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Abstract

This article presents our generative model for rhythm ac-
tion games together with applications in business operation.
Rhythm action games are video games in which the player is
challenged to issue commands at the right timings during a
music session. The timings are rendered in the chart, which
consists of visual symbols, called notes, flying through the
screen. We introduce our deep generative model, GenéLive!,
which outperforms the state-of-the-art model by taking into
account musical structures through beats and temporal scales.
Thanks to its favorable performance, GenéLive! was put into
operation at KLab Inc., a Japan-based video game devel-
oper, and reduced the business cost of chart generation by as
much as half. The application target included the phenome-
nal “Love Live!,” which has more than 10 million users across
Asia and beyond, and is one of the few rhythm action fran-
chises that has led the online-era of the genre. In this article,
we evaluate the generative performance of GenéLive! using
production datasets at KLab as well as open datasets for re-
producibility, while the model continues to operate in their
business. Our code and the model, tuned and trained using a
supercomputer, are publicly available.

1 Introduction
The success of deep generative models is rapidly spread-
ing over the entire fields of industry and academia. In to-
day’s game developments, deep generative models are start-
ing to help us create various assets including graphics,
sounds, character motions, conversations, landscapes, and
level designs. For instance, the Game Developers Confer-
ence 20211 held a special session named “Machine Learn-
ing Summit” to present various deep generative models used
in game products, such as for generating character motions
that match the content of conversations (Ding 2021) and for
generating 3D facial expression models of characters from
human face pictures (Li 2021).
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Figure 1: Love Live! School Idol Festival All Stars.2

Although deep generative models for rhythm actions have
been studied for a while – notably by Donahue, Lipton, and
McAuley (2017), they have been focusing on proof of con-
cept or personal hobby use, not yet being used in cutting-
edge commercial products. There thus remain questions:
what is the blocker to leverage chart generation models in
the game business, and how should we overcome it?

The present article reveals a key remaining problem,
which is musical structure recognition. Indeed, we consid-
ered features such as beats and temporal scales with our
model (see section 2.1 for more on musical structures).
While existing models have not had components dedicated
for these concepts, our preset model has them, which pro-
cess beats and multiple temporal scales. Those correspond
to our beat guide and multi-scale conv-stack, respectively.

The beat guide is an extraordinary technique in the sense
that it can be computed for any input audio and straightfor-
wardly. Somewhat surprisingly, it had been overlooked by
existing works. The multi-scale conv-stack is incorporated
in order to capture musical features of different time scales,
like repeats and notes of various lengths.

We have included a thorough evaluation of this improved
model, employing a supercomputer and user feedback from
our application in the gaming industry operation with a busi-
ness company. The benchmarks show that our improved
model outperformed the state-of-the-art model known as
the Dance Dance Convolution; DDC (Donahue, Lipton, and
McAuley 2017). From the business feedback (section 6), we
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Figure 2: KLab’s chart production workflow before and after
this work.
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Figure 3: Data processing in the generative model. The
present article focuses on the onset model.

learned that the model is capable of replacing the manual la-
bor of generating the first drafts (this is practical, since game
artists have relied on manager-level decisions to fine-tune
their first drafts anyway). Our model, named GenéLive!, re-
ducing the business cost by half, will stay in business oper-
ation for the foreseeable future.

To conduct the application study, we worked with the
game artists team in KLab Inc., a Japan-based video
game developer (which employs also some of the authors).
The company has by today operated three rhythm action
game titles online. A particularly successful title, “Love
Live! School Idol Festival All Stars,” or simply “Love
Live! All Stars” (fig. 1), has been released in 6 languages
and been played worldwide while under KLab’s operation,
acquiring more than 10 million users. Today, we see a wide
range of competitive games with comparable impacts, which
makes this work relevant to a larger audience.

Specifically, our target task is the generation of charts,
which instruct the player to tap or flick buttons at specified

moments, the defining challenge of rhythm action games.
These buttons are known as notes as they fly through the
screen forming a spatial pattern resembling a musical score.
The audio record playing in the background is commonly
referred to as a song.

A chart generation model consists of two submodels: the
onset, which generates the timing of a note, and the sym,
which decides the user action type (like a tap or flick). As
deciding the timing is the bottleneck of KLab’s workflow
(detailed in section 2.3), this article focuses on presenting
our onset model.

The present work has the following contributions:
• We propose a deep generative model for chart creation,

which achieved its business-quality performance by im-
proving the state-of-the-art model DDC (Donahue, Lip-
ton, and McAuley 2017) by incorporating two novel
techniques: the beat guide and multi-scale conv-stack.

