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Abstract

Enumerating the directed acyclic graphs (DAGs) of a Markov
equivalence class (MEC) is an important primitive in causal
analysis. The central resource from the perspective of compu-
tational complexity is the delay, that is, the time an algorithm
that lists all members of the class requires between two consec-
utive outputs. Commonly used algorithms for this task utilize
the rules proposed by Meek (1995) or the transformational
characterization by Chickering (1995), both resulting in super-
linear delay. In this paper, we present the first linear-time delay
algorithm. On the theoretical side, we show that our algorithm
can be generalized to enumerate DAGs represented by models
that incorporate background knowledge, such as MPDAGs;
on the practical side, we provide an efficient implementation
and evaluate it in a series of experiments. Complementary to
the linear-time delay algorithm, we also provide intriguing
insights into Markov equivalence itself: All members of an
MEC can be enumerated such that two successive DAGs have
structural Hamming distance at most three.

1 Introduction
Graphical causal models endow researchers with an intuitive
and mathematically sound language to infer causal relations
between random variables from observational and interven-
tional data. Directed acyclic graphs (DAGs), whose edges
encode direct causal influences between the variables, belong
to the most popular models and are used in many areas of
empirical research (Spirtes, Glymour, and Scheines 2000;
Rothman et al. 2008; Pearl 2009; Koller and Friedman 2009;
Elwert 2013). However, there is usually not a unique DAG
that can be learned from observational or limited experimen-
tal data as multiple models can encode the same statistical
properties. These DAGs form a Markov equivalence class
(MEC) and each of them explains the data equally well (An-
dersson, Madigan, and Perlman 1997; Pearl 2009).

Exploring the structural and quantitative properties of
MECs are challenging tasks in graphical causal analysis
and, despite extensive research efforts, several basic issues
involving MECs fundamental to causal discovery remain
open as e. g., calculating the number of MECs on n vari-
ables (Gillispie and Lemieux 2001; Steinsky 2003) or enu-
merating them efficiently (Chen, Choi, and Darwiche 2016).
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Figure 1: A Markov equivalence class (MEC) on the right,
which consists of six DAGs. This class is represented by the
left CPDAG, which uniquely represents the MEC by includ-
ing undirected edges if two DAGs differ in their direction.

In this work, we study the properties of a single MEC,
encoded as a completed partially directed acyclic graph
(CPDAG) (Andersson, Madigan, and Perlman 1997), see
Fig. 1 for an example. The CPDAG representation is often
learned directly by causal discovery algorithms (Spirtes, Gly-
mour, and Scheines 2000; Chickering 2002) and, thus, it is
of high practical value to offer efficient implementations for
their analysis. Recently, Wienöbst, Bannach, and Liśkiewicz
(2021b) have shown that computing the size of an MEC as
well as uniformly sampling from it can be done in polynomial
time. We deal with the closely related problem of enumer-
ating the DAGs in an MEC given its CPDAG, that is listing
each member of the MEC exactly once. This task is an im-
portant primitive in causal analysis, used as a subroutine to
solve more complex problems in software packages such
as pcalg (Kalisch et al. 2012) and causaldag (Squires
2018). Enumeration of an MEC’s members can be applied to
solve many important downstream tasks in causal inference.
For example, one can estimate the causal effect of the expo-
sure variable on the outcome for each DAG in the equivalence
class, which is learned from the observed data (Maathuis,
Kalisch, and Bühlmann 2009). One could also check for
every DAG whether it conforms to additional domain infor-
mation or background knowledge in order to find the most
plausible DAG (Meek 1995), or select intervention targets
to distinguish between certain DAGs in the class (He and
Geng 2008; Hauser and Bühlmann 2012). While there are
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custom algorithms, which avoid the use of explicit enumera-
tion (sometimes by settling for approximate solutions), for
many of these cases, it remains a flexible and very general
tool that can be utilized even when other methods fail. The
main drawback is, of course, its high computational cost,
which we aim to address in this work.

Any method for enumerating the DAGs in an MEC re-
quires exponential time in the worst-case, due to the basic
fact that there are classes with exponential size. A crucial
feature from a computational perspective is the delay: the
algorithm’s run-time between two consecutive output DAGs.
Another desirable property would be that the subsequent
DAGs smoothly change their structure, i. e., share most of
their edge orientations, which constitutes a more plausible
enumeration from the causal point of view. In the present
work, we take both these aspects into account.

