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Abstract

Entropy regularization is known to improve exploration in se-
quential decision-making problems. We show that this same
mechanism can also lead to nearly unbiased and lower-
variance estimates of the mean reward in the optimize-and-
estimate structured bandit setting. Mean reward estimation
(i.e., population estimation) tasks have recently been shown
to be essential for public policy settings where legal con-
straints often require precise estimates of population metrics.
We show that leveraging entropy and KL divergence can yield
a better trade-off between reward and estimator variance than
existing baselines, all while remaining nearly unbiased. These
properties of entropy regularization illustrate an exciting po-
tential for bridging the optimal exploration and estimation lit-
eratures.

Introduction

While most frameworks for online sequential decision-
making focus on the objective of maximizing reward, in
practice this is rarely the sole objective. Other considera-
tions may involve budget constraints, ensuring fair treat-
ment, or estimating various population characteristics. There
has been growing recognition that these other constraints
must be formally integrated into sequential decision-making
frameworks, especially if such algorithms are to be used in
sensitive application areas (Henderson et al. 2021). In this
work, we focus on the problem of maximizing reward while
simultaneously estimating the population total (equivalently,
mean) in a structured bandit setting.

The most natural approach to this problem from a ma-
chine learning perspective is to use a model to predict the
mean. However, this method is subject to the problem that
adaptively collected data are subject to bias, which in turn
biases the model estimates (Nie et al. 2018). Natural tools
from survey sampling such as IPW estimators (also used
commonly in off-policy evaluation (OPE)) enable mean es-
timation if each observation has been sampled with some
known or estimable probability. However, in those settings
the probabilities are given a priori, and can yield high-
variance estimates if the sampling distribution is skewed.
Here we seek to optimize over possible probability distri-
butions in order to trade off between our expected reward
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and the variance of our estimator. Unfortunately, the vari-
ance formulation of such estimators is unwieldy and yields
an intractable optimization problem if directly incorporated
into the objective. Instead, we substitute the variance term
for an information-theoretic policy regularization term such
as entropy or KL divergence. Adding such terms yields ana-
Iytically tractable optimization problems, while maintaining
our ability to smoothly navigate reward-variance trade offs.

In reinforcement learning (RL) settings, adding policy
regularization terms to the objective function has been
shown to consistently improve the performance of sequen-
tial decision-making algorithms (Williams and Peng 1991;
Ahmed et al. 2019; Xiao et al. 2019). Our ability to leverage
these tools in a different setting enables us to take advan-
tage of well-established theory and insights in RL, indicat-
ing an exciting convergence between our problem, survey
sampling, and other areas of sequential decision-making.

In sum, our contributions are as follows: (i) We propose
novel algorithms to handle the dual objective of reward max-
imization and mean reward estimation in the structured ban-
dit setting; (ii) characterize the bias of the estimators in our
setting, provide closed-form solutions for our proposed op-
timization problems, and relate entropy and KL sampling
strategies to the variance of the estimators; and (iii) demon-
strate the improvement of our algorithms over baselines on
four datasets.

Related Work

The bandit literature is large. We focus on the most relevant
related works here, and relegate a prolonged discussion of
all peripheral work to Appendix A.

The closest work to ours is Henderson et al. (2022), who
introduce the optimize-and-estimate structured bandit set-
ting which we adopt in this paper. They introduce Adap-
tive Bin Sampling (ABS) which we describe below and use
as our main baseline. The optimize-and-estimate setting is
closest to that in Abbasi-Yadkori, P4l, and Szepesvari (2011)
and Joseph et al. (2016), but extended to non-linear rewards
with a required estimation objective. Crucially, in this set-
ting, arms may change from step to step and the agent must
instead rely on a per-arm context to determine which arms
to pull.

A number of works have sought to yield reduced-bias
(e.g., Nie et al. (2018)) or unbiased estimators (e.g., Zhang,



Janson, and Murphy (2020)) for inference with adaptively-
collected data. This is because it is well known that adap-
tive sampling leads to bias when estimating sample means
and other population characteristics (Nie et al. 2018; Shin,
Ramdas, and Rinaldo 2019, 2020, 2021; Russo and Zou
2016). Attempts to remedy this bias have come in the form
of differential privacy (Neel and Roth 2018), adaptive es-
timators (Dimakopoulou, Ren, and Zhou 2021; Chugg and
Ho 2021), or re-normalization (Zhang, Janson, and Mur-
phy 2020). Unfortunately, none of these efforts apply to our
setting. They are mostly in the multi-armed and contextual
bandit setting ( wherein one samples the same arm multi-
ple times) which differs from our own structured bandit set-
ting. We emphasize that we are in the non-linear setting and
thus seek to have non-parametric unbiasedness guarantees.
Moreover, much previous work seeks to remedy bias ex post,
as opposed to incorporating bias (and variance) into the ob-
jective ex ante.

