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Abstract

Structural topology optimization, which aims to find the
optimal physical structure that maximizes mechanical per-
formance, is vital in engineering design applications in
aerospace, mechanical, and civil engineering. Recently, gen-
erative adversarial networks (GANs) have emerged as a pop-
ular alternative to traditional iterative topology optimization
methods. However, GANs can be challenging to train, have
limited generalizability, and often neglect important perfor-
mance objectives such as mechanical compliance and manu-
facturability. To address these issues, we propose a new archi-
tecture called TopoDiff that uses conditional diffusion models
to perform performance-aware and manufacturability-aware
topology optimization. Our method introduces a surrogate
model-based guidance strategy that actively favors structures
with low compliance and good manufacturability. Compared
to a state-of-the-art conditional GAN, our approach reduces
the average error on physical performance by a factor of eight
and produces eleven times fewer infeasible samples. Our
work demonstrates the potential of using diffusion models
in topology optimization and suggests a general framework
for solving engineering optimization problems using external
performance with constraint-aware guidance. We provide ac-
cess to our data, code, and trained models at the following
link: https://decode.mit.edu/projects/topodiff/.

1 Introduction

Structural topology optimization (TO) of solid structures in-
volves generating the optimal shape of a material by mini-
mizing an objective function, for instance, mechanical com-
pliance, within a given domain and under a given set of con-
straints (volume fraction, boundary conditions, and loads).
TO is therefore becoming an essential design tool and is now
included in most professional design software, such as Au-
todesk’s Fusion 360 and Solidworks. It is the driving force
behind Autodesk’s generative design toolset, where design-
ers input design goals into the software, along with param-
eters such as performance or spatial requirements, materi-
als, manufacturing methods, and cost constraints. The soft-
ware quickly generates design alternatives. Most methods to
solve TO rely on gradient-based approaches, the most com-
mon method being the Solid Isotropic Material with Penal-
ization method (Bendsge and Kikuchi 1988; Rozvany, Zhou,
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and Birker 1992). Despite their wide adoption, these tradi-
tional methods have two major pitfalls: their iterative nature
makes them computationally expensive and they may gen-
erate non-optimal designs, for example, when penalization
and filtering augmentations are used to avoid grayscale pix-
els in SIMP (Sigmund and Maute 2013).

Several deep learning methods have been developed in re-
cent years to improve and speed up the TO process (Yu et al.
2018; Sharpe and Seepersad 2019; Nie et al. 2021; Behzadi
and Ilieg 2021) by learning from large datasets of optimized
structures. The latest and most promising results were ob-
tained with deep generative models (DGMs) and notably
with conditional generative adversarial networks (cGANSs)
trained for image synthesis, which take as input the bound-
ary conditions and directly generate images of optimized
structures. Although popular, most of these models optimize
a loss function that does not align with the primary goals of
topology optimization — getting high-performance and fea-
sible structures. They often train for loss functions related to
image reconstruction to achieve visual similarity and ignore
modeling the physical performance of the generated struc-
tures. Most of them produce disconnected, floating material
that seriously affects the manufacturability of the generated
design. They also suffer from limited generalizability, espe-
cially for out-of-distribution boundary conditions.

We hypothesize that the absence of explicit methods to
generate designs with low compliance and good manufac-
turability causes these issues. We further hypothesize that
the reliance of the optimization objective on the sole cGAN
prompts the model to only mimic pixel-wise the ground truth
produced by traditional TO methods. As a result, two im-
ages with comparable pixel-wise similarity may still have
significantly different performance values. The absence of
explicit external guidance is even more problematic since
the ground truth data is not guaranteed to be optimal, as ex-
plained above.

This paper introduces TopoDiff, a conditional diffusion-
model-based method for TO. Dhariwal and Nichol (2021)
have shown that diffusion models can outperform GANSs for
image generation, are easier to train, and are thus more read-
ily adaptable to other tasks. We show that by introducing
performance and constraints to diffusion models, they also
outperform GANs on topology optimization problems. In
addition, the sequential nature of diffusion models makes



them compatible with external guidance strategies that as-
sist with performance and feasibility goals. By creating sur-
rogate models to estimate performance, we thus introduce
external guidance strategies to minimize mechanical com-
pliance and improve manufacturability in diffusion models.

