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Abstract

A Fisher market is an economic model of buyer and seller in-
teractions in which each buyer’s utility depends only on the
bundle of goods she obtains. Many people’s interests, how-
ever, are affected by their social interactions with others. In
this paper, we introduce a generalization of Fisher markets,
namely influence Fisher markets, which captures the impact
of social influence on buyers’ utilities. We show that compet-
itive equilibria in influence Fisher markets correspond to gen-
eralized Nash equilibria in an associated pseudo-game, which
implies the existence of competitive equilibria in all influence
Fisher markets with continuous and concave utility functions.
We then construct a monotone pseudo-game, whose varia-
tional equilibria and their duals together characterize compet-
itive equilibria in influence Fisher markets with continuous,
jointly concave, and homogeneous utility functions. This ob-
servation implies that competitive equilibria in these markets
can be computed in polynomial time under standard smooth-
ness assumptions on the utility functions. The dual of this
second pseudo-game enables us to interpret the competitive
equilibria of influence CCH Fisher markets as the solutions
to a system of simultaneous Stackelberg games. Finally, we
derive a novel first-order method that solves this Stackelberg
system in polynomial time, prove that it is equivalent to com-
puting competitive equilibrium prices via rdtonnement, and
run experiments that confirm our theoretical results.

Introduction

The branch of mathematical economics that attempts to ex-
plain the behavioral relationship among supply, demand,
and prices via equilibria dates back to the work of French
economist (Walras 1896), and today is known as gen-
eral equilibrium theory (Mas-Colell, Whinston, and Green
1995). One of the seminal achievements in this area is
the proof of existence of competitive equilibrium prices in
Arrow-Debreu markets (1954). In such a market, traders
seek to “purchase” goods from others, by exchanging a part
of their endowment of goods for various other goods. A
competitive equilibrium comprises an allocation of goods
to traders together with good prices such that traders maxi-
mize their preferences over goods while ensuring that their
spending does not exceed the value of their endowment, and
the market clears: i.e., no more goods are allocated than the
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market supply and Walras’ law holds, meaning the value of
demand equals the value of supply.

In much of mainstream consumer theory (Mas-Colell,
Whinston, and Green 1995), and in Arrow-Debreu markets,
each trader’s preference depends only on its own consump-
tion. Such models fail to capture the influence of social inter-
actions on traders’ interests. For example, the more friends
one has who own an iPhone, the more one might prefer an
iPhone. Likewise, if a celebrity, e.g., Beyonce, wears a par-
ticular brand of bag, e.g., Telfar, then one’s preference for
that brand of bag might increase. In an age of densifying so-
cial networks, it is becoming more and more essential that
our economic models capture the effects of social interac-
tions on individuals’ preferences.

To try to better understand the implications of social net-
works on market equilibria, Chen and Teng (2011) recently
proposed an extension of the Arrow-Debreu market model
in which each trader’s preference is influenced by the goods
her neighbors obtains: the Arrow-Debreu market with so-
cial influence. Formally, Chen and Teng’s model augments
an Arrow-Debreu market with a social network connecting
the traders, and then embeds this network’s structure in each
trader’s utility function, thus inducing a preference relation
over allocations of goods that depends both on the trader’s
and its neighbors’ allocations. The authors then study a
modest generalization of competitive equilibrium in which
traders maximize their utility, assuming the allocations of
the other traders in the market, including their neighbors,
are fixed.

Chen and Teng analyze their model under two specific
types of utilities: linear and threshold influence functions.
They prove existence of competitive equilibrium in their set-
ting, when the graph underlying the economy is strongly
connected and the utility functions’ parameters guarantee
non-satiation of the preferences they represent. Under ad-
ditional assumptions on the topology of the network, they
also provide polynomial-time methods for computing com-
petitive equilibria.

As the computation of competitive equilibrium in Arrow-
Debreu markets is believed to be intractable, i.e., it is PPAD-
complete (Chen and Deng 2006; Chen and Teng 2009), it
seems unlikely that we can obtain positive computational
results in such a broad setting. In the last two decades, how-
ever, Fisher markets have emerged as an interesting special



case of Arrow-Debreu markets in which competitive equi-
libria can be efficiently computed. The Fisher market is a
one-sided Arrow-Debreu market comprising one seller and
multiple buyers, the latter of whom are endowed with an arti-
ficial currency called their budget, rather than an endowment
of goods.

During the last two decades, a wide array of polynomial-
time computability results have been established for Fisher
markets (Devanur et al. 2002; Jain, Vazirani, and Ye 2005;
Gao and Kroer 2020; Goktas and Greenwald 2021). One
of the most interesting findings is the observation that the
primal and dual solutions, respectively, to the Eisenberg-
Gale convex program (Eisenberg and Gale 1959), consti-
tute competitive equilibrium allocations and prices in Fisher
markets, and are computable in polynomial time assuming
buyers with continuous, concave, and homogeneous util-
ity functions representing locally non-satiated preferences
(Devanur et al. 2002; Devanur et al. 2008; Jain, Vazirani,
and Ye 2005). Moreover, Cheung, Cole, and Devanur show
that solving the dual of the Eisenberg-Gale program via
(sub)gradient descent amounts to solving the market via
tdtonnement, an economic price-adjustment process dating
back to Walras (1896), in which a fictional auctioneer in-
creases (resp. decreases) the prices of goods that are overde-
manded (resp. underdemanded) (Cheung, Cole, and Deva-
nur 2013). Furthermore, Goktas and Greenwald (2021) show
that the dual of the Eisenberg-Gale program corresponds to a
zero-sum Stackelberg game, in which tdfonnement surfaces
as a no-regret learning dynamic for the auctioneer (Goktas,
Zhao, and Greenwald 2022).

With the aim of obtaining stronger results on the existence
and computation of competitive equilibrium in markets with
social influence, we introduce a special case of the Arrow-
Debreu market with social influence and a generalization of
Fisher markets (Brainard, Scarf et al. 2000), which we call
Fisher markets with social influence, or influence Fisher
markets for short. An influence Fisher market, as the name
suggests, is a Fisher market in which buyers’ utility func-
tions depend not only on their own allocation, but also on
their neighbors’. In this paper, we provide existence and
polynomial-time computability results for competitive equi-
librium in influence Fisher markets. We first extend Arrow
and Debreu’s competitive equilibrium existence argument
using their theory of pseudo-games to prove that a compet-
itive equilibrium exists in all influence Fisher markets with
continuous utility functions that are concave in each buyer’s
allocation. Contrary to Chen and Teng, our existence result
makes no assumptions about the topology of the network.

