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Abstract
The facility location game is an extensively studied problem
in mechanism design. In the classical model, the cost of each
agent is her distance to the nearest facility. In this paper, we
consider a novel model where each facility charges an en-
trance fee, which is a function of the facility’s location. Thus,
the cost of each agent is the sum of the distance to the facili-
ty and the entrance fee of the facility. The generalized model
captures more real-life scenarios. In our model, the entrance
fee function can be an arbitrary function, and the correspond-
ing preferences of agents may not be single-peaked anymore:
this makes the problem complex and requires new techniques
in the analysis. We systematically study the model and design
strategyproof mechanisms with nice approximation ratios and
also complement these with nearly-tight impossibility results.
Specifically, for one-facility and two-facility games, we pro-
vide upper and lower bounds for the approximation ratios
given by deterministic and randomized mechanisms, with re-
spect to the utilitarian and egalitarian objectives. Most of our
bounds are tight, and these bounds are independent of the en-
trance fee functions. Our results also match the results of the
classical model.

Introduction
Facility location games on real line. In one-dimensional
facility location problem, agents are located on real line, and
a planner is to build facilities on the line to serve the agents.
The cost of an agent is her distance to the nearest facility.
The problem asks for facility locations that minimize the to-
tal cost of all agents (the utilitarian objective) or the maxi-
mum cost among all agents (the egalitarian objective). It is
well-known that both optimization problems can be solved
in polynomial time. Over the past decade, these problems
have been intensively studied from the perspective of mech-
anism design. A key conversion in the models is that now
each agent becomes strategic and may misreport her posi-
tion to decrease her cost. These new problems are called the
facility location games, which require to design mechanism-
s that truthfully elicit the positions of agents and (approxi-
mately) minimize the objective of total or maximum cost.

The seminal work of Procaccia and Tennenholtz (2009)
initiates the study of mechanism design without money for
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the facility location game. They study strategyproof mech-
anisms for one-facility and two-facility games through the
lens of approximation ratio of the objective. Since then,
the facility location game has become one of the main
playgrounds for approximate mechanism design without
money and has attracted numerous follow-up research (Lu,
Wang, and Zhou 2009; Lu et al. 2010; Fotakis and Tzamos
2014). As shown by Fotakis and Tzamos (2014), when there
are more than two facilities, no deterministic strategyproof
mechanism can achieve a bounded approximation ratio. The
current status of the classical facility location games on the
real line with one or two facilities is summarized in Table 1.

After the introduction of the classical facility location
game, many variants have been studied flourishingly to ac-
commodate more practical scenarios. The recent survey by
Chan et al. (2021) depicts the state of the art. Here, we men-
tion some of the models: obnoxious facility games where
every agent wants to stay away from the facility (Cheng, Yu,
and Zhang 2013); heterogeneous facility games where the
acceptable set of facilities for each agent could be differ-
ent (Li et al. 2020; Deligkas, Filos-Ratsikas, and Voudouris
2022); the games with different objectives or purposes (Cai,
Filos-Ratsikas, and Tang 2016); the game with capacitated
facilities (Aziz et al. 2020a,b; Walsh 2022); extensions to
trees, and other graphs (Alon et al. 2010); and so on.

Facility location games with entrance fees. In all the
above models, the cost of an agent is measured by her dis-
tance to the closest facility. This cost can be considered as
the travel fee. In innumerable real-life scenarios, except for
the travel fee, the agent may also need to pay a service or en-
trance fee to the facility, such as tickets for swimming pools
and museums. The entrance fees may differ for facilities in
different positions. An immediate example is that the cost to
build a facility in downtown would be more expensive than
in the suburbs. The entrance fee of the facility is decided
by the building cost and thus also decided by the position
where the facility is built. Another example is that the en-
vironment around the facility may have an impact on the
entrance fee. For example, the entrance fee of a facility in a
popular scenic spot can be higher than the entrance fee of the
same facility in a desolate place. Various non-geographical
settings also fit in the location-dependent entrance fee mod-
el: (1) The voters have a single-peaked preference over the
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Total cost Maximum cost
Upper bounds Lower bounds Upper bounds Lower bounds

Deterministic
Mechanisms

One-
facility

1
(Procaccia et al. 2009)

1
(Procaccia et al. 2009)

2
(Procaccia et al. 2009)

2
(Procaccia et al. 2009)

Two-
facility

n− 2
(Procaccia et al. 2009)

n− 2
(Fotakis and Tzamos 2014)

Randomized
Mechanisms

One-
facility

1
(Procaccia et al. 2009)

1
(Procaccia et al. 2009)

3/2
(Procaccia et al. 2009)

3/2
(Procaccia et al. 2009)

Two-
facility

4
(Lu et al. 2010)

1.045
(Lu et al. 2010)

5/3
(Procaccia et al. 2009)

Table 1: Upper and lower bounds for the approximation ratios of strategyproof mechanisms in the classical model.