Our main contributions include proposing: (1) TopoDiff
— a diffusion model based end-to-end Topology Optimiza-
tion framework that achieves an eight-times reduction in av-
erage physical performance errors and an eleven-times re-
duction in infeasibility compared to a state-of-art conditional
GAN, (2) a new guidance strategy for diffusion models to
perform physical performance optimization with enhanced
manufacturability constraint satisfaction, and (3) a general-
ized framework to solve inverse problems in engineering us-
ing diffusion models, when sample feasibility and perfor-
mance are a high priority.

2 Background and Related Work
2.1 Topology Optimization

Structural Topology Optimization (TO) finds an optimal
subset of material {2,,; included in the full design domain 2
under a set of displacement boundary conditions and loads
applied on the nodes of the domain and a volume fraction
condition. A structure is optimal when it minimizes an ob-
jective function, such as mechanical compliance, subject to
constraints. Fig. 1 summarizes the principle of TO.

Input: Domain with:

- Volume fraction (VF)

- Load

- Displacement fixed in:

A x-direction A x&y-direction

<
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minimizes that compliance
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constraints
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—

<

4 4

Figure 1: Topology Optimization aims to find the optimal
structure that minimizes objectives such as compliance for a
given set of load, boundary conditions, and volume fraction.

Traditional TO methods rely on Finite Elements Analy-
sis (FEA) using gradient-based (Bendsge and Kikuchi 1988)
or gradient-free methods (Ahmed, Bhattacharya, and Deb
2013). One popular gradient-based method is the Solid
Isotropic Material with Penalization (SIMP) method (Roz-
vany, Zhou, and Birker 1992). SIMP associates every el-
ement of the mesh with a continuous density to perform
gradient-based methods (Sigmund 2001). However, because
intermediary densities make no physical sense, SIMP uses
a penalization factor to encourage binary densities. This pe-
nalization strategy (with p > 1) is efficient but introduces
non-convexity in the objective function, as stated by Sig-
mund and Maute (2013). As a result, SIMP is likely to con-
verge towards local optima. Other techniques to encourage
binary densities include filters, but they also introduce non-
convexity.
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2.2 Deep Learning for Topology Optimization

Traditional TO methods are often slow due to the iterative
FEA steps they include (Amir and Sigmund 2011). Many
deep learning methods (Regenwetter, Nobari, and Ahmed
2022; Guo et al. 2018; Lin et al. 2018; Sosnovik and Os-
eledets 2019) have recently been developed to improve the
speed and quality of topology generation or address issues
such as non-convexity.

Our work falls under a group of deep learning approaches
that propose an end-to-end topology optimization frame-
work from constraints to optimal topology (Oh et al. 2019;
Sharpe and Seepersad 2019; Chandrasekhar and Suresh
2021; Parrott, Abueidda, and James 2022). Several repre-
sentative works are reviewed below. Yu et al. (2018) suggest
an iteration-free method that predicts a low-resolution solu-
tion using a CNN encoder-decoder, which is then refined by
passing it through a GAN to increase the resolution. Similar
to Rawat and Shen (2019), Li et al. (2019) use two GANs
to solve the topology optimization problem and predict the
refined structure at high resolution. Sharpe and Seepersad
(2019) introduce conditional GANs to generate a compact
latent representation of structures resulting from topology
optimization. Nie et al. (2021) improve on this work by
training their TopologyGAN on a more diverse set of condi-
tions and using physical fields as input to represent loads and
boundary conditions. In parallel, Wang et al. (2021) develop
a U-Net to perform topology optimization for improved gen-
eralization. However, these promising models demonstrate
limited generalization ability, particularly for boundary con-
ditions outside the training distribution, and are prone to the
problem of disconnected material. To address this issue, Be-
hzadi and Ilies (2021) propose a conditional GAN architec-
ture that includes a topological measure of connectivity in
its loss function, resulting in improved generalizability and
connectivity. However, their work sets the volume fraction
to a constant value, which limits the scope of the problem.

