple (even manu-
ally designed) prompts can effectively separate the data from
different domains. Furthermore, the most promising charac-
teristic of “multi-prompt” is that we can control the caption
style by feeding different prompts, which is infeasible for the
“single prompt” setting. Finally, we encourage the model to
jointly optimize multiple learnable prompt embeddings in an
end-to-end manner (®@), which achieves the best results.
Auto-prompt Length. We further validate the influence of



N =4 N =38 N =16 N =24
B@e4 C |B@4 C |B@4 C |B@4 C
TextCaps Val| 30.8 115.4|31.1 115.4| 31.3 116.7| 31.5 1159

Table 3: Ablation of the prompt embedding length /V on the
TextCaps validation set (Sidorov et al. 2020).

Prompt Style B@e4 M C S

Short-length Prompt 39.9 302 1323 23.0
Medium-length Prompt| 35.1 309 1229 239
High-length Prompt 269 30.7 71.6 25.0
Positive Prompt 27.0 258 97.6 20.7
Negative Prompt 37.0 293 1215 229
TextCap-style Prompt 22.1 259 66.0 205
COCO-style Prompt 40.5 309 133.7 238

Table 4: Performance comparisons of different prompts on
the COCO Karpathy test split (Lin et al. 2014), where B @4,
M, C, S denote BLEU@4, METEOR, CIDEr, and SPICE.

prompt embedding length V. In Table 3, the prompt embed-
dings of different lengths are randomly initialized. We test
different lengths of N = 4,8,16,24 and observe that in-
creasing the prompt embedding length IV can consistently
improve the performance. In our experiments, We choose
N = 16 as it already yields saturated results.

Evaluation of Different Prompts on COCO. Finally, we
evaluate the performance of different automatically learned
prompts on the COCO Karpathy test split. The results are
shown in Table 4. There is no doubt that “COCO-style
Prompt” overall performs best, which leverages the entire
training set of COCO for model fine-tuning. “TextCap-style
Prompt” exhibits poor results on the COCO dataset, which
justifies the domain gap between COCO and TextCaps
datasets. Finally, it is interesting that CIDEr metric (Vedan-
tam, Lawrence Zitnick, and Parikh 2015) prefers a short cap-
tion and “Short-length Prompt” is even comparable to the
best “COCO-style Prompt” in CIDEr metric, while SPICE
metric (Anderson et al. 2016) prefers a longer caption
and “High-length Prompt” clearly outperforms the strong
“COCO-style Prompt” in SPICE. Visualization results of
different prompts are shown in the next Section 4.4.

4.4 Qualitative Evaluation

Results on COCO (Lin et al. 2014). In Figure 3, we ex-
hibit the captioning results on the COCO dataset. By feed-
ing different prompts, our ConCap method is able to gen-
erate diverse captions including COCO-style [ ], Positive
["], Negative ['], Short-length [ ], Medium-length ["],
and High-length []. Besides, we observe that the percent-
age of emotional captions is only about 2% of the entire
COCO dataset. The proposed ConCap merely utilizes lim-
ited positive or negative captions in COCO to learn such
styles. This is consistent with the observation that prompt
learning is suitable for few-shot domain transfer (Liu et al.
2021). As shown in Figure 3, our ConCap is able to briefly
describe an image or in a more detailed manner. The high-
length captions [®] produced by our ConCap are much
longer than the ground-truth captions and yield additional
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COCO-style Caption
Avyellow fire hydrant with a face drawn on it
Positive Caption

COCO-style Caption
An airplane flying over a field of trees

Positive Caption

Aplane flying over a beautiful park with
blooming trees

A yellow fire hydrant with a happy face drawn on it
Negative Caption

Avyellow fire hydrant with a sad face drawn on it
Short-length Caption

Afire hydrant with eyes drawn on it
Medium-length Caption

A yellow fire hydrant with a face drawn on it
High-length Caption

A yellow fire hydrant with a face drawn on it in
front of a large building

Ground-truth Caption

Ayellow fire hydrant with a couple of eyes
drawing on it

Negative Caption

A plane flying over a field of dead grass
Short-length Caption

An airplane flying over a field of trees
Medium-length Caption

A plane flying over a field with trees in the
foreground

High-length Caption

A plane flying over a field of trees with a building
in the background and mountains in the distance