Total cost Maximum cost
Upper bounds Lower bounds Upper bounds Lower bounds

Deter-
ministic

Mecha-
nisms

One-
facility

3− 4
re+1

( Thm. 2)
3− 16

re+5+
√

r2e+10re−7

( Thm. 3)

2, if re ≤ 2
3− 2

re
, if re > 2

(Thm. 7 and Prop. 4)

2, if re≤ 6
3− 28√

r2e+20re−12+re+10
, if re> 6

( Thms. 8 and 9)
( Props. 5 and 6)Two-

facility
n− 2

( Prop. 3)
n− 2 if re = 1

(Fotakis and Tzamos 2014)

Rand-
omized

Mecha-
nisms

One-
facility

3− 2
n

( Thm. 4)

√
2+1
2
− 1

(4+2
√
2)re−2

, if re<+∞
2, if re=+∞

(Thms. 5 and 6) 2 if re = +∞
( Thm. 10 and Prop. 7)

Two-
facility

n− 2
( Prop. 3)

1.045 if re = 1
(Lu et al. 2010)

Table 2: Upper and lower bounds for the approximation ratios of strategyproof mechanisms in our model, where re is the ratio
of the maximum value to the minimum value of entrance fee function e(·). Theorems and propositions in bold are our results.

potential candidates, while after the election, the winning
candidates will enforce their own tax policy on the voter-
s. (2) The students in a classroom may need to decide the
air conditioner’s temperature. The electricity bill, which de-
pends on the temperature, is then evenly divided among the
students, which may be different for different temperature
settings and can be considered as the entrance fee.

All of the above motivate us to initiate the study of the
facility location games with entrance fees. In our setting, the
planner needs to locate a given number of facilities on real
line to serve agents on the line. Each facility, once located,
has an entrance fee determined by its location. The cost of an
agent is the sum of the travel fee (distance to the facility) and
the entrance fee of the facility. Each agent will use one facil-
ity at a minimum cost. The position of each agent is private
information. We want to design strategyproof mechanisms
that guarantee that the agents report their true positions, and
locate the facilities based on the reports such that either the

total or the maximum cost approximates the optimal value of
the corresponding optimization problem as closely as possi-
ble. Figure 1 illustrates the concept of entrance fee function.

Our contribution. We investigate the facility location
games with entrance fees. The main contributions are sum-
marized in Table 2. We explain our contributions regarding
the problem setting, results, and technical challenges.

1. We initiate the study of facility location games with
entrance fees. In our model, the entrance fee function is ar-
bitrary and part of the input. Different entrance fee func-
tions can lead to different preferences of agents beyond
single-peakedness (Moulin 1980; Barberà, Gul, and Stac-
chetti 1993). We stress that almost all mechanisms for the
classical model are no longer strategyproof under our set-
ting. These give rise to new challenges. Also, note that the
idea of adding entrance fees can be applied to most of the
previous variants of the problem, thus expanding research in
this area.
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Figure 1: The concept of the entrance fee function. The three
black dots are agents. The vertical axis stands for the value
of entrance fee. The curve depicts an entrance fee function
e : R → R≥0∪{+∞}. If the facility is located at `, the
entrance fee is e(`) and the cost of agent i is |`− xi|+ e(`).

2. Our mechanisms are simple, but their analyses require
new ideas and techniques. When the entrance fee is always
0, our model becomes the classical model. Thus, our mech-
anisms must also imply the mechanisms for the classical
model. Some of our mechanisms are natural extensions of
the standard ones. However, the analyses of strategyproof-
ness and the approximation ratios require new insights. For
instance, for strategyproofness, we consider the optimal lo-
cation for each agent as the facility location that minimizes
her cost and design mechanisms over the space of optimal
locations of agents instead of their positions. These new
locations must satisfy an important monotonicity property.
The proofs of approximation ratios use new technical con-
cepts such as domination and virtual facility.

3. We provide new lower bounds. The lower bounds for
the classical model are also valid in our model since the clas-
sical model is a special case of our model. However, for most
cases, we establish new and better bounds. The techniques
to obtain lower bounds are new and different from that of
the standard model due to the presence of entrance fees. Our
lower bounds are tight for many cases (See Table 2).

The rest of the paper is organized as follows. Section
presents the formal definitions of our model. In Section ,
we derive some useful technical properties. Sections and
present our main results for the one-facility game with the
objectives of total cost and of maximum cost, respectively.
In Section , we extend our results from one-facility games to
two-facility games. Some conclusions are drawn in Section
. The proofs of statements marked with ♣ are omitted here,
which can be found in the full version of the paper.

Model
Let N = {1, . . . , n} be a set of agents on real line R. Let xi
be the location of agent i. The location profile of all agents is
the vector x = (x1, · · · , xn). We assume agents are ordered
such that x1 ≤ · · · ≤ xn. We need to build m facilities on
R to serve the agents. If we put facility j at location `j , then
this gives us the facilities location profile ` = (`1, · · · , `m).