• Each of our improvements enhances the performance
for all difficulty modes in multiple game titles. The im-
provements were effective particularly for easier diffi-
culty modes, overcoming a commonly known weak point
of the DDC.

• Incorporated into the workflow of KLab’s rhythm ac-
tion titles, our model halved the chart delivery time. The
workflow is usable to rhythm actions in general – the re-
sults verified the versatility also for open datasets from
third parties, Stepmania.

• Our PyTorch-based source code and the trained mod-
els, found after extensive hyperparameter tuning (over
80,000 GPU hours of Tesla P100 on a supercomputer),
are publicly available.3

2 Problem Definition
2.1 Musical Structure
Most songs used in rhythm action games have a typical mu-
sical structure that is composed of temporally hierarchical
performance patterns. The percussion keeps a steady beat,
creating a rhythmic pattern in a bar. A series of such bars, to-
gether with phrases of melody instruments or vocals, forms
musical sections such as an intro, verse, bridge, chorus, and
outro. For example, the song Sweet Eyes4 in “Love Live! All
Stars” has 60 bars that organize the following musical struc-
ture: an 8-bar intro, 16-bar verse, 10-bar bridge, 18-bar cho-
rus, and 8-bar outro, each of which consists of repetitions of
1-bar to 4-bar phrases.

Artists at KLab confirm that this sort of musical struc-
ture is common in almost all songs in their rhythm action
games and also a key feature of their chart creation. More
specifically, the artists tend to put identical note patterns on
the above-mentioned repetitions of a phrase. See appendix H
for more details on the musical structure of Sweet Eyes and
how the artists put notes on such a structure.

3All appendices are available on https://github.com/KLab/
AAAI-23.6040.

4The song is available on https://youtu.be/MpAUJ36fq3g, and
its portion from intro to first chorus (time range 0:16–2:07) is
played in our rhythm game.
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To learn the temporal patterns with our generative model,
we would thus be required to consider multiple time scales.
This was, in fact, absent in the network design of the DDC.
To see how we designed our model to capture these fea-
tures, see the explanations of the beat guide (section 4.3)
and multi-scale conv-stack (section 4.4).

2.2 Game Difficulties

A song will be assigned charts of various difficulty modes
ranging from Beginner, Intermediate, Advanced, and Expert
to Challenge, in increasing order. In our preliminary ex-
periments, the Dance Dance Convolution (DDC) (Donahue,
Lipton, and McAuley 2017) generated charts for higher dif-
ficulty game modes at a human-competitive quality. (Find
more related work in section 7.) However, the generation
of low-difficulty charts had room for improvement (as Don-
ahue, Lipton, and McAuley (2017) themselves pointed out).
As our primary target was easier modes, this was a signifi-
cant challenge.

2.3 Challenges in Business Application

Leading rhythm action titles today tend to take the form of
one piece of a large entertainment franchise, like KLab’s
“Love Live! All Stars” does of “Love Live!.” The company’s
role is to operate the mobile app, while songs are delivered
by other participants of the franchise. After the first release
of the app, KLab continued to contribute by offering new
playable songs. This is why a significant cost for the com-
pany’s business is posed by chart generation.

The company’s workflow (fig. 2) does not demand a fully-
automated chart generation, since KLab’s artists need to ex-
periment with different variations of candidate products, em-
ploying their professional skills – this is a high-level deci-
sion critical for the success of the franchise. We thus focus
on semi-automation, which was to generate the first drafts
of the charts (see fig. 3) so the artists can be freed from this
low-skill labor.

To create a chart, artists repeatedly listen to the whole of
a song to understand its musical structure as set by business
partners. During this process, they ponder how to place hun-
dreds of notes to be tapped by the player, to eventually craft
the chart through trial and error. This first draft does not re-
quire too much expert skill, although it had been causing as
much as half the cost in the workflow before our model was
in operation.

The charts are then modified so that the actions are con-
nected with emotions, like imitating the dance motion ren-
dered in the background or flicking to a specific direction
relating to the lyrics. It may be revised further to enhance
the gameplay experience with more focused consideration
of the overall game design.

In essence, the first draft of the chart generation is crafted
only from the input audio, while the enhancements are ap-
plied from information harder to compile into numerical
data. We thus target the auto-generation of the first drafts.