To the best of our knowledge, no study has been published
that performs a systematic analysis of the enumeration prob-
lem, including its algorithmic aspects. One commonly used
folklore algorithm utilizes the rules proposed by Meek (1995)
to transform a causal graph (e. g., a CDPAG or PDAG) into
its maximal orientation. Applying these rules has the property
that any remaining undirected edge a− b is oriented a→ b
in at least one and a ← b in another DAG represented by
the graph. Consequently, the DAGs can be enumerated by
successively trying both possible orientations. This yields a
polynomial delay algorithm, but the degree of the correspond-
ing polynomial is rather large since the Meek rules have to
be applied at every step. Another folklore approach is based
upon the transformational characterization of MECs given
by Chickering (1995), which states that two DAGs in the
same MEC can be transformed into each other by succes-
sive single-edge reversals. Hence, the MEC can be explored
through such edge reversals starting from an arbitrary DAG
in the class. The issue with this approach is that already
output DAGs need to be stored and every time a new DAG
is explored it has to be checked that it has not been output
before. This leads to a relatively large delay and memory de-
mand. As both algorithms (which we call MEEK-ENUM and
CHICKERING-ENUM) have not been explicitly stated in a pub-
lication, we give a formal description of both in Appendix A
as well as a rigorous analysis of their delay.

The main contribution of this paper is the first O(n+m)-
delay algorithm that, for a given CPDAG representing an
MEC, lists all members of the class.1 We also show that
the algorithm can be generalized to enumerate DAGs repre-
sented by a PDAG or MPDAG – causal models incorporating
background knowledge. To achieve these results, we utilize
the Maximum Cardinality Search (MCS) (Tarjan and Yan-
nakakis 1984) originating from the chordal graph literature.
In addition to the theoretical results, we give an efficient
practical implementation, which is significantly faster than
implementations of MEEK-ENUM and CHICKERING-ENUM.

We also propose a complementary method with the prop-
erty that during enumeration subsequent DAGs gradually
change their structure. This method utilizes the results

1We denote the number of vertices by n and the number of edges
by m.

by (Chickering 1995), but performs the traversal of the MEC
in a more refined way. Using such an approach, it is possible
to output all Markov equivalent DAGs in sequence with the
property that two successive DAGs have structural Hamming
distance (SHD) at most three. This result is tight in the sense
that there are MECs whose members cannot be enumerated
in a sequence with maximal distance at most two. We also
show that our ideas can be used in the more general setting
of enumerating maximal ancestral graphs (MAGs) which
encode conditional independence relations in DAG models
with latent variables (Richardson and Spirtes 2002).

2 Preliminaries
A graph G = (V,E) consists of a set of vertices V and
a set of edges E ⊆ V × V . An edge u − v is undirected
if (u, v), (v, u) ∈ E and directed u → v if (u, v) ∈ E
and (v, u) ̸∈ E. Vertices linked by an edge (of any type)
are adjacent and neighbors of each other. We say that u is
a parent of v if u → v. We denote by Pa(v) and Ne(v)
the set of parents and neighbors of v. The degree δ(v)
of vertex v is the number of its neighbors |Ne(v)|. The
structural Hamming distance (SHD) of G1 = (V,E1) and
G2 = (V,E2) is denoted by shd(G1, G2) and defined as
number of pairs (a, b) ∈ V 2 with differing edge relations,
i. e., E1 ∩ {(a, b), (b, a)} ̸= E2 ∩ {(a, b), (b, a)}. Given a
graph G = (V,E) and a vertex set S, the induced sub-
graph G[S] contains the edges E ∩ (S × S) from G that
are incident only to vertices in S. The union of a set of
graphs {G1 = (V,E1), . . . , Gk = (V,Ek)} is the graph
G = (V,

⋃k
i=1 Ek). A path π between two vertices v1 and vp

is a sequence of distinct vertices π = ⟨v1, . . . , vp⟩ with
p ≥ 2 such that each vertex vi is adjacent to vi+1 for
i = 1, . . . , p − 1. An undirected connected component is
a maximal induced subgraph in which every pair of vertices
is connected by a path of undirected edges. A path of the
form v1 → v2 → . . .→ vp is directed or causal. A graph is
acyclic if there is no directed path from a vertex u to v with
v → u. An acyclic graph with only directed edges is called a
DAG. An undirected graph is called chordal if no subset of
four or more vertices induces an undirected cycle.