Next, for all influence Fisher markets with continuous
and homogeneous utilities, we construct a similar pseudo-
game with jointly convex constraints whose variational equi-
libria correspond to competitive equilibrium allocations.
This pseudo-game is monotone assuming the buyers’ util-
ity functions are jointly-concave); thus, we can solve for
its variational equilibria as a variational inequality prob-
lem (Facchinei, Fischer, and Piccialli 2007). This approach
yields a polynomial-time algorithm that computes compet-
itive equilibrium allocations in influence Fisher markets.
Moreover, as the pseudo-game comprises n different opti-
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mization problems, one per buyer, there are correspondingly
n duals. Surprisingly, the solutions to all of these duals yield
the same competitive equilibrium prices!

Finally, following Goktas and Greenwald (2021), who re-
formulate the dual of the Eisenberg-Gale program as a zero-
sum Stackelberg game, we likewise reformulate the n duals
of our pseudo-game as a system of n simultaneous zero-
sum Stackelberg games. In Goktas and Greenwald’s dual,
the leader is a fictitious auctioneer who sets prices, while the
followers are a set of buyers who effectively play as a team;
in our n duals, each leader is again a fictitious auctioneer,
but each follower is an individual buyer who best responds
to the auctioneer’s prices, given the other buyers’ alloca-
tions. Thus, the buyers in this system play a Nash equilib-
rium. Also following Goktas and Greenwald, we show that
running subgradient descent on each leader’s value function,
i.e., the leader’s utility function assuming the follower best-
responds, amounts to solving the market via tdtonnement in
polynomial-time, as in (standard) Fisher markets. The main
difference between our algorithm and theirs is that ours re-
quires a Nash-equilibrium oracle, so that, given prices and
the other buyers’ allocations, buyers can play best responses
to one another.

Related Work Gao and Kroer (2020) studied an alterna-
tive family of first-order methods for solving Fisher markets
(only; not min-max Stackelberg games more generally), as-
suming linear, quasilinear, and Leontief utilities; such meth-
ods can be more efficient when markets are large.

Following Arrow and Debreu’s introduction of GNE,
Rosen (1965) initiated the study of the mathematical and
computational properties of GNE in pseudo-games with
jointly convex constraints, proposing a projected gradi-
ent method to compute GNE. Thirty years later, Uryas’ev
and Rubinstein (1994) developed the first relaxation meth-
ods for finding GNEs, which were improved upon in sub-
sequent works (Krawczyk and Uryasev 2000; Heusinger
and Kanzow 2009). Two other types of algorithms were
also introduced to the literature: Newton-style methods
(Facchinei, Fischer, and Piccialli 2009; Dreves 2017; von
Heusinger, Kanzow, and Fukushima 2012; Izmailov and
Solodov 2014; Fischer et al. 2016; Dreves et al. 2013) and
interior-point potential methods (Dreves et al. 2013). Many
of these approaches are based on minimizing the exploitabil-
ity of the pseudo-game, but others use variational inequal-
ity (Facchinei, Fischer, and Piccialli 2007; Nabetani, Tseng,
and Fukushima 2011) and Lemke methods (Schiro, Pang,
and Shanbhag 2013). Recently, this literature has estab-
lished convergence guarantees for exploitability minimiza-
tion (Goktas and Greenwald 2022) and relaxation (Jordan,
Lin, and Zampetakis 2023) methods.

Preliminaries

In this section, we define our main modeling tool, pseudo-
games, and then we introduce our object of study, Fisher
markets with social influence, as a particular pseudo-game.



Notation

We use caligraphic uppercase letters to denote sets and set
correspondences (e.g., X); bold lowercase letters to denote
vectors (e.g., p, 7); bold uppercase letters to denote matrices
and vector-valued random variables (e.g., X, I'); lowercase
letters to denote scalar quantities (e.g., x,7y); and uppercase
letters to denote scalar-valued random variables (e.g., X, ).
We denote the ¢th row vector of a matrix (e.g., X) by the
corresponding bold lowercase letter with subscript 7 (e.g.,
@;). Similarly, we denote the jth entry of a vector (e.g., p
or x;) by the corresponding lowercase letter with subscript
J (e.g., pj or x;;). Lowercase letters also denote functions:
e.g., f if the function is scalar valued, and f if the function
is vector valued. We denote the vector of ones of size n by
1,, the set of integers {1,...,n} by [n], the set of natural
numbers by N, the set of real numbers by R, and the postive
and strictly positive elements of a set by a + and ++ sub-
script, respectively, e.g., Ry and R, . Finally, we denote
the orthogonal projection operator onto a set C' by I, i.e.,

e (z) = argming, ¢ |z — yl.

Pseudo-games

A (concave) pseudo-game (Arrow and Debreu 1954) G =
(n, A, X, g, F) comprises n € N, players, each i € [n]
of whom chooses an action a, € A; C R™, with the
players’ joint action space A = X, Ai. Bach player i
aims to maximize their continuous utility f; : A — R,
which is concave in a,, by choosing a feasible action from
a set of actions X;(a_;) C A; determined by the ac-

tionsa_;, € A_; C R(™=D™ of the other players, where
X+ A_;, = A, is a non-empty, continuous, compact- and
convex-valued action correspondence. We represent each
such correspondence as a set X;(a_;) = {a, € A; |
gir(a;,a_;) > 0, forall k € [d]}, where g, is a contin-
uous and concave function in a, that defines the constraints.
Additionally, overloading notation, we define the the joint
action correspondence X is simply a set of jointly feasi-
ble action profiles, namely {a € A | g(a) > 0}, where
g = (91,---,9n). If gix : A — R is also concave in
a € A, then we say that the pseudo-game has jointly con-
vex constraints, in which case, X is simply a convex set.
A pseudo-game is called monotone! if for all z,y € A,