3 Datasets
3.1 Datasets Acquired
We acquired songs and charts used in “Love Live! School
Idol Festival All Stars” (in short “Love Live! All Stars”)
and “Utano Princesama Shining Live” (“Utapri”) operated
by KLab. Both the songs and charts are provided by mul-
tiple artists. In addition, we use openly accessible songs
and charts from “Fraxtile” and “In the groove” in the open
source game “Stepmania,” which were used also in the prior
work (Donahue, Lipton, and McAuley 2017). The number of
songs were 163, 140, 90, and 133 for “Love Live! All Stars,”
“Utapri,” “Fraxtile,” and “In the groove,” respectively. There
were typically 4 game difficulties for “Love Live! All Stars”
and 5 for the rest, each difficulty contributing to one chart.
See appendix A for details on the datasets.

3.2 Data Augmentation
We augmented the audio of each song in the datasets. The
audio was first converted to a Mel spectrogram, which is
a 2D array of time-frequency bins. The spectrogram was
then augmented via a series of transformations adopted from
(Park et al. 2019a), resulting in an augmented Mel spectro-
gram, which is an input to generative models.

We applied the following transformations in the presented
order (see appendix G for details): the frequency shift shifts
all frequency bins by a random amount; frequency mask fills
some frequency bins with the mean value; time mask fills
some time bins with mean value; high frequency mask also
fills some frequency bins but such frequencies must be above
a predetermined threshold; frequency flip reverses the order
of frequency bins; white noise adds a Gaussian noise to all
time and frequency bins; time stretch stretches all time bins.

The onset labels, which specify the existence of notes in
the chart, were augmented by fluctuating the labels (Liang,
Li, and Ikeda 2019). We also augment the beat information
as explained in section 4.3.

4 GenéLive!
4.1 Audio Feature Extraction
Following Donahue, Lipton, and McAuley (2017), our
model uses the Short-Time Fourier Transform (STFT) and
Mel spectrogram of the audio. The STFT allows the model
to capture features in the frequency domain. The window
length and stride of STFT were both set to be 32 ms. The
audio is sliced into chunks of 20 seconds.

The Mel spectrogram can capture perceptually relevant
information in the audio data, and is a standard treatment
in speech processing. It is also used in the DDC (Don-
ahue, Lipton, and McAuley 2017). Following Hawthorne
et al., Hawthorne et al. (2018), we set the number of the
Mel bands to 229. We set the lowest frequency to 0 kHz
and the highest to 16 kHz (0 and 3575 in the Mel scale).
Accordingly, 229 evenly distributed triangular filters in the
Mel scale are applied. We denote a Mel spectrogram by
S(t, f) ∈ R, where t = 1, . . . , T denotes the tth time bin,
and f = 1, . . . , F denotes the f th frequency bin. We used
T = 20,000/32 = 625 and F = 229 as mentioned above.
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Figure 4: Overall architecture of our network.

4.2 Base Model
As shown in fig. 4, our base model follows the DDC (Don-
ahue, Lipton, and McAuley 2017). The Mel spectrogram
S(t, f) ∈ R is processed through the CNN layers to extract
audio features A(t, f) ∈ R. The audio features are concate-
nated with the game difficulty flag D(t) = const. of 10 (Be-
ginner), 20 (Intermediate), . . . , 50 (Challenge) and the beat
guide G(t) ∈ {0, 1, 2}. These two are fed to the BiLSTM
layers (Graves and Schmidhuber 2005) to generate the chart
C(t) ∈ [0, 1].5 Our improvements are explained in sections
4.3 and 4.4. Find more details of the model architecture and
the corresponding parameters in appendix C.

Convolution Stack The main task for the convolution
stack (or conv-stack) is to extract features from the Mel
spectrogram using the CNN layers. The conv-stack com-
prises a standard CNN layer with batch normalization, a
max-pooling layer, and a dropout layer. The activation func-
tion is ReLU. Finally, to regularize the output, we use an
average-pooling layer.

4.3 Beat Guide
Although it had been rare to consider the positions of beats
in the model, the beat is indeed crucial to the generation of
the charts, as it is used by artists to evoke emotions. The
beat guide is a trinary array whose length is the same as the
number of time frames of the input audio. The first beat of
each bar is indicated by 2, the other beats by 1, and non-beat
frames by 0 (fig. 5). Each element indicates the existence of
a beat at that frame. It is calculated from the BPM and time
signature in the song metadata. The beat guide is fed as an
input to the BiLSTM layers.