The skeleton of G, denoted by skel(G), is a graph with
the same vertex set in which every edge is replaced by an
undirected edge. A v-structure is an ordered triple of vertices
(u, c, v) that induces the subgraph u → c ← v. A Markov
equivalence class (MEC) consists of DAGs encoding the
same set of conditional independence relations among the
variables. (Verma and Pearl 1990; Frydenberg 1990) showed
that two DAGs are Markov equivalent iff they have the same
skeleton and the same v-structures. An MEC can be repre-
sented by a CPDAG (completed partially directed acyclic
graph), which is the union graph of the DAGs in the equiva-
lence class it represents. The set [G] denotes all DAGs in the
MEC represented by CPDAG G.

Subclasses of MECs can be represented by partially di-
rected acyclic graphs (PDAGs), which are restricted only in
that they may not contain a directed cycle, and maximally
oriented PDAGs (MPDAGs), which consist of PDAGs closed
under the four Meek rules. Explicitly, we only use the first
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Meek rule in this work, which states that an induced subgraph
a→ b− c is oriented into a→ b→ c. A formal description
of all four Meek rules can be found in Appendix A.1.

The input of the enumeration algorithms is the represen-
tation of an MEC in form of its CPDAG G. Hence, before
approaching the enumeration task, it is important, first and
foremost, to understand how one can derive a DAG in [G]
from the CPDAG representation (this is also called the ex-
tension task and such a DAG is called a consistent extension
of G). To extend G into a consistent DAG, it is necessary to
find an orientation of its undirected edges. This orientation
needs to be acyclic and contain the same v-structures as G.
Fact 1 (Andersson, Madigan, and Perlman (1997); He, Jia,
and Yu (2015)). The undirected components of a CPDAGs
are undirected and connected chordal graphs (UCCGs).
Acyclically orienting each UCCG independently, without in-
troducing a v-structure, gives a DAG in [G].

The acyclic orientations without a v-structure of a chordal
graph are called AMOs (acyclic moral orientations). Every
DAG in [G] may be computed by finding appropriate AMOs
for the UCCGs. In Fig. 1, to obtain the DAG at the top left,
the UCCG a − c − f is oriented as AMO a → c → f and
b − e is oriented as b → e. For the former there are three
AMOs, for the latter two, corresponding to the six DAGs
in the MEC (as the UCCGs can be oriented independently).
Thus, when tackling the enumeration task for CPDAGs, it
suffices to enumerate the AMOs of a chordal graph.
Fact 2 (Implicit in Wienöbst, Bannach, and Liśkiewicz
(2021b)). Every AMO of a UCCG G can be obtained by
orienting the edges according to an MCS ordering (a→ b if
a comes before b in the ordering).

An MCS ordering is a linear ordering of the vertices pro-
duced by running the graph traversal algorithm Maximum
Cardinality Search (MCS) (Tarjan and Yannakakis 1984),
which was originally proposed for testing chordality of a
graph in linear time. Notably, the reverse direction holds as
well, that is, an MCS ordering will always produce an AMO
of G. A brief introduction to chordal graphs, AMOs and the
MCS algorithm is given in Appendix A.3.

The output of an MCS depends on the choices of the “next”
vertex to visit in each step of the graph traversal. This vertex
is taken from the set of vertices with the largest number of
already visited neighbors (called the vertices with highest
label) and, from Fact 2, we can conclude that there are such
choices, which may produce any AMO of a given UCCG.

3 Enumerating AMOs with Linear Delay
The observations from the previous section yield a new ap-
proach: Instead of producing a single AMO by choosing an
arbitrary vertex in each step of the MCS, we perform multi-
ple choices and recur for each of them – eventually listing
all AMOs. There is one pitfall however: We cannot simply
choose every vertex from the highest-label set one after the
other as some graphs would be output multiple times. Fig. 2
illustrates this issue: If vertex a has been visited, the next
vertex could be b, c, d, e, or f (all have one visited neighbor,
namely a). But choosing, say, b or e may lead to the same
AMO as the order of b and e after choosing a is irrelevant.

a

b c d e f

g

(i) a

b c d e f

g

(ii)

a

b c d e f

g

(iii) a

b c d e f

g

(iv)

Figure 2: An example showing for the chordal graph (i) that,
at a given step of the algorithm, not all vertices in the highest-
label set can be chosen. If the MCS starts with vertex a, all
neighbors b, c, d, e, f have the same label, namely 1. While
an MCS may choose any one of them, we cannot choose all
one-after-the-other in our enumeration. Choosing b or e as the
second vertex may yield the same AMO as a, b, c, d, e, f, g
and a, e, f, g, b, c, d are both topological orderings of (ii).
However, choosing highest-label vertices from one connected
component in G[{b, c, d, e, f, g}] such as {b, c, d} one-after-
another will yield distinct AMOs (in (iii) and (iv) AMOs with
c, d chosen as second vertex are given).