It is worth noting that the methods discussed so far do
not explicitly incorporate a process to minimize compliance,
which is the primary objective of TO. Instead, the minimiza-
tion of compliance is expected to occur indirectly through
neural network training, which can be difficult to control.
Therefore, to ensure that predicted structural performance is
considered during the optimization process, we propose ex-
plicit guidance methods in diffusion models that prioritize
low-compliance and feasible structures.

2.3 Diffusion Models

Diffusion models are a new type of deep generative mod-
els (DGMs) introduced by Sohl-Dickstein et al. (2015).
They have received much attention recently because Dhari-
wal and Nichol (2021) showed that diffusion models out-
perform GANs for image synthesis. Diffusion models are
increasingly being applied to various fields: image gen-
eration (Nichol and Dhariwal 2021), segmentation (Amit
et al. 2021), image editing (Meng et al. 2021), text-to-
image (Nichol et al. 2022; Kim and Ye 2021), etc.

The idea behind diffusion models is to train a neural net-
work to reverse a noising process that maps the data distribu-



tion to a white noise distribution. The forward noising pro-
cess, which is fixed, consists of progressively adding noise
to the samples following the Markov chain:

Q(fﬂt\éﬂt—l) :N(l't;\/OTtl't—la(l*O‘t)I) (D

where ()1, is a variance schedule. To reverse this noising
process, we approximate the true posterior with the paramet-
ric Gaussian process:

po(xi—1]|T¢) :N(Me(xt)aze(ft)) )

We then generate new data by sampling an image from
N (0, I) and gradually denoising it using Eq. 2.

Training a diffusion model, therefore, involves training
two neural networks, 19 () and Xy (), to predict the mean
and the variance of the denoising process respectively. Let us
note that Ho, Jain, and Abbeel (2020) showed that g (x;)
might be fixed to a constant instead of being learned.

2.4 Guidance Methods in Diffusion Models

In many machine learning applications, a model is expected
to generate samples conditioned on some input conditions.
For example, popular text-to-image models such as DALL-
E are conditioned on text input. Researchers have developed
a few guidance methods to perform conditional image gen-
eration, such as including class labels when the model tries
to generate an image corresponding to a given class.

Including conditioning information inside the denoising
networks A method to condition a diffusion model con-
sists in adding the conditioning information (for example,
a class label) as an extra input to the denoising networks
o and Xg. In practice, the conditioning information can
be added as an extra channel to the input image. Similarly,
Dhariwal and Nichol (2021) suggest adding conditioning in-
formation into an adaptive group normalization layer in ev-
ery residual block.

Classifier guidance Additional methods have been devel-
oped to guide the denoising process using classifier output.
In line with Sohl-Dickstein et al. (2015) and Song et al.
(2020), who have used external classifiers to guide the de-
noising process, Dhariwal and Nichol (2021) introduce clas-
sifier guidance to perform class-conditional image genera-
tion. In classifier guidance, a separate classifier is trained
on noisy data (with different levels of noise) to predict the
probability ps (y|z:) that an image x; at noise level ¢ corre-
sponds to the class y. Let pg(x+|2+11) be an unconditional
reverse noising process. Classifier guidance consists of sam-
pling from:

3

instead of pg(x¢|x¢41), where Z denotes a normalizing con-
stant. Under reasonable assumptions, Dhariwal and Nichol
(2021) show that sampling from pg 4(x¢|z+1,y) is equiva-
lent to perturbing the mean with the gradient of the proba-
bility predicted by the classifier. Specifically, the perturbed
mean is:

P9,¢($t\$t+1vy) = Zpa($t|$t+1)]9¢(y|xt)

tio(xt) = po(wt) + 8o (24) Ve, logp¢(y|xt) )
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where s is a scale hyperparameter that needs to be tuned.
A variant called classifier-free guidance is proposed by Ho
and Salimans (2021). This technique is theoretically close to
classifier guidance but does not require training a separate
classifier on noisy data.