Zie[n] (Vafz(m) — Va, fz(y))T (z; —y;) < 0. Finally, a
(concave) game (Nash 1950) is a pseudo-game where, for
all players 7 € [n], X} is a constant correspondence, i.e., for
all players i € [n], Xi(a_;) = X;(b_;), foralla,b € A.
Given a pseudo-game G, an e-generalized Nash equilib-
rium (GNE) is an action profile a* € X(a*) s.t. for all
i € [n]and a; € X;(a*,), fi(a*) > fi(a;;a*;) —c. Ane-
variational equilibrium (VE) (or e-normalized GNE) of a
pseudo-game with joint constraints is an action profile a* €
Xstforalli € [n]and a € X, f;(a*) > fi(a;,a*;) —«.
A GNE (VE) is an e-GNE (VE) with ¢ = 0. While GNE

"We call a pseudo-game monotone if —(Valul, .y Va, Un)
is a monotone operator. Such pseudo-games are also sometimes
called dissipative, since (Valul, ..y Va, uy ) is called a dissipa-
tive operator if —(Vgq JULs ey Vanun) is a monotone operator.
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are guaranteed to exist in all pseudo-games under standard
assumptions (see Theorem 16), VE are only guaranteed to
exist in pseudo-games with jointly convex constraints (see
Theorem 17) (Arrow and Debreu 1954).

Fisher Markets with Social Influence

In this paper, we study a model of Fisher markets with social
influence, in which a buyer’s utility may be influenced by
the goods allocated to her neighbors. A Fisher market with
social influence, or an influence Fisher market for short,
comprises n € Ny buyers and m € N, divisible goods.
Without loss of generality, we assume that exactly one unit
of each good j € [m)] is available.

The buyers are connected through a directed social in-
fluence graph G = (V, E), where V' = [n] is the set of
buyers, and for any i,i’ € [n], there is an edge from ¢’ to
¢ iff the utility of ¢ is influenced by the allocation x;s of
i'. We let Nq(i) = {¢' | (¢/,i) € E} be the (incoming,
and hence influential) neighbors of a buyer ¢, and we define
k; = |[Ng(i)|, for all i € [n].

Each buyer ¢ € [n] has a budget b; € R, and a util-

ity function w; : RFFDX™ 5 R that depends on not
only her own allocation, but also her neighbors’. An in-
stance of an influence Fisher market is thus given by a tu-
ple (n,m,G,U,b), where G is the social network, U =
{u1,...,u,} is a set of utility functions, one per buyer, and
b € RY is a vector of buyer budgets. When n and m are
clear from context, we denote influence Fisher markets sim-
ply by (G, U, b).

Given an influence Fisher market (G, U, b), an alloca-
tion X = (x1,...,2,)7 € R}*™ is a map from goods
to buyers, represented as a matrix, s.t. ;; > 0 denotes the
amount of good j € [m] allocated to buyer ¢ € [n]. Like-
wise, we denote by @y ;) = (mi/)iT'eNc(i) € RF ™™ the
matrix representing the bundles of goods obtained by buyer
i’s neighbors. A utility function is locally non-satiated if
forall x; € R, &y, () € legxm, and £ > 0, there exists
an x; € R with ||} — ;]| < & such that u; (x}, Tng ) >
ui(Ti, T Ny (i))- Related, a utility function satisfies no satu-
ration if Vz; € R and zn, ;) € Rfﬁxm, there exists an
x; € R such that u; (2], Tng)) > ui(xi, Tng (i) Note
that if u; is quasi-concave in x; and satisfies no saturation,
then it is locally non-satiated (Arrow and Debreu 1954).

Feasibility asserts that no more of any good j is allocated
than its available supply, i.e., Vj € [m], >, 2i; < 1.
Walras’ law states that, if a good j is not fully allocated,
then its price must be zero; equivalently, if a good’s price
is positive, then it must be fully allocated. Mathematically,
ZjE[m] p;(21e[n] x;j - 1) =0.

A tuple (X*,p*), which consists of an allocation X*
and prices p* = (p}...,p;)7 € RT, is a competitive
equilibrium (CE) in an influence Fisher market (G, U, b) if
(1) fixing other buyers’ allocations, buyers maximize their
utilities constrained by their budget, i.e., Vi € [n],z} €
Arg Maxy, crm.a,.p* <b, u; (@i, Ty, ;). and (2) feasibility
and Walras’ law hold.



A Fisher market is a special influence Fisher market
(G, U, b) where G = (V, E) satisfies F = (). In other words,
each buyer i is isolated, so her utility u; : R" — R, de-
pends only on her own allocation. As G is simply a graph
with n vertices and no edges, we can denote a Fisher market
by the tuple (U, b).

When U is a set of specific utility functions, we refer to
the influence Fisher market (G, U, b) by the name of the util-
ity function: e.g., if U is a set of linear utility functions then
(G, U, b) is a linear influence Fisher market.

Existence of Competitive Equilibrium via
Pseudo-Games

In this section, we investigate the properties of competi-
tive equilibrium in Fisher markets with social influence. Our
main tool is the pseudo-game (or abstract economy) model
introduced by Arrow and Debreu, as both a generalization
of the standard normal-form game in game theory and of the
Arrow-Debreu market in microeconomics (Arrow and De-
breu 1954). We provide a proof of existence of competitive
equilibrium in influence Fisher markets, using methods sim-
ilar to those employed by Arrow and Debreu in their seminal
proof of the existence of competitive equilibria in Arrow-
Debreu economies.

Following Arrow and Debreu, we define a pseudo-game
with an auctioneer who sets prices. Our pseudo-game then
both generalizes and specializes theirs. While in theirs, each
trader’s utility depends only on their own allocations, ours
captures social influence through augmented utility func-
tions. While in theirs, buyers are constrained by their en-
dowment, in ours, buyers are constrained by budgets.

Specifically, we construct an auctioneer-buyer pseudo-
game comprising a single auctioneer and n individual buy-
ers in which the auctioneer sets the good prices, while
the buyers choose their allocations. Given an allocation

X € R let z = (Eie[n

of excess demands, i.e., the total amount by which the de-
mand for each good exceeds its supply. In our auctioneer-
buyer pseudo-game, each buyer 7 chooses allocations x;
that maximize her utility subject to her budget constraint,
given prices p determined by the auctioneer, the auctioneer
chooses prices that maximize her total profit, i.e., p- z, fixing
the allocation X, subject to Walras’ law. More specifically,
we assume a numeraire (i.e., a good whose price we normal-
ize to 1), and we view the buyers’ budgets as quantities of
this numeraire, in which case Walras’ law can be restated as
the sum of the prices being equal to the sum of the budgets:
1.€., Zje[m] p; = Zie[n] b,

In what follows, we show that the set of GNE in this
auctioneer-buyer pseudo-game corresponds to the set of CE
in an influence Fisher market; existence of a CE thus follows
from existence of GNE.