Finally, a large body of work has examined entropy reg-
ularization for optimal exploration in reinforcement learn-
ing (Williams and Peng 1991; Zimmert and Seldin 2021;
Ahmed et al. 2019; Brekelmans et al. 2022) and ban-
dits (Fontaine, Berthet, and Perchet 2019; Xiao et al. 2019).
While the problem settings are different, we examine the
fundamental question of whether entropy regularization may
bring the same benefits for unbiased estimation as it brought
for exploration guarantees elsewhere.

Problem Setting
Optimize-and-Estimate Structured Bandits

At time ¢ we receive a set of IN; observations with fea-
tures X; = {x;} C X, where observation x has reward
r(z) ~ D(x) drawn from a reward distribution conditional
on the context. Each period, we can sample at most K; ob-
servations and receive their rewards. If X; = 1 we are in the
sequential setting; if K; > 1 we are in the batched setting.
Let S; C X, |St| < K denote the set (possibly singleton)
of observations selected. Like in traditional bandit problems,
one of our objectives is to maximize reward (equivalently, to
minimize regret). The cumulative reward at time 7" is

REW(T) = ) r(x),

t<T xS,

ey

where S; C X; is the set of selected observations. For an
event I, the function 15 is 1 if £ occurs and 0O otherwise.
Our second goal is to achieve a reliable unbiased population
estimate POP(T") of the total of all arms in each period T™:

POP(T) = Y Ep[r(x)].

x€eXT

@)

Note that previous work in this setting estimated the popu-
lation mean, instead of the total. Obviously, the difference
is unimportant, and we find it cleaner to work with the to-
tal. Throughout, we will drop the parenthetical in favor of a
subscript when space demands and write, e.g., 7, in lieu of
r(x). If the timestep 7' is clear from context we drop it from
the notation.
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We observe that observations are equivalent to arms and
can be volatile from timestep to timestep, characterized only
by a context and an underlying shared reward structure. This
is similar to the structured bandit (Abbasi-Yadkori, Pal, and
Szepesvari 2011; Joseph et al. 2016). If arms were fixed and
the context singular, this would reduce to the contextual ban-
dit. If the context were removed and arms remained fixed,
this would reduce to the multi-armed bandit. As such, meth-
ods from the multi-armed bandit and contextual bandit (like
Thompson sampling) do not necessarily apply to the struc-
tured bandit, and especially not the optimize-and-estimate
structured bandit. We discuss this more in Appendix A.

Strategies for Population Estimation

Given amodel ¢ : X — R which estimates the reward r(z),
a natural approach to estimate POP is to combine the empiri-
cal population total of the selected points with the estimated
total from :

ﬁ)MODEL(T) = Z T(x) + Z

z€ST z€X\ST

(). 3

A separate approach is available if selection is performed
according to a probability distribution {7 (z) = P(z € S)}
over the observations. In this case we can turn to “impor-
tance sampling methods”, which employ the basic idea of
weighting the observations by a function of their probability.
We’ll focus on two popular importance sampling methods:
inverse propensity weighting (IPW) and doubly-robust (DR)
estimation.

Suppose that « was sampled with probability 7(z) and
that we have estimates 7 (z) of 7(z) for all « (we allow for
the possibility that 7 (z) = 7(x), but we’ll see the utility of
allowing approximations later on). Assuming that 7(z) > 0
for all x, then the IPW estimator (Horvitz and Thompson
1952; Narain 1951) is

—

POPpy(T) = )

rzeXT

r(z)

m rEST- (4)
The final estimator we’ll consider is the so-called doubly-
robust (DR) estimator (Cassel, Sidrndal, and Wretman 1976;
Jiang and Li 2016). This combines the model-based ap-
proach with the IPW estimator:

Poru(T) = 3 (plo) +

zeXT

r(z) — ¢(x)

—1, . (5
ﬁ_(x) €ST ( )

The IPW and DR estimators are common in off-policy eval-

uation (Dudik, Langford, and Li 2011; Dudik et al. 2014).