However, none of these methods provide guidance for
both continuous values (such as performance obtained from
regression models) and discrete values (such as class la-
bels obtained from classification models), which is impor-
tant for TO to achieve feasible, high-performing samples.
To overcome these issues, we propose a regressor and clas-
sifier guidance strategy that penalizes low-compliance and
infeasible structures at every step.

3 Method
3.1 Architecture and General Pipeline

TopoDiff’s diffusion architecture consists of a UNet (Ron-
neberger, Fischer, and Brox 2015)-based denoiser at every
step with attention layers. We add conditioning to this archi-
tecture by including information on constraints and bound-
ary conditions as additional channels to the input image
given to the denoiser, as shown in Figure 2. The UNet model
uses these extra channels as additional information to de-
noise the first channel of the input in a way that respects the
constraints and is optimal for the given boundary conditions.
Similarly to TopologyGAN, we use physical fields, namely
strain energy density and von Mises stress, to represent con-
straints and boundary conditions. The physical fields are
computed using a finite element method (Guarin-Zapata and
Gomez 2020) and help avoid the sparsity problem caused by
raw constraints and boundary condition matrices. The final
input to our conditional diffusion model has four channels
representing the volume fraction, the strain energy density,
the von Mises stress, and the loads applied to the domain’s
boundary.

3.2 Minimizing Compliance

Most deep learning models used for TO rely on minimiz-
ing the pixel-wise error between the output topology and
the ground truth obtained with traditional methods. For in-
stance, the reference model TopologyGAN (Nie et al. 2021)
attempts to mimic the ground truth topology and is encour-
aged to do so by the L2 loss function of its generator. GANs
for TO are often evaluated using mean absolute error (MAE)
between the ground truth topology and the topology pre-
dicted by their model. However, we hypothesize that set-
ting the minimization of a pixel-wise error as an objective
does not properly address the aim of TO: generate manufac-
turable structures that minimize mechanical compliance. We
pose this hypothesis for two main reasons:

1. The topology used as ground truth may be sub-optimal
due to penalization factor and filters (Sec. 2.1);

2. A small pixel-wise error is compatible with a large com-
pliance error if the material is missing at critical places.
Our conditional diffusion model is prone to the same prob-

lem without additional guidance. To solve that issue, we in-
troduce a new type of guidance called regressor guidance.
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Figure 2: TopoDiff: Proposed constrained guided conditional diffusion model architecture for TO. (z;);=o,... 7 is the gradually
denoised topology; g. and gy, are the guidance gradients; [ is the load applied, represented with an arrow on the topology; v
is the volume fraction; f are the physical fields, and bc are the boundary conditions, represented with color lines and dots.

Consider a conditional diffusion model as presented in
Sec. 3.1: pg(x¢|ziy1, v, f,1), where v is the volume fraction,
f are the physical fields (strain energy density and von Mises
stress), and [ are the loads applied. Regressor guidance con-
sists in sampling each transition according to:

p91¢(‘rt|xt+17 U? f, Z, bC) =

Zpo(ae|Tisr, v, f,1)eco@nvdlbe)

)
where c4 is a surrogate neural network predicting the com-
pliance of the topology under given constraints, bc are the
boundary conditions applied, and Z is a normalizing con-
stant. It is worth noting that c4 must be able to predict com-
pliance on noisy images of structures. To perform this task,
we use the encoder of a UNet architecture modified for re-
gression values.

One can easily prove that under simple assumptions,
adding regressor guidance amounts to shifting the mean pre-
dicted by the diffusion model by —XV,, cg(x4, v, f,1, bc)
where X is the variance of the Gaussian distribution repre-
senting pg(z¢|Tiy1,v, f,1). This method thus modifies the
distribution according to that which we sample at each step
by penalizing structures with high compliance. The resulting
algorithm is Alg. 1.