Importantly, in this pseudo-game we require the auction-
eer to choose prices whose sum is equal to the sum of the
budgets, because the budgets correspond are a numeraire
good, i.e., their price is set to 1 (this is without loss of gen-
erality since in any Arrow-Debreu market only the propor-

]:cz-) — 1,,, be the vector
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tions of the prices to one another matters), hence the prices
of every other good have to be scaled appropriately, i.e., by
the sum of the budget, so as to preserve the internal consis-
tency of the Arrow-Debreu price system that emerges at the
competitive equilibrium prices (since Arrow-Debreu assume
wlog that prices are in the unit simplex).

Assumption 1. An influence Fisher market (G,U,b) sat-
isfies, for all buyers i € [n], w; is 1. continuous in
(i, TN (i), 2. concave in x;, and 3. satisfies no satura-
tion.

Definition 2 (Auctioneer-Buyer Pseudo-game). Let
(G, U, b) be an influence Fisher market. The corresponding
auctioneer-buyer pseudo-game G = (n+ 1, A, X, g, F) is
defined by

* an auctioneer and n buyers.

» Each buyer chooses an allocation x; € A; = R"", while
the auctioneer chooses prices p € A, 11 = R'}".

* For all buyers i € [n], the feasible action set given the
actions of other players is X;(xz_;,p) = {x; € A; |
g(xi,x_;,p) =b; —x;-p > O}.

 For the auctioneer, the feasible action set is the fixed set
Xn-i—l :{pEAn+1 |p1m:b1n}

* For all players i € [n + 1], i maximizes her
utility  f; XiemeyAi  — R defined by
Ji(X,p) = ui(xi, TNy (i), for the buyers i € [n], and
fne1(X,p) = p - z for the auctioneer.

Next, we prove the existence of CE in influence Fisher
markets that satisfy Assumption 1.2

Theorem 3. The set of competitive equilibria of any in-
Sfluence Fisher market (G, U, b) that satisfies Assumption 1
is equal to the set of generalized Nash equilibria of the
associated auctioneer-buyer pseudo-game G (n +
1; -Av Xv 9, F)

Existence of a CE in an influence Fisher market now fol-
lows immediately from existence of GNE in pseudo-games:

Corollary 4. There exists a CE (X*,p*) in all influence
Fisher markets (G, U, b) satisfying Assumption 1.

Computation of Competitive Equilibrium via
Pseudo-Games

Although we have established the existence of competitive
equilibrium in all influence Fisher markets with continu-
ous and concave utility functions, the proof itself provides
little insight into equilibrium computation, as computing a
GNE is PPAD-hard in general (Daskalakis, Goldberg, and
Papadimitriou 2009). In order to gain further computational
insights, we focus on a subset of influence Fisher markets in
which each buyer’s utility function is also homogeneous in
its own allocation.

A utility function u; is homogeneous in x; € R if
i (i, T ng(i)) is homogeneous for all zy, iy € RE*™,
ie., ui(A\ey, TN (i) = Aui(Xs, Tng (i), forall A > 0. As
above, we also assume continuity and concavity. We call

Proofs of all theorems appear in the appendix.



utility functions that satisfy all three of these assumptions
CCH utility functions, and Fisher markets inhabited by buy-
ers with such utility functions CCH Fisher markets.

We can compute competitive equilibria in CCH Fisher
markets (without social influence) via the Eisenberg-Gale
convex program and its dual (Eisenberg and Gale 1959).
To generalize this convex program to CCH influence Fisher
markets, we propose another pseudo-game, which we call
the buyer (only) pseudo-game, that is jointly convex, and
whose variational equilibria correspond to CE allocations.
Moreover, we observe that the “dual” of this pseudo-game
simultaneously characterizes CE prices. In other words,
while the auctioneer-buyer pseudo-game explicitly models
an auctioneer who updates prices in response to the buyers’
behavior, in the buyer (only) pseudo-game, the auctioneer is
“fictitious,” as it is implicit in the dual.

If (U, b) is a CCH Fisher market, then an optimal solution
X* to the Eisenberg-Gale program (Eq. 1) constitutes a CE
allocation, and an optimal solution to the Lagrangian that
represents the feasibility constraints (Eq. 1a) are the corre-
sponding equilibrium prices (Devanur et al. 2002; Jain, Vazi-
rani, and Ye 2005).

Primal:
max Z b; log(u;(x;)) e))
Xexpr T
subject to Vi € [m), Z ;<1 (la)

1€[n]

In Fisher markets (without social influence), each buyer’s
utility maximization problem is independent of the others’,
as each depends only on the buyer’s own allocation. The
Eisenberg-Gale program takes advantage of this indepen-
dence. It takes an aggregate perspective, maximizing the
sum of the buyers’ utilities subject to their feasibility con-
straints, and nonetheless computes an optimal allocation that
maximizes each buyer’s individual utility.

In influence Fisher markets, however, where this indepen-
dence assumption does not hold, we can no longer compute
CE from this aggregate perspective. In our solution—CE as
the VE of a jointly-convex pseudo-game—each buyer max-
imizes her own utility, subject to a shared feasibility con-
straint. Note that the only players in this buyer pseudo-game
are the n buyers; there is no auctioneer updating prices based
on the buyers’ behavior.

Definition 5 (Buyer Pseudo-game). Let (G,U,b) be an
influence Fisher market. The corresponding jointly-convex
buyer pseudo-game G = (n, A, X, g, F) is defined by

* For all buyers i € [n], A; = RT".

o For all buyers i € [n], the feasible action set given the
actions of other players is X;(x_;) = {x; € A; |
g(@i, @) =1-3 .z =0}

o For all buyers i € [n], i maximizes her util-
ity fi Xie)Ai = R defined by fi(X)
bi log(ui(mi, mNc(i)))'
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Assumption 6. For each buyer i € [n], u; is 1. continuous
in (%, TNy (i), and 2. concave and homogeneous® in x;.