The bias of all three estimators is given in Lemma 1. While

the bias was previously given by Dudik et al. (2014), that

was in the RL setting, which differs from ours. That said,

the results do not change much.

Lemma 1 (Bias of estimators). Let A, = Ep[r(z)] —¢(z),

and \, = n(x)/7(x). Then, at any time T,

1. [Ep s[POPyoper] — POP| = 3 A, (my — 1),

2. |Ep,s[POPpyw] — POP| = > Eplr,|(A; — 1), and

3. [Ep, s[POPpe] — POP| = 3 A, (As — 1),



where all sums are over x € Xrp.

The proof of Lemma 1, along with all other propositions
in the paper, can be found in the Appendix. Note a corollary
of Lemma 1: IPW and DR are unbiased if #(z) = n(x),
i.e., we sample with precise inclusion probabilities. This is
computationally challenging for sufficiently large budgets,
but as we discuss in Section , we employ an approximation
mechanism — Pareto Sampling — that, in practice, enables
unbiasedness (Figure 4).

Variance

The probabilities w(x) = P(z € S) are called (first or-
der) inclusion probabilities. The terms 7(x,2) = 7y, =
P(z,z € S) are called second order, or joint inclusion prob-
abilities, and naturally arise in the variance of population
estimators due to the covariance terms. More detail on in-
clusion probabilities can be found in Appendix C.

To define the variance, for an arbitrary function 6 : X —
R, let

The variance of ﬁ&nlpw and ﬁDDR (with respect to sam-
pling) for 7(x) = m(x) can then be written as (derivation in
Appendix E).

Vw(P/O\PIPW(T)) = Ar(r), @)
\& (ITO\PDR(T)) = AT(T - 927) (®)

That is, fixing the inclusion probabilities, the variance of the
IPW estimator depends on the ratio between the true reward
and the probability, while that of the DR estimator depends
on the ratio between the model error (r(x) — ¢(x)) and the
sampling probability. Thus, the variance of IPW estimator is
zero if we sample proportionally to the true reward, while
the variance of the DR estimator is zero if we sample ac-
cording to the model residuals.

Methods
Optimization Objective

A natural approach to minimizing an estimator’s variance
while maximizing reward is to form a linear combination of
the two objectives. For any set X C X, consider the opti-
mization problem

sup  ®s(m) = EL[REW(m, 3)] — BV (POP), ()
wellg (X)

which selects inclusion probabilities in order to maximize
reward and minimize variance. The trade-off between the
two objectives is controlled by a predetermined scalar 5 €
R>¢. The set of legal inclusion probabilities over which the
optimization takes place is

{w €0, : ) 7(z) = K},

reX

Mk (X)
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which requires that probabilities be strictly greater than zero
to ensure that POP;py and POPp are well-defined. Here,

E[REW(r, §)] = Y m(2)@(),

x

is the expected reward according to the model. We note that
the supremum is required in (9) since IIx (X) is not closed.

Unfortunately, if POP is the IPW or the DR estimator,
Equation (9) leads to a rather intractable optimization prob-
lem. We provide a more thorough discussion of the difficul-
ties in Appendix G, but suffice it to say that the joint inclu-
sion probabilities 7 (z, z) in Equation (6) do not readily lend
themselves to optimization. Indeed, for most batched sam-
pling strategies, they do not have closed form solutions.

Model-Proportional Sampling
Despite being difficult to optimize directly, for the IPW es-

timator POPpy, the optimization problem (9) has an in-
teresting property. Notice that Ar(#) = 0 in Eq. (6) if
0(z)/m(x) = C for some constant C for all z. Thus, if using

_—

POP;py, a natural strategy is to sample according to

2. @(2)

if Ko(x)/> ", ¢(2) < 1. We call this approach MoD-
ELPROPORTIONALSAMPLING (MPS). There are several
drawbacks to this approach. The first is that it relies on the
model @. If the model error is large, then so too will be
the variance. This method also provides no way to trade-
off between variance and reward; its only focus is minimiz-
ing variance. Indeed, we’ll see in the results section that
while the variance is indeed low (if model error is reason-
able), reward is also much lower than other methods. The
next section uses KL-divergence to generalize this approach,
enabling us to smoothly transition between probabilities in
(10) and those which place more weight on expected reward.