3.3 Avoiding Floating Material

Disconnected pixels in predicted structures are a serious
problem because this phenomenon leads to floating mate-
rial and affects the predicted topology’s manufacturability.
This problem is generally ignored in deep learning models
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Algorithm 1 Regressor guidance for TO, given a conditional
diffusion model (ug(z¢|zis1,v, f,1), Bo(xt|Tis1, v, f,1))
and a regressor ¢y (x4, v, f,1, be).

Require: v,[,bc > Volume, loads and boundary conditions
Require: f > Physical fields
Require: )\, > Regressor gradient scale
a7 < sample from N(0, I)
for t from T to 1 do
o 24— M0($t|fft+1, v, f, 1)7 Ee(xt‘xt+1v v, f, l)

Ti_1 — sample from A (p  —
AV, co(xe, v, £,1,6¢)|g,=p, X)
return x

for TO and is notably not considered by the pixel-wise er-
ror because a small pixel-wise error is compatible with the
presence of floating material.

Similar to what has been exposed in Sec. 3.2, we further
modify the sampling distribution at each step by penalizing
structures that contain floating material. To do so, we train
a classifier p, that returns the probability that the topology
does not contains floating material. We then use this classi-
fier to perform classifier guidance, as introduced in Sec.2.4.
Eventually, this amounts to shifting the mean predicted by
the diffusion model by +XV, log p (z+).

3.4 Combining Guidance Strategies

Our model ultimately consists of one conditional diffusion
model pg(z¢|zii1,v, f,1) and two surrogate models used



for guidance when sampling: c,(x, v, f, [, be) for compli-
ance and p.(z;) for floating material. One challenge is to
find a way to combine these two guidance strategies. To
combine them, we sample at every step according to:

p0,¢,'y($t|33t+17 v, f7 la bC) =
Zpo (@il v, [ eI Ip, (2). - (6)
This amounts to shifting the mean predicted by the diffu-
sion model by:

—AEV g, oz, v, f,1,60) + A BV, log py(xe)  (7)

where A. and Ay, are gradient scale hyperparameters.

However, as is, this approach has two pitfalls: 1. The gra-
dients are always computed at the same point x (the mean
predicted by the diffusion model), even though this mean is
shifted by the previous guidance strategy; and 2. The gra-
dients are computed at every denoising step, even if we
might want to favor one guidance over the other at a given
denoising step. We modify the point at which the second
gradient is computed to address these issues by consider-
ing the shift induced by the previous gradient. In addition,
we determine a maximum level of noise (MLN) beyond
which the classifier/regressor guidance should not be in-
cluded for every classifier and regressor. We then introduce
classifier/regressor guidance only if the image is denoised
enough to have a noise level below the MLN of the given
classifier or regressor.

The final guidance algorithm resulting from the combina-
tion of these guidance strategies is Alg.2. Fig.2 also sum-
marizes the overall architecture.

Algorithm 2 Guidance strategy for TO using Conditional
Diffusion Model.

Require: v, [, bc > Volume, loads and boundary conditions
Require: f > Physical fields
Require: A, At > Regressor and classifier gradient scale
Require: M LN., MLNf,, > Maximum levels of noise
a7 < sample from N (0, I)
for ¢t from 7T to 1 do
122 DR /J'Q(xth:t-‘rla v, fv l)a Eg($t|$t+1, v, f7 l)
ift < MLNy,, then
f4= p+ Apm BV, log py () o=
if t < M LN, then
o= o — AEVg,co(xe,v, f,1,0¢)|0,=p

x4—1 < sample from N (u, X)
return xg

Note that our framework can apply regressor and classi-
fier guidance for various engineering constraints (e.g., vol-
ume, load position). However, in this study, the conditional
diffusion model respects these constraints adequately, mak-
ing additional guidance unnecessary.