If an agent i is served by a facility j, then the agent bears
a travel fee measured by the distance |xi − `j |. Further-
more, each facility charges its customers an entrance fee de-
termined by its location. Formally, there is an entrance fee

function e : R → R≥0∪{+∞} 1. The entrance fee of the
facility at location ` is e(`). So if an agent i selects facility j,
the cost incurred by the agent is the sum: |xi − `j |+ e(`j).

For an entrance fee function e, let emax = maxx∈R e(x)
and emin = minx∈R e(x). The max-min ratio of e, denoted
by re, is defined as re = 1 if emin = emax; re = +∞ if
emin = 0 and emax > 0; re = emax/emin otherwise.

Each agent always selects a facility that minimizes the
sum of her travel fee and entrance fee. So, we define the
cost of agent i for a given facility location profile ` as
cost(xi, `) := min`∈`{|xi − `| + e(`)}. If there is more
than one facility that minimizes the agent’s cost, we use the
following tie-breaking rule:
Definition 1 (Tie-breaking rule). Select the facility with
the smallest entrance fee. If there are two such facilities with
equal smallest entrance fees, select the rightmost one.

We consider two classical objectives: the utilitarian ob-
jective and egalitarian objective. For utilitarian objective,
we want to minimize the total cost of all agents that we de-
note by: TC(x, `) =

∑n
i=1 cost(xi, `). For egalitarian ob-

jective, we want to minimize the maximum cost of all agents
that is denoted by MC(x, `) = maxi∈N{cost(xi, `)}.
Remark 1. To keep our exposition as general as possible,
we assume that there is an oracle that computes e(x) for a
given x ∈ R, and for any integers a and b, finds the minimum
of ae(x) + bx in a given interval.

In the setting of mechanism design, each agent i’s loca-
tion xi is private. An agent reports a location x′i that may
differ from her true position. A (deterministic) mechanism
outputs a facility location profile ` based on e and the re-
ported location profile x′ = (x′1, · · · , x′n).
Definition 2 (Deterministic mechanisms). A deterministic
mechanism is a function f(·, ·) : E ×Rn → Rm, where E is
the set of all entrance fee functions e : R→ R≥0. Moreover,
for a given entrance fee function e, a deterministic mecha-
nism is a function f(e, ·) : Rn → Rm.

Not only we consider general mechanisms f(·, ·) taking
the entrance fee function as a part of the input but also con-
sider mechanisms f(e, ·) for a given entrance fee function e.
For e(·) = 0, mechanism f(e, ·) is for the classical model.
Let α ≥ 1 and E(α) := {e ∈ E|re = α}. We will also con-
sider mechanisms under the constraint that the entrance fee
function is within E(α), i.e., f(·, ·) : E(α)× Rn → Rm.
Definition 3 (Randomized mechanisms). A randomized
mechanism is a function f(·, ·) : E × Rn → ∆(Rm), where
E is the set of all entrance fee functions e : R → R≥0 and
∆(Rm) is the set of all probability distributions over Rm.

For a given e and a randomized mechanism f(·, ·), the
cost of an agent i ∈ N is defined as the expected cost of i,
i.e., cost(xi, f(e,x)) := E`∼f(e,x)cost(xi, `).

Note that the number of facilities m and the entrance fee
function e are publicly known. Given that an agent might
misreport her location to decrease her cost, it is necessary to
design (group) strategyproof mechanisms.

1Note that in our definition, a location’s entrance fee can be
+∞. This is justified by scenarios where such a location exists: the
planner will never build a facility at it, or no agents will select it.
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Definition 4 (Group strategyproof). A mechanism f(·, ·)
is group strategyproof if for any entrance fee function e,
any profile x, any coalition S ⊆ N with any sub-location
profile x′S ∈ R|S|, there exists an agent i ∈ S such
that cost(xi, f(e,x)) ≤ cost(xi, f(e,x′)), where x′ =
(x′S ,x−S) is obtained from x by replacing the location pro-
file of all agents in S with x′S .

In above definition, if S only contains one agent, then
the definition is referred to as strategyproof. (Group) strate-
gyproof mechanisms may not be able to achieve the optimal
value for one of the two objectives. Thus we use approxima-
tion ratio to evaluate the performance of the mechanism. For
an entrance fee function e and location profile x ∈ Rn, let
OPTtc(e,x) andOPTmc(e,x) be the optimal total cost and
maximum cost of the optimization problems, respectively.
Definition 5 (Approximation ratio). For an entrance fee
function e and location profile x, the approximation ratio
of f(e,x) is γ(f(e,x)) := TC(x, f(e,x))/OPTtc(e,x),
the approximation ratio of f(e, ·) is defined as γ(f(e, ·)) :=
supx γ(f(e,x)), and the approximation ratio of f(·, ·) is de-
fined as γ(f(·, ·)) := supe∈E γ(f(e, ·)).
The approximation ratio for the maximum cost is defined
in the same way by replacing TC(x, f(e,x))/OPTtc(e,x)
with MC(x, f(e,x))/OPTmc(e,x).