This issue can be addressed as follows: While the choice of
the first vertex v from the highest-label set is arbitrary, every
other vertex x has to be connected to v in the remaining
graph (the induced subgraph over the unvisited vertices).
If they are connected, then the order of v and x matters.
Otherwise, choosing x instead of v would lead to duplicate
AMOs being output. In our example, this means that if b
is the first considered vertex with highest label after a has
been visited, the other choices we would consider are c and d
as these are the vertices reachable from b in the induced
subgraph over the unvisited vertices.

Lemma 1. Given a chordal graph G = (V,E) and the
sequence of previously visited vertices τ with |τ | = k < n
produced by an MCS with current highest-label set S.

1. If x, y ∈ S are connected in G[V \τ ], the set of AMOs pro-
duced by choosing x next is disjoint from the set produced
by choosing y next.

2. If x, y ∈ S are unconnected in G[V \ τ ], any AMO pro-
duced by choosing y as the next vertex can be produced
by choosing a vertex in S connected to x in G[V \ τ ] next.

Proof. We show item 1 first and let p be the shortest path
between x and y in G[V \ τ ]. Since AMOs do not contain
v-structures, any AMO choosing x before y must orient p as
x→ · · · → y while any other AMO yields x← · · · ← y.

For item 2 let C1, . . . , Ck be the connected components of
G[V \ τ ] with x ∈ C1. Any topological ordering with pre-
fix τ can be rewritten as τ, Cπ(1), . . . , Cπ(k) for an arbitrary
permutation π – in particular for π = id.

The following Lemma provides a simplified way of testing
whether two vertices of highest label are connected.
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Algorithm 1: Linear-time delay algorithm MCS-
ENUM for listing all AMOs of a chordal graph.
input :A UCCG G = (V,E).
output :All AMOs of G.

1 A := array of n initially empty sets
2 τ := empty list
3 A[0] := V
4 enumerate(G,A, τ)

5 function enumerate(G, A, τ)
6 if |τ | = n then
7 Output AMO of G according to ordering τ
8 end
9 i := highest index of non-empty set in A

10 v := any vertex from A[i]
11 x := v
12 do
13 delete x from A[i]
14 append x to τ
15 foreach w ∈ (Ne(x) \ τ) do
16 j := index of set in A that w is in
17 delete w from A[j]
18 insert w in A[j + 1]
19 end
20 enumerate(G, A, τ)
21 foreach w ∈ (Ne(x) \ τ) do
22 j := index of set in A that w is in
23 delete w from A[j]
24 insert w in A[j − 1]
25 end
26 insert x in A[i]
27 pop x from τ
28 if x = v then
29 R := {a | a reachable from v in G[A[i]]}
30 end
31 while R is non-empty, x := pop(R)
32 end

Lemma 2. Given a connected chordal graph G = (V,E)
and a sequence of visited vertices τ produced by an MCS
with the current highest-label set S. Vertices x, y ∈ S are
connected in G[S] iff they are connected in G[V \ τ ].

Algorithm MCS-ENUM utilizes these results to enumerate
the AMOs of a chordal graph. Lines 1 to 4 in Algorithm 1 ini-
tialize the necessary data structures for an MCS (in particular
an array A, which includes the set of vertices with i visited
neighbors at index A[i]). Afterward, the recursive function
enumerate is called. It first chooses any vertex v from
the vertices with most visited neighbors (just as a normal
MCS). This vertex is then removed from A[i] in line 13, it is
appended to τ in line 14, which stores the traversal sequence
(later used to impose edge directions based on its ordering)
and the neighbors are moved from A[j] to A[j+1] in lines 15
to 19. The recursive calls to enumerate are repeated until,
at some point, the first AMO is output in line 7 (up to this
point there is no difference to an MCS).