4 Empirical Evaluation

We created three datasets to train the proposed models,
which are made publicly available.
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4.1 Dataset

The main dataset consists of 33000 64x64 2D images corre-
sponding to optimal structures for diverse input conditions.
Every data sample contains six channels:

1. The first channel is the black and white image represent-
ing the optimal topology;

The second channel is uniform and includes the pre-
scribed volume fraction;
3. The third channel is
the full domain under the given
straints and boundary conditions,
Tom = \/ 0} — 011022 + 035 + 303,
The fourth channel is the strain energy density of the full
domain under the given load and boundary conditions,
defined as W = %(0’11611 + 022622 + 2012€12);

of
con-
as

stress
load
defined

the von Mises

5. The fifth channel represents the load constraints in the
x-direction. Every node is given the value of the force
applied in the x-direction on this load (0 if no force is
applied on the load);

. The sixth channel similarly represents the load con-
straints in the y-direction;

where (011,022, 012) and (€11, €22, €12) are respectively the
components of the stress and strain fields.

We randomly selected a combination of conditions (vol-
ume fraction, boundary conditions, loads) to generate every
structure and then computed the optimal topology using the
SIMP-based TO library ToPy (Hunter et al. 2017). We de-
fined the possible conditions in a similar way to what was
done in previous works, namely: 1. The volume fraction is
chosen in the interval [0.3, 0.5], with a step of 0.02; 2. The
displacement boundary conditions are chosen among 42 sce-
narios for training and five additional scenarios only used for
testing; 3. The loads are applied on unconstrained nodes ran-
domly selected on the domain’s boundary. The direction is
selected in the interval [0, ], with a step of . The main
dataset is divided into training, validation, and testing as fol-
lows:

1. The training data consist of 30,000 combinations of
constraints containing 42 of the 47 boundary conditions;

. The validation data consist of 200 new combinations of
constraints containing the same 42 boundary conditions;

3. The level 1 test data consist of 1800 new combinations
of constraints containing the same 42 boundary condi-
tions;

The level 2 test data consist of 1000 new combinations
of constraints containing five out-of-distribution bound-
ary conditions.

In all test data, the combination of constraints is unseen.
While level I dataset contains boundary conditions that are
also in the training data, we introduce more difficult condi-
tions in level 2 to rigorously compare the TopoDiff model’s
generalization ability with existing methods. In addition to
the main dataset, two other datasets consisting of 12,000 and
30,000 non-optimal structures are used to train regressor and
classifier guidance models.



4.2 Evaluation Metrics

Selecting the right evaluation metrics is critical for mechan-
ical design generation because most metrics used in DGMs
do not correspond to the physical objective one wants a de-
sign to achieve. In this work, contrary to most generative
models applied to TO in previous works, we do not use
pixel-wise error as a primary evaluation metric because it
does not guarantee low compliance, which is the objective
we are trying to achieve.

Hence, we define and use four evaluation metrics that re-
flect the compliance minimization objective, as well as the
constraints that the generated structures have to respect:

1. Compliance error (CE) relative to the ground truth, de-
fined as: CE = (C(y) — C(y))/C(y) where C(y) and
C(y) are, respectively, the compliance of the SIMP-
generated topology and the topology generated by our
diffusion model. It should be noted that a negative com-
pliance error means that our model returns a topology
with lower compliance than the ground truth;

. Volume fraction error (VFE) relative to the input volume
fraction, defined as: VFE = |VF(§) —VF(y)|/VF(y)
where VF(y) and VF(§) are, respectively, the pre-
scribed volume fraction and the volume fraction of the
topology generated by our diffusion model;

3. Load violation (LV), defined as a boolean that is 1 if there
is no material at a place where a load is applied and O if
there is always material where loads are applied;

. Presence of floating material (FM), defined as a boolean
that is 1 if the topology contains floating material and O
otherwise.

High-scoring samples on these metrics should result in
high-performance, manufacturable designs.