Structural Properties
Monotone and Local Properties
Given an entrance fee function e : R→R≥0 and an agent’s
position x ∈ R, let x∗ be the facility location that minimizes
the cost of the agent, i.e., x∗ := arg min`∈R(|x−`|+e(`)). If
multiple locations minimize the cost, we use the tie-breaking
rule in Definition 1. We call x∗ the optimal location for x,
and Ci := cost(xi, x

∗
i ) the optimal cost for the agent i.

To find x∗ for x, the definition asks to search the whole
real line. If the facility is at x, the cost for the agent is e(x).
So the optimal cost of x is at most e(x). Then the global
search for x∗ can be reduced to a local search in the neigh-
borhood of x: x∗ = arg min`:|`−x|≤e(x) |`−x|+ e(`). Then
by Remark 1, x∗ can be obtained in a constant time. Next,
we derive an important property of x∗.
♣ Lemma 1 (Monotonicity). For any xi, xj ∈ R, we have
x∗i ≤ x∗j if and only if xi ≤ xj .

Let I[x] be the closed interval between x and x∗. The next
lemma depicts the relationship between different I[x].
♣ Lemma 2. Either I[xi] ∩ I[xj ] = ∅ or x∗i = x∗j .
By Lemmas 1 and 2, we can prove the following property
for three positions.
♣ Lemma 3. If xi ≤ xj ≤ xk, then cost(xi, x

∗
j ) ≤

cost(xi, x
∗
k). Symmetrically, cost(xk, x

∗
j ) ≤ cost(xk, x

∗
i ).

Next, we capture the property that one location is preferred
by each agent over another location.
Definition 6 (Domination). Location `1 dominates location
`2 if cost(xi, `1) ≤ cost(xi, `2) for all i ∈ N .
♣ Lemma 4. For any x ∈ R, x∗ dominates all locations in
I[x].

Solving the Optimization Problems
By the Monotonicity Lemma, x∗1 ≤ x∗n. For m = 1, let
`tc be the location that minimizes the total cost, i.e., `tc =
arg min`∈R TC(x, `). If there are multiple solutions, then
we use the tie-breaking rule from Definition 1. Define `mc

as the location that minimizes the maximum cost similarly.
♣ Lemma 5. `tc and `mc are within the interval [x∗1, x

∗
n].

We want to design effective algorithms that find the optimal
facility location profile for either objective when the location
profile of agents is given.
♣ Lemma 6. When only one facility exists, the two opti-
mization problems can be solved in O(n) time.
When m > 1, we have the following lemma that describes
the structure of a solution.
♣ Lemma 7. For a given facility location profile, if two a-
gents select the same facility, then any agent located between
these two agents also selects the same facility.
Equipped with Lemmas 5, 6 and 7, we can, in polynomial
time, find the optimal values of the optimization problems
for m > 1.
♣ Proposition 1. For the generalm number of facilities, the
two optimization problems can be solved in O(n3m) time.

Utilitarian Version With One Facility
In this section, we study the one-facility game with the ob-
jective of minimizing the total cost. We will first investigate
upper and lower bounds for deterministic mechanisms and
then turn our attention to randomized mechanisms.

Deterministic Mechanisms
Recall that it is assumed that x1 ≤ · · · ≤ xn, and for any
i ∈ N , we denote bymi(·, ·) the mechanism that outputs the
optimal location x∗i for agent whose location is xi.
♣ Theorem 1. Mechanism mi(·, ·) is group strategyproof.

Let mmed(·, ·) be the mechanism that always outputs the
optimal location x∗med for the median agent med = dn/2e.
Let x ∈ Rn, ` ∈ R and e` ∈ R≥0. To ease our analysis
of the approximation ratio of mmed(·, ·) for the total cost,
we introduce the notion of virtual total cost V T (x, `, e`) :=∑

i∈N |xi − `| + n · e`, which is the total cost of x when a
virtual facility is located at ` with entrance fee e`. It is possi-
ble e` 6= e(`). When e` = e(`), we have V T (x, `, e`) =
TC(x, `). The virtual cost of agent i with respect to the
virtual facility is vcost(xi, `, e`) := |xi − `| + e`. Clearly,
vcost(xi, `, e(`)) = cost(xi, `) when e` = e(`).
Observation 1. Let x ∈ Rn, `1, `2 ∈ R and e1, e2 ∈ R≥0

such that e1 < e2. If `2 ≤ `1 ≤ xmed or xmed ≤ `1 ≤ `2,
then V T (x, `1, e1) < V T (x, `1, e2) ≤ V T (x, `2, e2).
Next, we show that the total cost approximation ratio of
mmed(·, ·) can be bounded by a constant.
Theorem 2. For each entrance fee function e with max-min
ratio re, the approximation ratio of mmed(e, ·) for the total
cost is at most 3 − 4

re+1 . Hence, the approximation ratio of
mmed(·, ·) for the total cost is at most 3.
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Proof. Assume w.l.o.g. that xmed≤x∗med. Denote by Cmed

the optimal cost of the median agent. Let xi ∈ R be an arbi-
trary agent position. If xi≤xmed, we have cost(xi, x

∗
med)=

vcost(xi, xmed, Cmed). If xi>xmed, by Lemma 4 we have
cost(xi, x

∗
med)≤vcost(xi, xmed, Cmed). Thus
TC(x, x∗med) ≤ V T (x, xmed, Cmed). (1)

Next we prove e(`tc) ≤ Cmed. Suppose for contradiction
that e(`tc) > Cmed. Then by Observation 1 and (1), we have
TC(x, `tc) > V T (x, xmed, Cmed) ≥ TC(x, x∗med). This
is a contradiction. Hence, there is a location `′tc between
xmed and `tc such that vcost(xmed, `

′
tc, e(`tc)) = Cmed.