(10)

Entropy and KL Sampling

Due to the difficulties imposed by the variance term in
objective function (9), we propose two new optimization
problems which are analytically tractable while still en-
abling a trade-off between variance and expected reward.
The first is entropy (Shannon 1948). Fix a timestep ¢, and
consider the sequential version of the problem (i.e., K = 1).
The entropy of the sample S = S; (the random variable
describing which observations are sampled), is H(.5)
— > wex T(x)log(m(x)). H(S) is, roughly, a measure of
how spread out the distribution 7 is. As H(S) increases,
the 7 resembles a uniform distribution over X; as H(S)
decreases 7 is skewed towards some subset of X. The sec-
ond objective we’ll consider is the Kullback-Leibler (KL)
divergence (Kullback and Leibler 1951). The KL divergence
between two discrete distributions P and ) defined on the

sample space () is

P(w)

D (P|Q) = Z P(w)log Qw)

weN



Algorithm 1: Entropy-regularized Pareto Sampling

Z+—X
#(z) « K
F+ 10
while 3z : 7(z) > 1 do
F«+ FU{x:7(z) > 1}
Z« X\F
. #(@)/8
#(2) & =
end while

o B(@)/8
s F@IB

Vz € Z (Eq. 14 if KL)

Vz € Z (Eq. 14 if KL)

Vi(z) « U(x)(1 —(z))/((
Relabel s.t. V(z1) < V(zg) < ---
return L1y  TK

While the KL divergence has many interpretations depend-
ing on the application at hand, for our purposes we can think
of it as measuring the divergence between P and (). Mini-
mizing the divergence as a function of P pushes P towards

Set g(z) = ¢(x)/ ", ¢(2), i.e., the MPS sampling so-
lution. From here, define two optimization problems over
I(X):

sup  ®ENT(m) = E[REW (7, 9)] + BH(S), (11)
m€llk (X)

sup  ®F"(m) = E[REW(m, )] — BDx.(nlq), (12)
mell g (X)

Note that the only unknowns in the above two equations
are the probabilities 7. The following proposition shows
they have closed-form solutions.

Proposition 1. For a set of observations X C X and
Ik (X) as above, the solutions to optimization prob-
lems (11), (12) with K 1 are {7 (2)}pex and
{mKL(2)} e x respectively, where

7N (2) = softmax((x)/B),

@) en(p()/B)
S #(2) exp($(2)/)

A brief recap is perhaps in order. We began by attempting
to write down an optimization problem to trade off between
reward and variance. Optimizing over the variance term ex-
plicitly proved to be intractable however, so we substituted
the variance term for an entropy-based term which indirectly
controls the variance. This yields new optimization prob-
lems which are tractable, have closed-form solutions, and
are more amenable to theoretical analysis.

(13)

7_(_KL (.23)

(14)

Approximating 7 for K > 1

Equations (11) and (12) are for the sequential setting.
Unfortunately, solving the naive extension to the batched
setting is intractable — both analytically and computation-
ally — because the entropy of S involves an exponentially
large sum over all subsets of size K, and the calcula-
tion of the higher level inclusion probabilities. Therefore,
in order to scale up the solutions in (13) to the batched
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Figure 1: Illustration of Proposition 2. Top: Change in vari-
ance bound as a function of 8 and the shape of the inclusion
probability distribution as characterized by «, which cap-
tures the non-uniformity of 7(x). The effect of x is shown
by the bottom figure.

setting, we begin by multiplying each w(x) by K, ie.,
7*(x) = Ksoftmax(p(z)/8). Depending on the distribu-
tion of ((x), however, this quantity might be greater than 1.
In this case, we set 7*(z) = 1 (i.e., it will be sampled), and
recalculate the probabilities on the subpopulation for which
Ksoftmax(¢(z)/8) < 1. This is repeated until no inclusion
probabilities exceed 1. This is reflected in Algorithm 1.