Ground-truth Caption
An airplane that is flying in the sky

Figure 3: Image captioning examples from COCO (Karpa-
thy and Fei-Fei 2015) with different styles including COCO-
style [ ], Positive [7], Negative ['], Short-length [ ],
Medium-length [7] and High-length [¥].

meaningful semantics, e.g., “a large building”inthe
first image and “mountains in the distance” in
the second image. Furthermore, our approach generates the
positive words such as “happy, beautiful” [['] or the
negative words such as “sad, dead” [['] to describe the
same image in opposite personality traits. Since the COCO-
caption dataset rarely contains the image with OCR con-
tents, we showcase the results of “TextCap-style Prompt”
on the TextCaps dataset in Figure 4.

COCO-style Caption

COCO-style Caption

A pink bus driving down a street next to a tall
building

A group of trash cans sitting in front of a
building

TextCap-style Caption

Asign on a building that says heart break

TextCap-style Caption
A pink bus that says target travel on the front
Ground-truth Caption

A pink bus has Target Travel painted on it in
several locations

Ground-truth Caption

Asign is painted with a broken heart and a
scroll that says Heartbreak

Figure 4: Image captioning examples from TextCaps dataset
(Sidorov et al. 2020) with different styles including COCO-
style [ ] and TexCap-style [ ]. Best view in zoom in.

Results on TextCaps (Sidorov et al. 2020). Figure 4 ex-
hibits the results on the TextCaps dataset, where we show the
COCO-style [ ] and TextCap-style [ ] captions for style
comparison. Different styles focus on different aspects of
the image. For example, in the first image, the TextCap-style
caption as well as the ground-truth annotation aim to de-



COCO Caption NoCaps Validation

Method Pre-training Data Karpathy Test In-domain Near-domain Out-domain  Overall

B@4 M C S C S C S C S C S
BUTD (Anderson et al. 2018) N/A 36.2 27.0 113.5 20.3| 80.0 120 73.6 113 664 97 73.1 11.1
AoANet (Huang et al. 2019) N/A 37.2 284 1198 21.3| - - - - - - - -
X-LAN (Pan et al. 2020) N/A 38.2 28.8 122.0 21.9| - - - - - - - -
Oscarpase (Li et al. 2020) ™ 36.5 30.3 1237 23.1] 834 12.0 81.6 120 776 106 81.1 11.7
ViTCAP (Fang et al. 2021) 10M 36.3 29.3 1252 22.6| 98.7 133 923 133 954 127 93.8 13.0
VinVLpase (Zhang et al. 2021) M 38.2 30.3 1293 23.6| 103.1 142 96.1 13.8 883 12.1 955 135
LEMONj (Hu et al. 2021) 200M 40.3 30.2 133.3 23.3|107.7 14.7 1062 143 1079 13.1 106.8 14.1
BLIPpase (Li et al. 2022) 129M 39.7 - 1333 233|111.8 149 108.6 14.8 111.5 142 109.6 14.7
SimVLMpae (Wang et al. 2021b) 1.8B 39.0 329 134.8 24.0 - - - - - - 94.8 13.1
ConCap (Ours) 129M 40.5 30.9 133.7 23.8| 1134 149 1084 146 1132 144 110.2 14.8

Table 5: Performance comparisons on the COCO Karpathy test split (Lin et al. 2014) and NoCaps validation split (Agrawal et al.
2019), where B@4, M, C, S denote BLEU@4, METEOR, CIDEr, and SPICE scores. For a fair comparison, all the methods
only adopt the standard cross-entropy without CIDEr optimization.

scribe the words in the sign (e.g., “heart break”) while
ignoring the objects such as “trash cans”. In contrast,
the COCO-style pays more attention to the objects and envi-
ronment, e.g., “tall building” in the second image.