Then we have |xmed − `′tc| = Cmed − e(`tc) . Let ∆ =
|Cmed − e(`tc)|. By Observation 1, we have TC(x, `tc) ≥
V T (x, `′tc, e(`tc)). Together with (1), we have

γ(mmed(e,x)) ≤ V T (x, xmed, Cmed)

V T (x, `′tc, e(`tc))
. (2)

We will identify a location profile x′ ∈ Rn for each x such
that the bound given by (2) for x is no greater than that for
x′. Let n1 = |{i ∈ N |xi ≤ xmed < `′tc or xi ≥ xmed ≥
`′tc}| and n2 = n− n1. Thus n1 ≥ n2. Let x′ be the profile
where n1 agents are at xmed and the rest are at `′tc. By (2),

γ(mmed(e,x)) ≤ V T (x′, xmed, Cmed)

V T (x′, `′tc, e(`tc))

=
(Cmed + ∆) · n2

n1
+ Cmed

e(`tc) · n2

n1
+ Cmed

. (3)

Since Cmed + ∆ ≥ e(`tc) and n2/n1 ≤ 1, we know that (3)
is maximized when n1 = n2. Then since emin ≤ e(`tc) ≤
Cmed ≤ emax, we have γ(mmed(e,x)) ≤ 2Cmed+∆

Cmed+e(`tc) ≤
3 − 4

re+1 . This proves the first claim of the theorem. The
second claim follows immediately.

We illustrate in the full version of the paper the approxi-
mation ratio of 3 is tight for the mechanismmmed(·, ·). Next,
we establish a lower bound of 3 for the total cost approxima-
tion ratio against all deterministic strategyproof mechanism-
s. Thus we can assert that no deterministic strategyproof
mechanism can do better than mmed(·, ·).
Theorem 3. For any given α ≥ 1, there exists an en-
trance fee function e with max-min ratio re = α such
that no deterministic strategyproof mechanism f(e, ·) :
Rn → R can achieve an approximation ratio less than
3 − 16

re+5+
√

r2e+10re−7
for the total cost. Hence, no deter-

ministic strategyproof mechanism f(·, ·) : E ×Rn → R can
achieve a total cost approximation ratio less than 3.

Proof. Let d > 0 and D = d + 1 + (2d + 1)−1. Consider
the entrance fee function e: e(`) =d if `=±1 and e(`) =D
for any ` 6= ±1. Let f(e, ·) : Rn → R be a deterministic
strategyproof mechanism. Let x1 = (−1, ε), x2 = (−ε, 1)
and x3 = (−1, 1) be three location profiles, where ε is a
small positive. We illustrate this example in Figure 2.

First, we consider profile x1. We have

TC(x1, `) =


2d+ 1 + ε, if ` = −1

2d+ 3− ε, if ` = 1

|`+ 1|+ |`− ε|+ 2D, otherwise
.

ℝ10 𝜖𝜖

𝑑𝑑
𝐷𝐷

𝐱𝐱1

−1 ℝ10

𝑑𝑑𝑑𝑑
𝐷𝐷

𝐱𝐱2

−1 ℝ10

𝑑𝑑𝑑𝑑

𝐱𝐱3

−𝜖𝜖

𝐷𝐷

𝑑𝑑

−1

Figure 2: The definitions of e(·),x1,x2 and x3. The red tri-
angles denote facilities, and the dashed line represents the
deviation of the agent.

When ` 6= ±1, we have TC(x1, `) = |`+1|+|`−ε|+2D ≥
2d+3. ThusOPTtc(e,x1) = 2d+1+ε. Assume, for contra-
diction, that γ(f(e, ·)) < (2d+ 3− ε)/(2d+ 1 + ε). Then
we have TC(x1, f(e,x1)) ≤ γ(f(e, ·)) ·OPTtc(e,x1) <
2d+3− ε. Thus TC(x1, f(e,x1)) must be 2d+1+ ε. Then
we have f(e,x1) = −1 and cost(ε, f(e,x1)) = d + 1 + ε.
By the symmetry between profiles x1 and x2, we have
f(e,x2) = 1 and cost(−ε, f(e,x2)) = d+ 1 + ε.