Theorem 7. Let (G,U,b) be an influence Fisher market
satisfying Assumption 6. Then, X* is a CE allocation of
(G,U,b) if and only if it is a variational equilibrium (VE) of
the corresponding buyer pseudo-game G = (n, A, X, g, F).
Moreover, if X* is a VE of the buyer pseudo-game, then
the corresponding KKT conditions are satisfied with opti-
mal Langrange multipliers X} ... = A} = p*, which
correspond to CE prices.

The construction of competitive equilibrium via the
auctioneer-buyer pseudo-game (Theorem 3) is more gen-
eral than the construction of competitive equilibrium via
the buyer pseudo-game (Theorem 7); however, the exis-
tence of the auctioneer precludes monotonicity, and hence
polynomial-time computability. To obtain efficient algo-
rithms, we assume the buyers’ utilities are concave not only
in their own allocations but in one another’s allocations as
well, which implies monotonicity. We also require twice-
continuous differentiability.

Assumption 8. For each buyer i € [n|, 1. The conditions in
Assumption 6, and 2. u; is jointly concave: i.e., concave in
(%4, TNg (i), and 3. and twice-continuously differentiable in

(%, T NG ()

Under Assumption 8, an influence Fisher market can be
expressed as a monotone variational inequality. There ex-
ist methods that converge in last iterates* to a solution of
any monotone variational inequality at a rate of O(1/T) (e.g.,
Gorbunov, Loizou, and Gidel (2022)). Our next theorem fol-
lows from these two assertions:

Theorem 9. There exist methods that converge in last iter-
ates to the CE allocations of influence Fisher markets at a
rate of O(1/T) under Assumption 8. In such markets, approx-
imate competitive equilibrium allocations can be computed
in polynomial time.

Computation of Competitive Equilibrium via
Stackelberg Games

Recently, Cole and Tao (2019) presented a generalization
of the Eisenberg-Gale dual for arbitrary CCH utility func-
tions, which accurately characterizes competitive equilib-
rium prices, but fails to match the optimal objective value
of the FEisenberg-Gale primal. Building on their results,
Goktas, Viqueira, and Greenwald (2021) derived the exact
Eisenberg-Gale dual, for which strong duality holds.

3We note that homogeneity implies no saturation, since for
all z € RY and xn,4) € Ri"xm, there exists an allocation
(1 4+ e)x for some € > 0 s.t. ui((1 + €)x, xn, () = (1 +
e)ui (X, TNy (5)) > i, TNg(i))-

4Solodov and Svaiter (1999) and Ryu, Yuan, and Yin (2019)
also provide methods that guarantee average-iterate convergence
with this same rate in monotone variational inequalities.



Dual:

Bin, Z pi+ Y bilog(ui(x})) —b; (2
m] i€[n]
s.t. Vz €[n], xf € argmax u;(x;) (2a)

z, ERT i p<b;

We begin this section by deriving the “duals” of our buyer
pseudo-game.

In the buyer pseudo-game G, each buyer is solving an op-
timization problem (Equation (3)) in which they maximize
their utility function by choosing an optimal action in their
feasible action set, given the other buyers’ VE actions. Based
on this observation, we can derive the “dual” of our buyer
pseudo-game; but as our pseudo-game comprises n differ-
ent optimization problems, one for each buyer i € [n], in-
stead of just one dual, we have n duals. Moreover, because
any VE of a jointly-convex pseudo-game satisfies the cor-
responding KKT conditions with optimal Langrange mul-
tipliers A} = ... = A}, (Theorem 19 (Facchinei, Fischer,
and Piccialli 2009)), all n duals yield the same CE prices!
In other words, just as the dual of Eisenberg-Gale program
characterizes the CE prices of a Fisher market, the n duals of
our pseudo-game characterize the CE prices of an influence
Fisher market (satisfying Assumption 6).

Theorem 10. Let (G, U, b) be an influence Fisher market
satisfying Assumption 6, and let G be the corresponding
buyer pseudo-game G = (n, A, X, g, F). For each buyer
i € [n), fixing its neighbors’ allocations TN, ;) the dual of
i’s optimization problem,

max
z, ER™:x;i+>., ,, ei<1
P &R ki TS

bilog(ui (i, T, (i) 3)

is given by

i 7wy | 1= Dy | + bilog(ui(at whi) -
j€lm] k#i

4)

st @ € argmax  u(@, Ty, () (4a)
ziGRT:mi~p§bi

Goktas and Greenwald (2021) further show that the dual
of the Eisenberg-Gale program can be re-expressed as the
solution to the following zero-sum convex-concave Stackel-
berg game characterizes the CE of any CCH Fisher market:

ij+2blog ui(x;)) (5

jE€[m] i€n

min max
PERY X R ™ X -p<b

The leader in this game is a fictitious auctioneer (i.e.,
price setter), while the follower represents a set of buyers
who effectively play as a team. The objective function is the
sum of the auctioneer’s welfare (i.e., the sum of the prices)
and the buyers’ Nash social welfare. Goktas and Greenwald
also derive a first-order method that solves this game, which,
via the aforementioned interpretation, can be understood as
computing a competitive equilibrium of a Fisher market via
tatonnement.
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We argue that competitive equilibria in influence Fisher
markets can likewise be characterized via Stackelberg equi-
libria. This more general setting requires not just one, but
a system of n zero-sum convex-concave Stackelberg games
(Goktas and Greenwald 2021), one per buyer. In each game,
the leader once again is a fictitious auctioneer (i.e., price set-
ter), but the follower is just an individual buyer, not the set
of all buyers. Moreover, in each buyer’s Stackelberg game,
the objective function is the sum of the auctioneer’s revenue
(i.e., the sum of the good prices, each one discounted by the
supply available to buyer ¢ beyond what has been claimed by
the others) and the individual buyer’s utility. These n Stack-
elberg games are played simultaneously with the fictitious
auctioneer optimizing prices assuming all the buyers simul-
taneously best respond (i.e., play a Nash equilibrium), and
the buyers best respond to the auctioneer’s prices, given the
other buyers’ allocations.