4.5 Quantitative Evaluation

COCO (Lin et al. 2014). In Table 5, we present the perfor-
mance of state-of-the-art captioning methods on the COCO-
caption Karpathy test split (Karpathy and Fei-Fei 2015).
Compared with the recent LEMON (Hu et al. 2021) that
leverages more pre-training data, our method achieves su-
perior performance. BLIP (Li et al. 2022) can be regarded
as the baseline of our approach. Compared with BLIP, our
ConCap outperforms it on all metrics. More importantly,
the proposed ConCap is able to simultaneously handle other
domains and generate captions with different lengths and
styles for each image, which is infeasible for BLIP. The
recent SimVLM approach (Wang et al. 2021b) leverages a
large-scale pre-training corpus including 1.8 billion image-
text pairs, which is 10x larger than ours. Besides, SimVLM
combines the ResNet (He et al. 2016) and ViT (Dosovitskiy
et al. 2020) models as the visual extractor, which is stronger
than our pure ViT structure.

NoCaps (Agrawal et al. 2019). NoCaps dataset covers more
than 600 object categories and nearly 2/3 of them are un-
seen from the training set in COCO. The images in No-
Caps are categorized into in-domain, near-domain, and out-
of-domain based on whether these images are seen in the
COCO training set. On this benchmark, we evaluate our
ConCap using the “COCO-style” prompt. As shown in Ta-
ble 5, the proposed ConCap outperforms all existing meth-
ods in terms of the overall performance, which verifies the
generalizability of our method.

TextCaps (Sidorov et al. 2020). TextCaps is a recently pro-
posed dataset containing 28K images and 145K captions,
which is more challenging than COCO due to the exis-
tence of complex textual words. We compare the proposed
method with the classic captioner such as AoANet (Huang
etal. 2019) and the recent state-of-the-art methods including
MMA-SR (Wang, Tang, and Luo 2020), CNMT (Wang et al.
2021a), and TAP (Yang et al. 2021).
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OCR| Validation Test

Method Input| B@4 C |B@4 C

BUTD (Anderson et al. 2018)| X | 20.1 41.9| 149 338
AoANet (Huang et al. 2019) X | 204 427|159 346
MA4C (Hu et al. 2020) v | 233 89.6| 189 81.0
CNMT (Wang et al. 2021a) v | 248 101.7| 20.0 93.0
TAP (Yang et al. 2021) v | 25.8 109.2| 21.9 103.2
ConCap (Ours) X | 31.3 116.7| 27.4 105.6

Table 6: Comparsion results on the TextCaps validation set
and test set (Sidorov et al. 2020), where B@4 and C denote
BLEU @4 and CIDEr scores, respectively.

The comparison results are shown in Table 6. Our ap-
proach significantly outperforms the classic methods with-
out pre-training such as AoANet (Huang et al. 2019). To the
best of our knowledge, TAP (Yang et al. 2021) represents the
current performance leader on the TextCaps dataset. TAP
approach collects high-quality OCR-based image-text pre-
training data, and performs the text-aware pre-training. Be-
sides, TAP feeds the OCR detection results to the model,
while our approach is free of such necessity. Without know-
ing the OCR results, our approach still surpasses the current
state-of-the-art TAP method by a large margin of 7.5 CIDEr
on the validation set. It is worth noting that our ConCap is
not specially designed for TextCaps and is able to perform
well on multiple domains including COCO, NoCaps, and
TextCaps using a single model.

5 Conclusion

In this paper, we propose a conceptually simple yet effective
prompt-based image captioning framework, which has been
rarely investigated in the captioning community. By prompt
engineering, the proposed approach is able to generate cap-
tions with diverse styles. To further explore the potential of
prompt learning, we encourage the network to automatically
learn the suitable prompt vectors in the continuous word em-
bedding space. Extensive qualitative and quantitative exper-
iments verify the effectiveness of the proposed framework.
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