Now consider profile x3. We have TC(x3, `) = 2d + 2
if ` = ±1 and TC(x3, `) = |` + 1| + |` − 1| + 2D if
` 6= ±1. Thus, we have OPTtc(e,x3) = 2d + 2. By our
assumption and the definition of D, we have γ(f(e, x3)) <
(2d+ 3)/(2d+ 1) = (2D + 2)/(2d+ 2). Since|` + 1| +
|`− 1|+ 2D ≥ 2D + 2, TC(x3, f(e,x3)) must be 2d+ 2.
Thus f(e,x3) = ±1. If f(e,x3) = −1, then the agent at−ε
in x2 can deviate to−1 and decrease her cost from d+ 1 + ε
to d+1−ε, a contradiction. If f(e,x3) = 1, then the agent at
ε in x1 can deviate to 1 and decrease her cost from d+ 1 + ε
to d + 1 − ε, a contradiction. Due to the arbitrariness of
ε > 0, we have γ(f(e, ·)) ≥ (2d+ 3)/(2d+ 1). Observing
that re = 1+(2d+ 2)/(2d2 + d), the desired result follows
after simple computation.

Randomized Mechanisms
For any input e and x, our randomized mechanism, denoted
by r(·, ·), outputs each x∗i with probability 1/n for i ∈ N .
Recall that for any even n, the approximation ratio of the
deterministic mechanism mmed(·, ·) is exactly 3. Next we
show that the randomized mechanism r(·, ·) can achieve a
better approximation ratio of 3− 2/n.
♣ Theorem 4. The mechanism r(·, ·) is strategyproof and
achieves an approximation ratio of 3 − 2/n for the total
cost. The approximation ratio is tight for this mechanism.

Next, we establish a lower bound for the approximation
ratio against all randomized strategyproof mechanisms.
Theorem 5. There is an entrance fee function e with re =
+∞ so that no randomized strategyproof mechanism f(e, ·)
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can achieve a total cost approximation ratio less than 2.

Proof. Consider the following entrance fee function e:
e(`) = 0 if ` = ±1 and e(`) = +∞ for any ` 6= ±1. Let
f(e, ·) : Rn → ∆(R) be a randomized strategyproof mech-
anism. To achieve a bounded total cost approximation ratio,
it holds that Pr[f(e,x) = −1] + Pr[f(e,x) = 1] = 1 for
any profile x ∈ Rn. Let x1 = (−1, ε), x2 = (−ε, 1) and
x3 = (−1, 1) be three location profiles, where ε ∈ (0, 1) is a
small positive. Let Pr[f(e,x1) = 1] = p and Pr[f(e,x2) =
−1] = p′. TC(x1,−1) = 1 + ε is the optimal total cost and
TC(x1, 1) = 3 − ε. Thus, the approximation ratio of f for
x1 is γ(f(e,x1)) = 1− p+ p · (3− ε)/(1 + ε).

Now consider the case that the agent at ε in x1 de-
viates to 1. Since this agent prefers location 1 to loca-
tion −1, by the strategyproofness of f(e, ·), we must have
Pr[f(e,x3) = 1] ≤ p. Then consider the case that the agent
at −ε in x2 deviates to −1, again by the strategyproofness
of f(e, ·), we must have Pr[f(e,x3) = −1] ≤ p′. Thus
p+ p′ ≥ Pr[f(e,x3) = −1] + Pr[f(e,x3) = 1] = 1. With-
out loss of generality, we assume p ≥ 1/2. Then we have
γ(f(e, ·)) ≥ γ(f(e,x1)) ≥ 2/(1 + ε).

Thus, for n = 2, our randomized mechanism r(·, ·)
achieves the best possible approximation ratio. Note that the
max-min ratio in the above proof is +∞. Thus we can safely
assume that the probability distribution of the mechanism is
discrete. However, when the max-min ratio is finite, this as-
sumption does not hold, and we have to deal with continuous
distributions. In the following theorem, we show that we can
discretize continuous distributions using the first mean-value
theorem for integrals and establish a lower bound against all
the entrance fee functions of a given max-min ratio.
♣ Theorem 6. For any α ≥ 1, there exists an function e
with max-min ratio re = α such that no randomized strate-
gyproof mechanism f(e, ·) :Rn→∆(R) can achieve a total
cost approximation ratio less than

√
2+1
2 − 1

(4+2
√

2)re−2
.

Egalitarian Version with One Facility
Now we study strategyproof mechanisms that approximate
the maximum cost. Our mechanism is m1(·, ·), which out-
puts x∗1 for a given function e and a location profile x.
Theorem 7. For each entrance fee function e with max-min
ratio re, the approximation ratio of m1(e, ·) for the maxi-
mum cost is

γ(m1(e, ·)) ≤

{
2, if re ≤ 2

3− 2
re
, if re > 2

.

Hence, the approximation ratio ofm1(·, ·) for the maximum
cost is at most 3.