Definition 11 (Buyer i’s Stackelberg Game). Let (G, U, b)
be an influence Fisher market. The corresponding Stackel-
berg game for buyer i is defined by

min max E p]
pERT , ERT p<b

1-— Z chj
ki

bi log(ui(fﬂn TNgi))) (©)

The following corollary follows from Theorems 7 and 10.
Corollary 12. (X*, p*) is a competitive equilibrium of an
influence CCH Fisher market (G, U, b) satisfying Assump-
tion 6 iff (x},p*) is a Stackelberg equilibrium in buyer i’s
Stackelberg game, for all buyers i € [n)].

Proof. Foralli € [n], (x}, p*) is a Stackelberg equilibrium
in buyer ¢’s Stackelberg game iff (], p*) solves

I'IHI%1 Z Pj Zxk] +b log(uz(wzawNG(z))) b
p€R+ .
j€lm] ki
st. oz € argmax (@i, Thg () Q)
z; ERY i - p<b;

By Theorem 10, p* is a solution to this bi-level optimiza-
tion problem (Equation (4)) iff =7 is a solution to buyer ¢’s
optimization problem (Equation (3)) in the buyer pseudo-
game corresponding to (G, U, b). Finally, by Theorem 7,
(X*, p*) is a competitive equilibrium of (G, U, b). O

Our Stackelberg game formulation of CE in influence
Fisher markets enables us to compute CE by solving a sys-
tem of buyer Stackelberg games: i.e., solving for a Stack-
elberg equilibrium in each of the buyer Stackelberg games
together with a Nash equilibrium among the buyers in the
system. Towards that end, for convenience, we define the
objective function for buyer i’s Stackelberg game:

ij

FE€[mM]

1— Zm,*cj +b; log(ui(wi,w}‘vc(i)))

ki
3

i(zi, p)



and the ith (fictional) auctioneer’s value function in
buyer ¢’s Stackelberg game:

Vi(p) :

max
x; ERT ;- p<b;

o | 1= w

j€[m] ki
+ b; log(ui (i, Ty, ;) 9

Moreover, while each buyer is playing a Stackelberg game
with its fictitious auctioneer, all buyers are also playing an
n-buyer simultaneous game with one another, in which each
buyer maximizes its objective function f;(x;, p) (Equa-
tion (8)), given the prices p set by the auctioneer and the
other buyers’ allocations. We can characterize a Nash equi-
librium of this n-buyer game as follows:

T € argmax Z pi|1-— Z:czj
x; €RT @ p<b; jE[m] k#i
+ b; log(ui (i, Ty, (7)) (10)
= argmax u;(x;, w}*vc(i)) (10a)

z; ERT ;- p<b;

As the first summand in Equation 10 and b; are constants
(i.e., they do not depend on x;), and log is a monotonic func-
tion, buyer ¢ simply seeks to maximize its utility subject to
its budget constraint.

Using a subdifferential envelope theorem (Goktas and
Greenwald 2021), we now derive the subgradient of each
auctioneer’s value function V; (Equation (9)).

Theorem 13. Given an influence CCH Fisher market
(G,U,b), the subdifferential of the ith auctioneer’s value
function in buyer i’s Stackelberg game (Equation (9)) at
given prices p is equal to the negative excess demand at p:
ie, OpVi(p) =1 =3 i &

Interestingly, this subgradient turns out to equal the neg-
ative excess demand in the market at the given prices. As
excess demand is an aggregate quantity, it is independent of
buyer ¢. Indeed, the subgradients of all the fictional auction-
eers are the same; so there is effectively just one auctioneer.

Based on this observation, we now present our Nash
Equilibrium (NE)-oracle gradient descent algorithm (Al-
gorithm 1), which follows the subgradient of the auction-
eer’s value function, assuming access to a NE-oracle. Given
prices p € R, this oracle returns a Nash equilibrium X * of
the n-buyer concave game specified by Equation (10). The
algorithm then runs subgradient descent on the auctioneer’s
value function. Overall, this approach corresponds to solv-
ing for a CE allocation and prices via tdtonnement, assuming
the NE oracle is exact. As NE-oracles are rarely exact, Algo-
rithm 1 assumes a NE-oracle that finds a Nash equilibrium
up to some approximation error 4.

Finally, under standard assumptions (i.e., Assumption 8§),
the auctioneer’s value function (Equation (9)) is con-
vex and {y-Lipschitz continuous in p with {y
maxperr, [|[VpV (P) |.> These properties imply that our

> Although V,,V (p) is not necessarily bounded at p = 0, we
can remedy this fact by shifting p by a small constant € > 0, albeit
losing some accuracy.
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Algorithm 1: NE-Oracle Tdtonnement For Influence Fisher
Markets
Inputs: G, U, b,p® n,d
Outputs: X*, p*
1: fort=1,...,7 do
2 Find X' € R with X’ - p(*=1) < b such that:

i foralli € [n], u;(a;, @y, ;) > wi(@i, Ty, ;) =0,
5. forany z; € R satisfying ; - pt= < b,
6:  Set X® =X’
— t
8: end for
9:

return X (7 p(™)

NE-oracle gradient descent algorithm converges to compet-
itive equilibrium at a rate of O(1/vT). We include a more
detailed statement of the following theorem in the appendix.

Theorem 14. Algorithm I (i.e., titonnement) converges to a
competitive equilibrium in any influence CCH Fisher market
(G, U, b) satisfying Assumption 8 at a rate of O(1/VT).

Remark 15. We can implement an approximate NE oracle
by computing the buyers’ equilibrium allocations via extra-
gradient ascent (Gorbunov, Loizou, and Gidel 2022), which
is guaranteed to converge to a Nash equilibrium at a rate
of O(Y1), as the n-buyer concave game defined by Equa-
tion (10) is monotone. This observation gives rise to Algo-
rithm 2 (see Appendix), which computes a competitive equi-
librium in influence CCH Fisher markets in polynomial time.

Experiments

We ran a series of experiments® to see how the empirical
convergence rates of Algorithm 1 compare to its theoreti-
cal guarantees under various utility structures. We consid-
ered three standard utility functions: linear, in which buy-
ers practice utilitarian social welfare in their neighborhoods;
Cobb-Douglas, in which practice Nash social welfare in
their neighborhoods; and Leontief, in which practice egal-
itarian social welfare in their neighborhoods. Each utility
structure endows the objective function (Equation (8)) and
the value functions (Equation (9)) with different smoothness
properties, which in turn varies the convergence properties
of our algorithms.