After the recursive call, however, the changes are reversed

in lines 21 to 27 and then, in line 29, the vertices reachable
from v are computed. These are then iterated in the do-while
loop, meaning we also recursively go through the AMOs
produced by choosing those vertices instead of v, as discussed
above. Note that reachability in line 29 is only performed
once in a call of enumerate for the initial vertex v.

Theorem 1. Given a chordal graph G, MCS-ENUM enumer-
ates all AMOs of G.

Proof. Every DAG output in line 7 is an AMO, as it is gener-
ated by a linear ordering produced by an MCS. This holds as
any chosen vertex is from the highest-index non-empty set
in A. To see that the algorithm outputs all AMOs of G, recall
that every AMO can be represented by an MCS ordering
by Fact 2. In principle, Algorithm 1 considers all possible
courses an MCS could take, except the pruning of vertices
unreachable from v. By Lemma 2, it suffices to inspect only
connected vertices in G[A[i]] and by item 2 of Lemma 1
those unreachable vertices would not lead to any new AMO.

Finally, we argue that no AMO is output twice. Every
output is obtained by constructing a directed graph based on
the ordering given by the graph traversal. Assume for the
sake of contradiction that we have two such sequences τ1 and
τ2 representing the same AMO. Let x and y be the vertices
in τ1 and τ2 at the first differing position, respectively. Note
that x and y are connected and, hence, by item 1 of Lemma 1
it follows that τ1 and τ2 yield different AMOs.

Theorem 2. MCS-ENUM has worst-case delay O(n+m).

Proof. Let us partition the steps between two outputs in three
phases: (i) the recursion goes “upwards” from an output; (ii)
it reaches its “top” in the recursion tree; and (iii) the recursion
goes “downwards” towards the next output.

We show that each phase runs in time O(n + m). In
phase (i), lines 21 to 31 are executed and the do-while loop
stops (otherwise we would be in phase (ii)). The for-loop in
lines 21 to 25 has time complexity O(δ(x)). Moreover, the
reachability query executed in line 29 does not yield any ver-
tices (otherwise the do-while loop would continue), meaning
it takes time O(δ(x)) (all neighbors of v are checked once
and the search stops). The run-time is therefore O(m) as
every edge is considered at most twice.

The main costs of phase (iii) are produced by the for-loop
in lines 15 to 19, which requires time O(δ(x)) leading to an
overall time of O(m). Both for-loops are executed in phase
(ii), resulting in overall time O(δ(x)). The reachability query
from v in line 29 costs time O(m). As this is done only once,
we obtain a worst-case delay of O(n+m).

The result immediately generalizes to CPDAGs.

Theorem 3. The Markov equivalence class [G] of a CPDAG
G can be enumerated with worst-case delay O(n+m).

Proof. Algorithm 1 also works for unconnected chordal
graphs without any modifications. Hence, it can be called for
the graph obtained by removing all directed edges of G. After
computing an AMO of this graph, the directed edges can be
re-added and the output is a member of [G] produced with
delay O(n+m). The correctness follows from Fact 1.
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Figure 3: The MPDAG on the left, contains two buckets
with chordal skeleton (middle), which lead to a consistent
extension when each oriented into an AMO (right).

4 PDAGs and MPDAGs
One can naturally generalize the enumeration task to only
consider members of the MEC, which conform to certain
background knowledge given in the form of additional di-
rected edges. Such a subclass of an MEC is commonly rep-
resented by an MPDAG (or PDAG). As before, a DAG is
a consistent extension of G if it has the same skeleton and
v-structures.It is easy to see that MEEK-ENUM works in this
generalized setting as well, as does CHICKERING-ENUM (see
also Corollary 2 in Section 5). In this section, we show how
MCS-ENUM can be adapted, first to handle MPDAGs and,
building on this, PDAGs.

Definition 1. We term the graph induced by the vertices of a
undirected component in an MPDAG a bucket.

Buckets are similar to the undirected chordal components
that we considered in the previous section, in that orienting
each bucket in an MPDAG without cycles or v-structures will
yield a consistent extension. However, a bucket may already
contain directed edges. An illustration is given in Fig. 3.

Fact 3 (Wienöbst, Bannach, and Liśkiewicz (2021a)). An
MPDAG is extendable (i. e., has a consistent extension) iff
the skeleton of every bucket is chordal. An extension can be
computed in time O(n+m).