4.3 Choice of Hyperparameters

One of the most crucial hyperparameters is the gradient
scales in our guidance strategies. These parameters quan-
tify the relative importance of compliance minimization and
floating material avoidance. As explained in Sec. 4.1, a val-
idation dataset of 200 structures was used to perform hy-
perparameter tuning. We used a grid search method to de-
cide the hyperparameters using compliance error and float-
ing material presence as evaluation metrics. Topology gen-
eration and FEA were used to evaluate the results.

5 Results and Discussions
5.1 Evaluation of the Full Diffusion Model

To evaluate the performance, we use the two test sets de-
scribed in Sec.4.1, corresponding to two difficulty levels.
We run every test nine times and then compute the results’
average. We compare the performance of our model on all
evaluation metrics (Sec. 4.2) to a state-of-art cGAN model,
named TopologyGAN (Nie et al. 2021), which performs the
same task as our model.

Fig. 3 shows examples of a few structures obtained with
the SIMP method (ground truth), with TopologyGAN, and
with TopoDiff for randomly selected constraints from level
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Level 1 test data Level 2 test data
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cGAN GT  TopoDiff cGAN GT  TopoDiff

Figure 3: Comparison of generated structures on randomly
selected samples from both test datasets. GT stands for
ground truth, CE is the compliance error relative to the GT,
and FM indicates the presence or not of floating material.

1 and level 2 test sets. Qualitatively, we notice that Topol-
0gyGAN tries to mimic pixel-wise the topology obtained
from SIMP but neglects both the compliance and the man-
ufacturability of the generated structures, which almost all
have some floating material and high compliance error. The
ten structures generated by TopoDiff, on the other hand,
may visually differ more from the SIMP results but have
better physical properties than TopologyGAN. Only one of
the TopoDiff-generated structures has floating material, and
all ten outperform the TopologyGAN structures in terms of
compliance error. To confirm these qualitative observations,
Table 1 summarizes the performance of the structures ob-
tained with all test sets. TopoDiff outperforms Topology-
GAN on all the metrics.

On the level 1 test set, TopoDiff notably reduces the av-
erage CE by a factor of eleven and the proportion of FM
by more than a factor of eight. The proportion of non-
manufacturable designs thus drops from 46.8% with cGAN
to 5.5% with TopoDiff. It also significantly reduces the av-
erage VFE from 11.9% to 1.9%. On the level 2 test set,
TopoDiff demonstrates strong generalizability performance.
It performs an eight-times reduction in the average CE, from
143.1% to 18.4%, and a four-times reduction in the me-
dian CE. Non-manufacturability drops from 67.9% to 6.2%,
while the VFE is reduced by a factor of eight, from 14% to
less than 2%. A paired one-tailed t-test confirms a reduction
of the average CE and of the average VFE with a p-value



Level 1 test data

Level 2 test data

Model | TopologyGAN  Unguided TopoDiff ~ TopoDiff | TopologyGAN  Unguided TopoDiff TopoDiff
Average CE (%) 48.51 £ 16.38 4.10 +0.88 4.39 £ 0.94 | 143.08 & 38.50 22.13 +8.52 18.40 £ 5.88
Median CE (%) 2.06 0.80 0.83 6.82 1.88 1.82

Prop. of CE>30% (%) 10.11 2.33 2.56 24.10 8.20 8.10
Average VFE (%) 11.87 £0.52 1.86 + 0.03 1.85 + 0.03 14.31 £0.75 1.81 £0.04 1.80 + 0.04

Prop. of LV (%) 0.00 0.00 0.00 0.00 0.00 0.00

Prop. of FM (%) 46.78 6.64 5.54 67.90 7.53 6.21

Table 1: Comparison of performance between TopologyGAN and TopoDiff (guided and not guided) on the two level test sets.
Values after + indicate the 95 % confidence interval around averages. The values in bold are the best ones for each level.

of 9- 10712 and 5 - 107159 respectively. These results show
the efficacy of diffusion models in learning to generate high-
performing and manufacturable structures for a wide set of
testing conditions.