Proof. Given x ∈ Rn. Recall that `mc is the location that
achieves the optimal maximum cost. Then OPTmc(e,x) =
max{cost(x1, `mc), cost(xn, `mc)}. Let t ∈ {1, n} be
the agent such that cost(xt, `mc) = OPTmc(e,x). Let
`cen = (x1 + xn)/2 be the center of x. Assume a virtu-
al facility is located at `cen with entrance fee E such that
OPTmc(e,x) = vcost(xt, `cen, E) = L/2 + E. Then we

have E = |`cen − `mc| + e(`mc) and E ≥ e(`mc) ≥ emin.
Let L = |xn − x1|. By MC(x, f(e,x)) ≤ L+ C1 we get

γ(m1(e,x)) ≤ L+ C1

L/2 + E
= 2 +

C1 − 2E

L/2 + E
. (4)

Besides, due to C1 ≤ cost(x1, `mc) ≤ cost(xt, `mc), we
have L ≥ 2C1 − 2E, and E ≥ C1 − L/2 equivalently.

If re ≤ 2, becauseC1 ≤ e(x1) ≤ emax andE ≥ emin, we
have C1/E ≤ re ≤ 2. Then by (4), we get γ(m1(e, ·)) ≤ 2.

For the case that re > 2, we divide all location profiles
into two subcases based on L and C1.
Subcase 1: L < C1. Considering E ≥ C1 − L/2, by (4),
we get γ(m1(e,x)) ≤ (L+ C1)/(L/2 + C1 − L/2) ≤ 2.
Subcase 2: L ≥ C1. If C1 < 2E, we have γ(m1(e,x)) < 2
by (4). If C1 ≥ 2E, then L > 2C1 − 2E ≥ C1. Let L =
2C1−2E in (4), and then we get γ(m1(e,x)) ≤ 3−2E/C1

Since C1/E ≤ re, we get γ(m1(e,x)) ≤ 3− 2/re.
When re > 2, we have (3 − 2/re) > 2. Thus we have

γ(m1(e,x)) ≤ 3 − 2/re if re > 2. Together with the case
that re ≤ 2, we get the desired result.

In the full version of the paper, we show the approxima-
tion ratio in this theorem is tight for the mechanismm1(e, ·).

Procaccia et al. (2013) proved that when e(·) = 0, no
deterministic strategyproof mechanism can achieve a max-
imum cost approximation ratio smaller than 2. We extend
this bound to a wider range of entrance fee functions.
♣ Theorem 8. For any given α ≥ 1, there exists an en-
trance fee function e with max-min ratio re = α such that
no deterministic strategyproof mechanism f(e, ·) : Rn → R
can achieve an approximation ratio for the maximum cost
less than 2. This also implies that no deterministic strate-
gyproof mechanism f(·, ·) :E(α) × Rn→R can achieve an
approximation ratio for the maximum cost less than 2.

By Theorems 7 and 8, we can conclude that for entrance
fee functions with max-min ratio α ≤ 2, no strategyproof
mechanism f(·, ·) : E(α) × Rn → R can do better than
m1(·, ·). Next, when α ≥ 6, we establish a tighter lower
bound for the maximum cost approximation ratio against all
strategyproof mechanisms f(·, ·) :E(α)× Rn→R.
Theorem 9. For any α ≥ 1, there exists an entrance fee
function e with max-min ratio re = α such that no de-
terministic strategyproof mechanism f(e, ·) : Rn → R
can achieve a maximum cost approximation ratio less than
3 − 28√

r2e+20re−12+re+10
. This also implies that no deter-

ministic strategyproof mechanism f(·, ·) : E × Rn→R can
achieve a maximum cost approximation ratio less than 3.

Proof. Let d be a positive and D = d + 3 + 4(d + 1)−1.
Consider the following entrance fee function e: e(`) = d if
`=±1 and e(`)=D for any ` 6=±1. Let f(e, ·) : Rn → R be
a deterministic strategyproof mechanism. Let x1 = (−ε, 2),
x2 = (−2, ε) and x3 = (−2, 2) be three location profiles,
where ε ∈ (0, 1) is a small positive number.

First we consider the profile x1, we have

MC(x1, `) =


d+ 3, if ` = −1

d+ 1 + ε, if ` = 1

D + max{|`− 2|, |`+ ε|}, otherwise
.
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Thus OPTmc(e,x1) = d+ 1 + ε. Assume for contradiction
that γ(f(e, ·)) < (d+ 3)/(d+ 1 + ε). Thus, it holds that

MC(x1, f(e,x1)) ≤ γ(f(e, ·)) ·OPTmc(e,x1)

< d+ 3 < D + max{|`− 2|, |`+ ε|}.

Then MC(x1, f(e,x1)) must be d+1+ ε. Thus f(e,x1) =
1 and cost(−ε, f(e,x1)) = d + 1 + ε. By the symmetry
between profiles x1 and x2, we can get f(e,x2) = −1 and
cost(ε, f(e,x2)) = d+ 1 + ε. Next we consider profile x3.

MC(x3, `) =

{
d+ 3, if ` = ±1

D + max{|`− 2|, |`+ 2|}, otherwise
.