An MPDAG can be extended by running a modified MCS
for each bucket B in the following way: The graph traversal
is performed on the skeleton of B with the restriction that
only vertices in the highest-label set S that have no unvisited
parent in B are considered. These are the vertices x with
Pa(x) \ τ = ∅, given that τ contains the visited vertices, and
we denote the set of such vertices by S+ ⊆ S. This way, the
MCS conforms to the background edges.

With these insights, an analogue modification of Algo-
rithm 1 suggests itself to enumerate all AMOs of a bucket:
Perform the algorithm on the skeleton of the bucket and only
consider vertices in S+.

Lemma 3. Let B be a bucket and τ be a sequence of visited
vertices with |τ | = k < n produced by the modified MCS
using S+. Then it holds that:

1. If x, y ∈ S+ are connected in skel(B[V \ τ ]), the set of
AMOs produced by choosing x next is disjoint from the
set produced by choosing y next.

2. If x, y ∈ S+ are unconnected in skel(B[V \τ ]), any AMO
produced by choosing y as the next vertex can also be
produced by choosing a vertex in S+ connected to x in
skel(B[V \ τ ]) next.

Proof. For item 1 consider the shortest path between x and y
and assume that it contains directed edges (if not the argument
of Lemma 1 applies). Then x or y have an incoming edge
due to the non-applicability of the first Meek rule in the
original bucket B. This violates the assumption that x, y ∈
S+, meaning that τ1 and τ2 imply different AMOs. For item 2
the same argument as in Lemma 1 holds.

Reachability can again be tested in a simplified way:

Lemma 4. Given a bucket B and a sequence of visited ver-
tices τ produced by the modified MCS using S+. Vertices
x, y ∈ S+ are connected in B[V \ τ ] iff they are connected
in B[S+].

Using these results, we can show that:

Theorem 4. There is an algorithm that enumerates all AMOs
of a given bucket B with worst-case delay O(n+m).

Proof sketch. Consider the just sketched algorithm, i. e.,
which proceeds as Algorithm 1 for the skeleton of B with
the modification of choosing vertices and performing reacha-
bility with regard to S+ (the algorithm is given explicitly in
Appendix B.2). By using S+, the resulting AMOs conform
with the directed edges in the bucket and due to Lemma 3
and 4 and by similar arguments as for Theorem 1 every such
AMO is output exactly once. The linear-time delay follows as
before, notably, S+ can be efficiently maintained by storing
the in-degree of each vertex.

Using Fact 3, the result for buckets immediately general-
izes to MPDAGs.

Corollary 1. There is an algorithm that enumerates all con-
sistent extensions of a given MPDAG with linear-time delay.

The matter for PDAGs is similar as they can be maximally
oriented into an equivalent MPDAG by Meek’s rules.

Theorem 5. There is an algorithm that enumerates all con-
sistent extensions of a given PDAG with linear-time delay
after an initialization step of time O(n3).

Proof. The graph is initially transformed into its MPDAG.
This is possible in time O(n3) as shown in (Wienöbst, Ban-
nach, and Liśkiewicz 2021a). Afterward, apply the algorithm
from Corollary 1.

Wienöbst, Bannach, and Liśkiewicz (2021a) showed that
the initialization step of maximally orienting a PDAG is likely
not possible in linear time. However, using a finer complexity
analysis, it can be performed in time O(dm), where d is
the degeneracy of the input’s skeleton, which implies linear-
time on many natural graph classes such as planar graphs,
bounded-degree and bounded-treewidth graphs.

5 Another Approach for Enumerating
Markov Equivalent DAGs

The results of the previous sections settle the worst-case com-
plexity of enumerating the members of an MEC (at least
if every DAG is output separately, a run-time of o(n + m)
is not achievable as this would be less than the size of the
graph). In this section, we complement these results with an
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Figure 4: An example that has no sequence of SHD two that enumerates all Markov equivalent DAGs. Two DAGs in the MEC
are connected by an edge if they can be transformed into each other by a single edge reversal. For trees, the resulting topology
coincides with the one of the CPDAG, each DAG in the MEC can be represented by its unique source vertex. During the
enumeration, the DAG in the center can be used only once, which makes it impossible to list all “leaf DAGs” when allowing only
for distance at most two.

enumeration sequence of small changes between consecutive
DAGs. While having a worse delay, such sequences are more
natural from the causal perspective, with only a few edge ori-
entations changing at a time, and provide structural insights
into Markov equivalence itself. In more detail, we show that
all graphs in an MEC can be enumerated in a sequence such
that every two consecutive DAGs have structural Hamming
distance (SHD) at most three. Our results are based on the fol-
lowing characterization of Markov equivalence, which is also
the basis for CHICKERING-ENUM (see also Appendix A.2):

Fact 4 (Chickering (1995)). For any two Markov equivalent
DAGs D and D′ there is a sequence of Markov equivalent
DAGs ⟨D = D1, . . . , Dk = D′⟩ such that Di and Di+1 have
SHD one.