Let 8; € R™ be a vector of parameters that describes the
utility function f; : R — R of buyer i € [n]. We consider
the following (standard) utility functions: for all ¢ € [n],

1. Linear: u;(xi, Tng (i) = ZkeiuNc(i) fr(xk), where
fil®i) = 22 jepm Oy i
. Cobb-Douglas: wi(Ti, T Ng (i)
0:
[ieriyone ) fr(@e), where fi(:) = [1cpn ij
3. Leontief: ui(wi,wNG(i)) = minke{i}uNG(i) fk(il:k),

where f;(;) = min;ci,] z—”’
®We include a detailed description of our experimental setup in
the Appendix.
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Figure 1: In blue, we depict a trajectory of average value of the objective function across experiments (Equation (8)), for
Algorithm 1 with EG as the NE-oracle, in randomly initialized linear, Cobb-Douglas, and Leontief Fisher markets with social

influence. In red, we plot an arbitrary O(1/v/T) function.

Assuming any of these three utility functions, we can
solve for a Nash equilibrium among buyers by formulating
a monotone variational inequality problem, and solving it
via the extragradient method (EG) in O(1/7) iterations (Gor-
bunov, Loizou, and Gidel 2022). Then, by using EG as the
NE-oracle, we can efficiently compute an optimal X*(p)
for any given p, which yields Algorithm 2 (see Appendix),
a specific implementation of Algorithm 1.

Figure 1 depicts the empirical convergence of Algo-
rithm 1 with EG as the NE-oracle. We observe that con-
vergence is fastest in influence Fisher markets with Cobb-
Douglas utilities, followed by linear, and then Leontief. For
influence Fisher markets with Cobb-Douglas utilities, both
the value and the objective function are differentiable; in
fact, they are both twice continuously differentiable, making
them both Lipschitz-smooth. These factors combined seem
to lead to a faster convergence rate than O(1/vT). On the
other hand, for influence Fisher markets with linear utili-
ties, we seem to obtain a tight convergence rate of O(1/vT),
which seems plausible, as the value function is not differen-
tiable assuming linear utilities, and hence we are unlikely to
achieve a better convergence rate. Finally, influence Fisher
markets with Leontief utilities, in which the objective func-
tion is not differentiable, are the hardest markets for our
algorithm to solve. Nonetheless, we still observe a decent
convergence rate, one that appears only slightly slower than

O(/VT).

Conclusion

In this paper, we studied a special case of Arrow-Debreu
markets with social influence, which we call Fisher mar-
kets with social influence, or influence Fisher markets for
short. First, we extended known results on the existence of
competitive equilibrium in markets with social influence to a
larger more natural class of markets. Our proof proceeds by
reducing an influence Fisher market to an auctioneer-buyer
pseudo-game such that every generalized Nash equilibrium
in the pseudo-game is a competitive equilibrium of the in-
fluence Fisher market. The existence of generalized Nash
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equilibrium in pseudo-games thus implies the existence of
competitive equilibrium in influence Fisher markets.

We then introduced a monotone jointly convex buyer-
only pseudo-game as a generalization of the Eisenberg-
Gale program, whose variational equilibria correspond to
the competitive equilibria in influence Fisher markets. In
this pseudo-game, the duals of the individual buyers’ utility-
maximization problems constrained by the supply constraint
comprise a system of n simultaneously-played zero-sum
Stackelberg games, which simultaneously characterize the
competitive equilibrium prices of the influence Fisher mar-
ket. We then show that running gradient descent on the lead-
ers’/auctioneers’ value functions in these games is equiv-
alent to solving the market via a variant of tdtonnement,
where in addition to the auctioneers iteratively adjusting
prices, the buyers iteratively learn a Nash equilibrium in re-
sponse to these prices.

Our results pave the way for future work developing
methods to compute competitive equilibria in more general
types of influence markets beyond those considered in this
paper (Chen and Teng 2011), and other market models with
graphical structure, such as graphical economies (Kakade,
Kearns, and Ortiz 2004).

Acknowledgments
This work was supported by NSF Grant CMMI-1761546.

References

Arrow, K. J.; and Debreu, G. 1954. Existence of an equilib-
rium for a competitive economy. Econometrica: Journal of
the Econometric Society, 265-290.

Brainard, W. C.; Scarf, H. E.; et al. 2000. How to compute
equilibrium prices in 1891. Citeseer.

Chen, X.; and Deng, X. 2006. Settling the complex-
ity of two-player Nash equilibrium. In 2006 47th An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS’06),261-272. IEEE.



Chen, X.; and Teng, S.-H. 2009. Spending is not easier
than trading: on the computational equivalence of Fisher and
Arrow-Debreu equilibria. In Infernational Symposium on
Algorithms and Computation, 647—-656. Springer.

Chen, X.; and Teng, S.-H. 2011. A Complexity View of
Markets with Social Influence. ArXiv, abs/1009.0309.

Cheung, Y. K.; Cole, R.; and Devanur, N. 2013. Taton-
nement beyond Gross Substitutes? Gradient Descent to the
Rescue. In Proceedings of the Forty-Fifth Annual ACM
Symposium on Theory of Computing, STOC 13, 191-200.
New York, NY, USA: Association for Computing Machin-
ery. ISBN 9781450320290.

Cole, R.; and Tao, Y. 2019. Balancing the Robustness and
Convergence of Tatonnement. arXiv:1908.00844.

Daskalakis, C.; Goldberg, P. W.; and Papadimitriou, C. H.
2009. The complexity of computing a Nash equilibrium.
SIAM Journal on Computing, 39(1): 195-259.

Devanur, N. R.; Papadimitriou, C. H.; Saberi, A.; and Vazi-
rani, V. V. 2002. Market equilibrium via a primal-dual-type
algorithm. In The 43rd Annual IEEE Symposium on Foun-
dations of Computer Science, 2002. Proceedings., 389-395.

Devanur, N. R.; Papadimitriou, C. H.; Saberi, A.; and Vazi-
rani, V. V. 2008. Market equilibrium via a primal—-dual al-
gorithm for a convex program. Journal of the ACM (JACM),
55(5): 1-18.