Once the inclusion probabilities are computed, the agent
must actually sample from that distribution. This is trivial in
the sequential setting, but more complicated in the batched
setting. Designing a sampling scheme which respects first
order inclusion probabilities precisely is difficult. Sampford
sampling (Sampford 1967), for instance, can guarantee pre-
specified first order inclusion probabilities, but is infeasible
as sample sizes become large as it is a rejective procedure.
Instead, we employ Pareto Sampling (Rosén 1997). Here,
given N target inclusion probabilities 7 (x), we generate N
random values

Ulz)(1 = 7(x))

V) = T vt

U(x) ~ unif(0, 1).

The K samples with the smallest values are selected. This
method is fast and always yields a sample of size K. The
drawback is that the method is only approximate: The true
inclusion probabilities 7 are not precisely equal to 7. How-
ever, Rosén (2000) showed that the approximation error
goes to zero as K increases: max, |m(z)/#(x) — 1| =
O(log K/VK).

Moreover, in practice the method works extremely well.
See Figure 5 in Appendix H for an illustration of its accu-
racy even at the relatively low budget of K = 20. Thus,
as Rosén (2000) discusses, in practice any bias introduced
by this approximation is empirically low. And this can be
further reduced by calculating exact inclusion probabilities
through numerical means at the cost of time.
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Figure 2: Reward-variance curves for all three estimators on the ACS dataset (top) and the AllState dataset (bottom). We used
a budget of 1000 for both. Experiments were repeated at least 50 times to obtain errorbars (95% CI) on reward. ABS: Log and
ABS: Exp correspond to ABS with logistic and exponential smoothing, respectively. The scale of the y-axis is held constant for
each dataset to keep variance in perspective across estimators. For reference, an omniscient oracle achieves a reward of 330 on

the ACS data and 98 on the AlState data.

Variance Bounds

Throughout this section, we fix a time 7" and condition on
the previous observations and model choices, in addition to
the population draw from D. The only randomness stems
from the sampling itself. Moreover, we focus on the set of
observations which will not be sampled with certainty. This
is captured by the following assumption.

Assumption 1. For all z € X, K7®¥(z) < 1 and
K7¥t(z) < 1 where 7T and 7KL are as in Equation (13).

We further assume that #(x) = 7(z), i.e., we sample pre-
cisely according to 7" and 7FNT, We provide upper bounds
on the variance which do not involve the joint inclusion
probabilities. This is useful, because they can be calculated
a priori using only the model predictions. For a given period
T and set of observations X, let ¢min = mingec x,. $(x).

Proposition 2. Let g, exp(P(x)/B — Gmin/B) the B-
weighted gap between the model prediction for x and the
minimum prediction in exponential space. Define

Cy = %nggz -> g

Then Entropy Sampling obeys V(ﬁIPW(T)) < Cy and
V(Poprpr(T)) < 2C4.

Figure 1 demonstrates the bound for various values of 3
and shapes of the inclusion probability distribution 7 ().
We find that the value of 5 has a much greater effect on
the bound than the shape of the distribution. The following
proposition gives the equivalent bound for KL sampling.

Proposition 3. Let g, be as in Proposition 2, and define
1 o)
:LQ nggz - Z
min T

2
¢?ﬂin ’

T,z
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Then, for KL Sampling, V(ITO\PIPW(T))
V(Poppr(T)) < 2C5.

< (Cy and

Experiments

Experimental results, datasets, and code can be found at
https://github.com/bchugg/ent-reg-pop-est.

Datasets

We run experiments on four publicly available datasets: The
Current Population Survey (CPS), the American Commu-
nity Survey (ACS), a voter turnout dataset, and data on All-
State severity claims. These four were chosen because they
each correspond to a real-world optimize-and-estimate set-
ting. For instance, the CPS dataset is closely related to the
tax-gap estimation done by the IRS each year (Henderson
et al. 2022). The AllState population estimation task corre-
sponds to an insurance company which must estimate the
average cost of claims across the population. More detail on
each dataset and further justification for their selection can
be found in Appendix B.

Baselines

We compare entropy sampling to both MPS (described
above), and also to simple random sampling (SRS). SRS
calculates a population estimate based on the sampled re-
wards, i.e., it does not use a model. We also use Adaptive
Bin Sampling (ABS), introduced by Henderson et al. (2022).
A full overview of ABS is given in Appendix F. While the
authors of ABS use only the IPW estimator in their experi-
ments, we test ABS with all three estimators: IPW, DR, and
Model-based.