The statement also holds for two consistent extensions of
a PDAG in the sense that all intermediate DAGs are also
consistent extensions of this PDAG.

Corollary 2. For any two consistent extensions C and C ′ of
PDAG G there is a sequence of consistent extensions of G
⟨C = D1, . . . , Dk = C ′⟩ such that Di and Di+1 have SHD
one.

Proof. Only differing edges between C and C ′ are reversed
in the constructive proof of Chickering (1995). Hence, all
background edges stay fixed during the transformation.

This means that it is possible to go from one DAG to
another with only single edge reversals for CPDAGs as well
as for PDAGs and MPDAGs. The task we are trying to solve,
however, is to enumerate all members of an MEC, meaning
the goal is to find a sequence in which every DAG occurs
exactly once. It can be shown that such a sequence with SHD
at most one does indeed not exist. Fig. 4 provides an example
that does not even allow a sequence of SHD two.

However, if we permit three edge reversals between con-
secutive DAGs we can always find such a sequence:

Theorem 6. Every MEC can be represented as sequence
⟨D1, D2, . . . ⟩ of Markov equivalent DAGs such that Di and
Di+1 have SHD at most three.

Proof. For a constructive, proof consider the graph that con-
tains all DAGs in the MEC as nodes.2 In that graph connect
two nodes with an edge if the DAGs can be transformed into
each other by a single edge reversal (hence, these have SHD
one). By Fact 4 the graph is connected.

Every connected graph has a sequence ⟨p1, p2, . . . ⟩ that
contains every node exactly once such that the distance be-
tween consecutive nodes is at most three.3 This sequence can
be constructed by performing a depth-first-search (DFS) start-
ing at an arbitrary node r and appending nodes with an even
distance from r in the DFS tree when they are discovered
and nodes with an odd distance from r when they are fully
processed (essentially mixing pre- and post-order depending
on the layer of the DFS tree). The SHD between two output
nodes is never larger than three: When going down the DFS
tree, every second node is output, when going up (after last
outputting in odd layer i) the node in layer i − 2 is output
after it is finished. Hence, if it has no unvisited neighbors, the
SHD is two. If it does, one of these gets explored and, hence,
immediately output as it is in even layer i− 1. In this case,
the SHD to the last output is three.

Due to Corollary 2, this result generalizes to PDAGs:

Corollary 3. The consistent extensions of PDAG G can be
represented as sequence ⟨D1, D2, . . . ⟩ of consistent exten-
sions of G with SHD at most three.

We note that MEEK-ENUM, CHICKERING-ENUM and MCS-
ENUM do not have this property.

Lemma 5. Sequences of DAGs produced by MEEK-ENUM
may contain consecutive DAGs with SHD larger than three.

Proof. Consider the CPDAG shown in Fig. 4. Since MEEK-
ENUM has no preferences on the edge it orients first, it may
start with the edge a → b. All other edge directions would
then follow from the first Meek rule yielding the output DAG
shown in Fig. 4. The orientation a ← b is tried afterward,

2We use the term node instead of vertex here to avoid confusion
with the vertices of the DAGs.

3The authors became aware of this graph property due to a
problem posed by Jorke de Vlas in the annual programming contest
BAPC (Problem H at BAPC 2021: https://2021.bapc.eu/).
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which would result in no further directed edges. Then, assume
the next undirected edge picked by the algorithm is the ones
between h and i. It may be oriented as h← i yielding a DAG
with SHD 4 to the previously output DAG.

Similar arguments hold for CHICKERING-ENUM and MCS-
ENUM, the former could end up in a state where the only
DAGs left are the one with edge a → b and the one with
h← i and the latter could start with vertex a and afterward
choose i as the first vertex – yielding again the same DAGs.
Corollary 4. Sequences of DAGs produced by CHICKERING-
ENUM and MCS-ENUM may contain consecutive DAGs with
structural Hamming distance larger than three.