Dreves, A. 2017. Computing all solutions of linear general-
ized Nash equilibrium problems. Mathematical Methods of
Operations Research, 85(2): 207-221.

Dreves, A.; Heusinger, A.; Kanzow, C.; and Fukushima, M.
2013. A Globalized Newton Method for the Computation
of Normalized Nash Equilibria. J. of Global Optimization,
56(2): 327-340.

Eisenberg, E.; and Gale, D. 1959. Consensus of subjective
probabilities: The pari-mutuel method. The Annals of Math-
ematical Statistics, 30(1): 165-168.

Facchinei, F.; Fischer, A.; and Piccialli, V. 2007. On gener-
alized Nash games and variational inequalities. Operations
Research Letters, 35(2): 159-164.

Facchinei, F.; Fischer, A.; and Piccialli, V. 2009. Gen-
eralized Nash equilibrium problems and Newton methods.
Mathematical Programming, 117(1): 163—-194.

Fischer, A.; Herrich, M.; Izmailov, A. F.; and Solodov, M. V.
2016. A globally convergent LP-Newton method. SIAM
Journal on Optimization, 26(4): 2012-2033.

Gao, Y.; and Kroer, C. 2020. First-Order Methods for Large-
Scale Market Equilibrium Computation. In Larochelle, H.;
Ranzato, M.; Hadsell, R.; Balcan, M.; and Lin, H., eds., Ad-
vances in Neural Information Processing Systems 33: An-

nual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual.
Goktas, D.; and Greenwald, A. 2021. Convex-Concave Min-
Max Stackelberg Games. Advances in Neural Information
Processing Systems, 34.

Goktas, D.; and Greenwald, A. 2022.

Minimization in Games and Beyond.
arXiv:2210.10207.

Exploitability
arXiv preprint

5908

Goktas, D.; Viqueira, E. A.; and Greenwald, A. 2021.
A Consumer-Theoretic Characterization of Fisher Market
Equilibria. In Web and Internet Economics: 17th Interna-
tional Conference, WINE 2021, Potsdam, Germany, Decem-
ber 14-17, 2021, Proceedings, 334-351. Berlin, Heidelberg:
Springer-Verlag. ISBN 978-3-030-94675-3.

Goktas, D.; Zhao, J.; and Greenwald, A. 2022. Robust
no-regret learning in min-max Stackelberg games. arXiv
preprint arXiv:2203.14126.

Gorbunov, E.; Loizou, N.; and Gidel, G. 2022. Extragradient
method: O (1/K) last-iterate convergence for monotone vari-
ational inequalities and connections with cocoercivity. In In-

ternational Conference on Artificial Intelligence and Statis-
tics, 366-402. PMLR.

Heusinger, A.; and Kanzow, C. 2009. Relaxation Methods
for Generalized Nash Equilibrium Problems with Inexact
Line Search. Journal of Optimization Theory and Applica-
tions, 143(1): 159-183.

Izmailov, A. F.; and Solodov, M. V. 2014. On error bounds
and Newton-type methods for generalized Nash equilibrium
problems. Computational Optimization and Applications,
59(1): 201-218.

Jain, K.; Vazirani, V. V;; and Ye, Y. 2005. Market equilib-
ria for homothetic, quasi-concave utilities and economies of
scale in production. In SODA, volume 5, 63-71.

Jordan, M. L; Lin, T.; and Zampetakis, M. 2023. First-
Order Algorithms for Nonlinear Generalized Nash Equilib-
rium Problems. Journal of Machine Learning Research,
24(38): 1-46.

Kakade, S. M.; Kearns, M.; and Ortiz, L. E. 2004. Graphical
Economics. In Annual Conference Computational Learning
Theory.

Krawczyk, J. B.; and Uryasev, S. 2000. Relaxation algo-
rithms to find Nash equilibria with economic applications.
Environmental Modeling & Assessment, 5(1): 63-73. This
revised version was published online in July 2006 with cor-
rections to the Cover Date.

Mas-Colell, A.; Whinston, M. D.; and Green, J. R.
1995. Microeconomic Theory. Number 9780195102680
in OUP Catalogue. Oxford University Press. ISBN AR-
RAY (0x4cf9c5¢0).

Nabetani, K.; Tseng, P.; and Fukushima, M. 2011.
Parametrized Variational Inequality Approaches to Gener-
alized Nash Equilibrium Problems with Shared Constraints.
Comput. Optim. Appl., 48(3): 423-452.

Nash, J. F. 1950. Equilibrium points in ji;nj/i;-person
games. Proceedings of the National Academy of Sciences,
36(1): 48—49.

Rosen, J. B. 1965. Existence and Uniqueness of Equilibrium

Points for Concave N-Person Games. Econometrica, 33(3):
520-534.

Ryu, E. K.; Yuan, K.; and Yin, W. 2019. ODE Analysis of
Stochastic Gradient Methods with Optimism and Anchoring
for Minimax Problems and GANSs. ArXiv, abs/1905.10899.

Schiro, D. A.; Pang, J.-S.; and Shanbhag, U. V. 2013. On
the solution of affine generalized Nash equilibrium problems



with shared constraints by Lemke’s method. Mathematical
Programming, 142(1-2): 1-46. This work was based on re-
search partially supported by the National Science Founda-
tion under grant CMMI-0969600 and the Department of En-
ergy under grant DOE DE-SC0003879.

Solodov, M.; and Svaiter, B. 1999. A Hybrid Approx-
imate Extragradient-Proximal Point Algorithm Using The
Enlargement Of A Maximal Monotone Operator. Set-Valued
Analysis, 7: 323-345.

Uryas’ev, S.; and Rubinstein, R. 1994. On relaxation algo-
rithms in computation of noncooperative equilibria. IEEE
Transactions on Automatic Control, 39(6): 1263-1267.

von Heusinger, A.; Kanzow, C.; and Fukushima, M. 2012.
Newton’s method for computing a normalized equilibrium
in the generalized Nash game through fixed point formula-
tion. Mathematical Programming, 132(1): 99-123.

Walras, L. 1896. Elements de I’economie politique pure, ou,
Theorie de la richesse sociale. F. Rouge.

5909