By our assumption we have γ(f(e, ·)) < (d+ 3)/(d+ 1) =
(D + 2)/(d+ 3), which implies that f(e,x3) = ±1. If
f(e,x3) = 1, then the agent at ε in x2 can deviate to 2 and
decrease her cost from d+1+ε to d+1−ε, a contradiction. If
f(e,x3) = −1, then the agent at −ε in x1 can deviate to −2
and decrease her cost from d+1+ε to d+1−ε, a contradic-
tion. Due to the arbitrariness of ε > 0, we know that the to-
tal cost approximation ratio is no less than (d+ 3)/(d+ 1).
Observing that re = 1 + (3d+ 7)/(d2 + d), we can get the
desired result by simple computation.

Lower bound for randomized mechanisms. We also ob-
tain the following result on randomized mechanisms.
♣ Theorem 10. There is an e(·) with re = +∞ such that
no randomized strategyproof mechanism f(e, ·) can achieve
a maximum cost approximation ratio less than 2.

Mechanisms with Two Facilities
In this section, we investigate two-facility games. A mech-
anism is now a function f(·, ·) : E × Rn → R2, that given
e and x, returns the facility location profile ` ∈ R2. Re-
call for ` = (`1, `2), the agent i selects the facility with s-
mallest sum of travel and entrance fees. Thus, cost(xi, `) =
min{|`1 − xi|+ e(`1), |`2 − xi|+ e(`2)}.

Utilitarian Version with Two Facilities
Let i, j ∈ N with i ≤ j. Denote bymi,j(·, ·) : Rn → R2 the
mechanism that puts one facility in x∗i and the other facility
in x∗j for any input e and x.

♣ Proposition 2. mi,j(·, ·) is group strategyproof.

When e(·) = 0, Fotakis and Tzamos (2014) prove that
any deterministic strategyproof mechanism with bounded
approximation ratio (for either of the objectives) must put
facilities on x1 and on xn. Thus we only consider the mech-
anism m1,n(·, ·). The following result shows that the to-
tal cost approximation ratio of m1,n(·, ·) matches the lower
bound of n− 2 in the classical model.
♣ Proposition 3. The approximation ratio of m1,n(·, ·) for
the total cost is at most n− 2.

Egalitarian Version with Two Facilities
Our mechanism for the maximum cost objective is also
m1,n(·, ·). We can show that the approximation ratio of
m1,n(·, ·) for the maximum cost is the same as m1(·, ·).

♣ Proposition 4. For each entrance fee function e with
max-min ratio re, the approximation ratio of m1,n(e, ·) for
the maximum cost is

γ(m1,n(e, ·)) ≤

{
2, if re ≤ 2

3− 2
re
, if re > 2

.

Hence, the approximation ratio of m1,n(·, ·) for the maxi-
mum cost is at most 3.

The following proposition obtains a similar lower bound for
all deterministic strategyproof mechanisms as in Theorem 8.

♣ Proposition 5. For any α ≥ 1, no deterministic strate-
gyproof mechanism f(·, ·) : E(α) × Rn→R2 can achieve a
maximum cost approximation ratio less than 2.

By a similar argument of this proposition, we can estab-
lish a lower bound against all deterministic strategyproof
mechanisms as in Theorem 9.

♣ Proposition 6. For any α ≥ 1, there exists an entrance
fee function e with max-min ratio re = α such that no
deterministic strategyproof mechanism f(e, ·) : Rn → R2

can achieve a maximum cost approximation ratio less than
3− 28√

r2e+20re−12+re+10
. This implies that no deterministic

strategyproof mechanism f(·, ·) : E × Rn→R2 can achieve
a maximum cost approximation ratio less than 3.

Lower bound for randomized mechanisms. Next, we
show that the lower bound of 2 in Theorem 10 for the one-
facility game also holds for the two-facility game.

♣ Proposition 7. There is an e(·) with re = +∞ such that
no randomized strategyproof mechanism f(e, ·) can achieve
a maximum cost approximation ratio less than2.

Conclusion
This paper presents an interesting extension of the classical
facility location game on the real line. Our model introduces
entrance fee functions, thus naturally enhancing the classi-
cal model. Not only this model is a new extension but also
it brings in an idea of revisiting the existing facility location
games, such as capacitated facilities (Aziz et al. 2020a), het-
erogeneous facilities (Li et al. 2020) and so on. This model
is a more realistic fit in many application scenarios.

The entrance fee function in our settings is arbitrary, and
the preferences of agents may not be single-peaked. This
gives rise to new challenges in designing mechanisms. We
tackle this by simple yet powerful mechanisms and com-
plement these with nearly-tight impossibility results. Our
proofs of upper and lower bounds involve new techniques,
which may be of independent interest.

One interesting problem for further study is to close the
gaps between bounds in Table 2. In the classical model, the
left-right-middle mechanism (Procaccia et al. 2009) and the
proportional mechanism (Lu et al. 2010) can achieve bet-
ter approximation ratios than the deterministic ones. How-
ever, they can not be extended to our models keeping strate-
gyproof. It is intriguing to design better randomized mecha-
nisms for our model.
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