Experimental Protocol

For each dataset and method, observations for the first period
are selected uniformly at random to provide a initial training
set for the model. Because we’re interested primarily in the
performance of the sampling methods themselves, we hold
the model constant across sampling algorithms and datasets.
Due to the relatively small budget sizes and some evidence
that tree-based methods outperform neural networks on tab-
ular data (Grinsztajn, Oyallon, and Varoquaux 2022), we
use random forest regressors. We perform a randomized grid
search on a small holdout set to determine a suitable set of
hyperparameters for each dataset (see Appendix I for more
details). Throughout our experiments, we keep the budget
between approximately 5-10% of the dataset size in each
period, i.e., K; € [0.05,0.1] X; (depending on the dataset).

Results

The full suite of experimental results as well as further dis-
cussion can be found in Appendix J. Here, we distill the
results into four main takeaways. We find that the results
are consistent across datasets and, as such, we do not show
figures for each one. To avoid selection bias, all figures in
this section are plotted using the results from the final pe-
riod. One broad takeaway worth mentioning concerns the
choice of 5. While the optimal value will depend on the
practitioner’s goals and the data itself, we find that values
in [0.05, 0.1] are prudent choices.

KL and entropy sampling improve the reward-variance
tradeoff. As exemplified by Figure 2, both KL and En-
tropy sampling (mostly) improve over ABS in terms of the
reward-variance trade off, especially for IPW and DR es-
timators. In fact, both are pareto improvements over ABS
except occasionally in the low-reward region. For model es-
timation, KL and Entropy are never worse than ABS, and
sometimes better. These trends hold across all datasets. In-
terestingly, Entropy and KL Sampling perform comparably,
except perhaps for the fact that Entropy Sampling tends to
ride the variance-reward curve more smoothly. We conjec-
ture that this is due to form of 7% (Equation 12), which
has added multiplicative terms dependent on the model out-
comes as compared to the softmax.

DR is more biased than IPW but less biased than model
estimation. As testified by Lemma 1, all three estimators
exhibit some form of bias if the model is mis-specified or
the inclusion probabilities are only approximate. Figure 3
demonstrates the bias of entropy sampling on the ACS data,
which is representative of the result across all datasets. Reli-
ably, model estimation is the most biased, IPW the least, and
DR between them. This is because DR is affected by model
error (given inexact inclusion probabilities), while IPW is
not.

Model estimation has unreliable variance. On the All-
State data, the variance of the model estimate hardly changes
as a function of reward (Figure 2). For ACS data meanwhile,
the model estimates exhibit a similar reward-variance trade
off to IPW and DR. This can be explained by model fit,
which is significantly worse on ACS than on CPS. Given
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Bias for Entropy Sampling
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Figure 3: Bias (with 95% CI bands) plotted across values of
B for Entropy Sampling on the CPS dataset.
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Figure 4: Absolute bias (with 95% CI bands) of IPW estima-
tor on CPS data as a function of reward. The x-axis is clipped
to the largest reward range covered by all algorithms.

a sufficiently well-fit model, the variance of the model es-
timate should be low, as the inclusion probabilities play no
part in the estimator. The trade off is that model-estimates
are more biased than either the IPW or DR estimator.

Entropy and KL Sampling maintain low bias with IPW.
Figure 4 illustrates the absolute bias of the IPW estimator
across sampling strategies as a function of reward. Entropy
and KL sampling both maintain low bias, even into the high-
reward region where ABS begins to falter. This is a function
of the reward-variance trade off of Figure 2: For the same re-
ward, ABS has higher variance, making bias more apparent
unless averaged over a sufficient number of model runs. We
note that the variance of ABS is much higher than Entropy
and KL at the same reward level, consistent with Figure 2.
Figure 4 also testifies to the efficiency of the Pareto approx-
imation. Indeed, the bias of entropy and KL rivals that of
random and MPS.

MPS is a pareto improvement over random sampling.
MPS tends to have low variance but also low reward (though
higher reward than random sampling, Figure 2). Surpris-
ingly, it also has low bias while maintaining low variance,
demonstrating the possibility of model-based approaches in
pure population estimation tasks.

Conclusion

We introduced two algorithms in the optimize-and-estimate
structured bandit setting. Unlike previous work, our algo-
rithms provide explicit sampling probabilities, thus making
the approaches more amenable to theoretical analysis. The
two algorithms improve upon the reward-variance trade off
of current baselines, in addition to maintaining minimal bias
of the population estimate.
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