Computationally, our results do not imply a better bound
on the delay in producing the sequence from Theorem 6 and
we leave this as an open problem. The constructive algorithm
(which we call SHD3-ENUM) given in the proof of Theo-
rem 6 behaves similar to CHICKERING-ENUM and has delay
O(m2) as every DAG may have m neighbors and we have
to check for each of them whether they were already visited
(between two outputs a constant number of recursive calls
are handled; see Appendix B.3). It seems unlikely that this
can be improved without further structural insights.

Lastly, we remark that the same idea can also be used in
the more general setting of enumerating maximal ancestral
graphs (MAGs) without selection bias, which are causal mod-
els allowing for latent confounders and for which a similar
transformational characterization exists (Zhang and Spirtes
2005). A brief introduction to MAGs and a more detailed
analysis are given in Appendix C.
Corollary 5. Every MEC of MAGs without selection bias
can be represented as sequence ⟨M1,M2, . . . ⟩ of Markov
equivalent MAGs with SHD at most three.

In contrast, approaches such as MEEK-ENUM do not exist
for MAGs as analogue rules proposed by Zhang (2008) only
complete the graph in case the edge marks are inferred by
observational data. If edge marks are chosen for the sake
of enumeration, these rules are not known to be complete.
Generally, it is an interesting direction for future work to
investigate the computational aspects of the enumeration of
MECs of MAGs.

6 Experiments
In addition to the theoretical results, we also show that MCS-
ENUM and its generalizations are practically implementable
and significantly faster than previously used algorithms.

In Fig. 5, we compare the average delay of the four ap-
proaches (MEEK-ENUM, CHICKERING-ENUM, MCS-ENUM,
SHD3-ENUM) implemented in Julia (Bezanson et al. 2017).
For each instance, the programs were terminated after two
minutes if the enumeration was not completed. As the enu-
meration problem reduces to listing the AMOs of a chordal
graph (as shown in Fact 1), we consider as instances undi-
rected graphs generated by randomly inserting edges, which
do not violate chordality, until a graph with 3 · n edges is
reached. Note that these instances are all CPDAGs, just fully
undirected ones, and thus all approaches can be applied to
this setting. In Appendix D, we also compare the results for

MCS
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SHD3

CHICKERING

Delay in ms

1
2
3
4
5
6
7
8
9

10
11
12

16 32 64 128 256 512 1024
Number of Vertices

Figure 5: Average delay in milliseconds for enumerating the
AMOs of random chordal graphs with m = 3 · n edges. We
compare the algorithms MEEK-ENUM, CHICKERING-ENUM,
MCS-ENUM and SHD3-ENUM.

CPDAGs with directed edges as well as for PDAGs, which
both lead to very similar results. Moreover, we discuss the
distribution of the delay for the various algorithms.4

The results clearly show that MCS-ENUM is by far the
fastest among the algorithms. This is mainly due to the
fact that the other algorithms always incur a cost of at least
Ω(n +m), whenever a single edge is (re-)oriented. MEEK-
ENUM needs to apply the four completion rules, whereas
CHICKERING-ENUM and SHD3-ENUM require checking
whether the resulting DAG was already output (which might
often be the case). Still, the latter algorithms are significantly
faster than MEEK-ENUM (at the cost of higher memory de-
mand), and notably have both very similar delay (showing
that the enumeration with SHD at most three gives mainly
structural insights into Markov equivalence and has in itself
no computational advantage).

7 Conclusion
We have given the first formal and exhaustive treatment of
the fundamental problem of enumerating Markov equiva-
lent DAGs. Our main results are twofold: (i) we significantly
improve the run-time of enumeration by giving the first linear-
time delay algorithm, which is also practically effective and
(ii) we give structural insights into Markov equivalence by
constructing an enumeration sequence with minimal distance
between successive graphs. The concepts for (ii) are so gen-
eral that they directly apply to MAGs without selection bias
as well.

As an open problem, it remains to find more efficient enu-
meration algorithms for MAGs, where, currently, approaches
in the spirit of both MEEK-ENUM and MCS-ENUM cannot be
applied, because similar structure does not exist for Markov
equivalence of MAGs or, at least, is not known.

4The implementations of the algorithms are available at
https://github.com/mwien/mec-enum.
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