5.2 Efficiency of Guidance Strategy

Surrogate models Guidance can only work if the regres-
sors and classifiers can perform well on the challenging task
of predicting compliance and floating material for noisy im-
ages. Table 2 shows the compliance regressor and floating
material classifier performance according to the noise level.
These results show that both surrogate models are reliable
on low-noise structures, and as expected, their performance
decreases with an increase in noise.

Noise level \ 0-25%  25-75% 75-100%  Global
Regressor R2 (%) 82.4 82.4 61.8 77.3
Classifier acc. (%) 98.8 76.8 54.6 76.8

Table 2: Performance (R2-score and accuracy) of both sur-
rogate models on validation data with respect to noise level.

Ablation study We tested TopoDiff with and without
guidance to evaluate its impact on performance (see Table
1). With in-distribution boundary conditions (level I), our
guidance strategy has no significant impact on average or
median compliance error. A two-tailed paired t-test does not
reject the null hypothesis (p = 0.1). This may happen be-
cause the diffusion model has implicitly learned to respect
the boundary conditions and does not need explicit com-
pliance guidance. In contrast, our guidance strategy signifi-
cantly impacts the proportion of floating material, with de-
creases from 6.6% to 5.5%.

With out-of-distribution boundary conditions (level 2), the
positive impact of our guidance strategy is evident. A paired
one-tailed t-test confirms a reduction of the average CE with
a p-value of 0.05. The average compliance error is reduced
by 17% and the average proportion of floating material by
18%. As expected, guidance seems to have no effect on load
respect and volume fraction error. More interestingly, guid-
ance seems to have no significant effect on the median of the
compliance error, which suggests that compliance regressor
guidance primarily reduces the number of structures with
very high compliance errors.
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5.3 Limitations and Future Work

TopoDiff has demonstrated good performance and general-
ization to out-of-distribution boundary conditions, and its
proposed guidance strategy is effective in minimizing com-
pliance and satisfying constraints. However, there are still
several challenges that need to be addressed. Diffusion mod-
els are slower than GANs, and TopoDiff takes 21.59 seconds
to generate one topology, compared to TopologyGAN’s 0.06
seconds. However, recent research has shown promise in
reducing the computation time of diffusion models, which
could improve TO-based diffusion models (Ma et al. 2022).
Other potential future research directions include applying
TopoDiff to more complex TO problems, including 3D prob-
lems, and scaling it to higher resolutions and more bound-
ary conditions. It is also crucial to reduce the dependency
on mesh size and large training datasets. Our framework,
which conditions a diffusion model with constraints, trains
it on optimal data, and guides it with a regressor and classi-
fiers, is a versatile method that can solve many design gener-
ation problems with performance objectives and constraints.
Examples of such problems include airfoil (Heyrani, Chen,
and Ahmed 2021) and bicycle design (Regenwetter, Curry,
and Ahmed 2022). Finally, future work should also expand
the TopoDiff framework to solve many inverse problems in
engineering domains with multi-modal inputs.

6 Conclusion

Diffusion models have achieved remarkable success in mod-
eling high-dimensional multi-modal distributions, particu-
larly in generating high-fidelity images. In this paper, we
propose TopoDiff, a conditional diffusion model for end-
to-end topology optimization. Our method demonstrates
that diffusion models can outperform GANS in engineer-
ing design applications. Additionally, we introduce an ex-
plicit guidance strategy to ensure performance maximiza-
tion and avoidance of non-manufacturable designs. TopoD-
iff achieves an eight-times reduction in the average compli-
ance error and produces 11-times fewer non-manufacturable
designs compared to a state-of-the-art conditional GAN.
It also achieves an eight-times reduction in volume frac-
tion error and generalizes well to out-of-distribution bound-
ary conditions. Our proposed approach can be applied to
a broad range of physical optimization problems in engi-
neering, where performance objectives and constraints, both
continuous and discrete, are required to be considered.
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