Note Timings Figure 6 shows how frequently each note
timing appears in KLab’s charts. The 4th note accounts for
70–90% of a chart, and the 8th takes up 10–20%; the 12th
and 16th are marginal. This fact supports the effectiveness
of the beat guide, as it provides hints for placing 4th notes.

5We employed BiLSTM based on our preliminary experiments.
More recent architectures, including Transformer-XL (Dai et al.
2019), performed worse than BiLSTM for our task.
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Figure 5: Beat guide in 4/4 time signature.

Figure 6: Note timings in “Love Live! All Stars.”

It also hints that the multi-scale conv-stack’s temporal max-
pooling layers would be able to extract temporal dependen-
cies of the 4th and 8th note scales.

Data Augmentation for Beat Guide Since the proposed
model requires a beat guide as an extra input accompanied
with a Mel spectrogram, it is also augmented. Beat mask
drops beats in the section with given probability. The aug-
mented guide is

G(t) = δtG0(t), (1)

where G0(t) ∈ {0, 1, 2} is the original beat guide at time
step t = 1, . . . , T , and δt ∼ B(1, p) is a random number
drawn for each t from the binomial distribution with p be-
ing the probability of dropping a beat. The value of p was
optimized to 0.123 by random search in the range [0.1, 0.3].
Finally, our model uses (S, G) as an input, where S is an
augmented Mel spectrogram defined in eq. (9) in appendix.

4.4 Multi-Scale Conv-Stack
One key difference between the DDC and the present model
is the structure of the conv-stack. In the model used in DDC,
the convolution layers are applied repeatedly to the input of
Mel spectrogram, whereas the max-pooling reduces the ma-
trix size only along the frequency axis and not time (fig. 7a).

The present model uses four conv-stacks with different
temporal resolutions. The stack with the highest resolution
(stack 1) does not perform max-pooling along the tempo-
ral dimension. The process is the same as the conv-stack of
the DDC. In stacks 2, 3, and 4, max-pooling is performed
along the time dimension, and the length is reduced to 1/16,
1/64, and 1/128, respectively. Finally, up-sampling is ap-
plied to stacks 2, 3, and 4, and the four matrices, which
have the same length in the temporal dimension, are concate-
nated (fig. 7b). By doing so, we expect our model to extract
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(a) DDC (b) GenéLive!

Figure 7: Conv-stack architectures, previous vs. present.

not only short-term features (e.g., the attack of the percus-
sion) but also long-term features (e.g., rhythm patterns and
melodic phrases).

Note that unlike generic 2D multi-scale convolutions such
as GoogLeNet (Szegedy et al. 2015), our temporal max-
pooling does multi-scale pattern extraction explicitly and
only along the time axis. Existing networks can be distracted
by multi-scale patterns in frequency arisen by instruments
such as piano or trumpet. More important, as agreed with
our artists, is multi-scale temporal patterns.

The results of taking a combination of different conv-
stacks are shown in fig. 8.

Effectiveness of Multi-Scale Analysis Figure 8 shows the
effectiveness of multi-scale conv-stacks with different kernel
sizes for max-pooling. The size 32 ms is the baseline chosen
also by the DDC (without multi-scaling).

For candidates of max-pooling kernel size, we choose
lengths with regular intervals in logarithmic scale to be mu-
sically meaningful length: 256 ms, 512 ms, 1024 ms, 2048
ms, and 4096 ms, each of which corresponds to the 8th note,
4th note, 2nd note, one bar, and two bars at 120 beats per
minute (BPM) in 4/4 time signature.6

We can see that the 8th note (256 ms) typically worsens
the learning compared to 32 ms. In this experiment combin-
ing 4 scales at maximum, the best one combines 32 ms, 512
ms (4th note), 2048 ms (one bar), and 4096 ms (two bars).

5 Experiments
For evaluation, we conducted a few experiments, while the
business feedback is found in section 6. We took the ablation
approach for evaluation, in which the GenéLive! model with

6The BPM 120 is the rough average in our data set (71 min / 230
max). The performance is insensitive enough to this factor (fig. 12
in appendix F).

all the presented methods applied was compared against
models lacking some single component each.

As the characteristics of charts differ between different
game titles, we conducted experiments separately for each
game title. To spare pages, the text focuses on the results
of the “Love Live! All Stars” dataset. With other datasets
including another private dataset for “Utapri” in KLab and
open datasets for Stepmania, the model exhibits similar re-
sults, confirming the genericity of the performance (See ap-
pendix B).

5.1 Training Methodology

We used a supercomputer to train the model with a vast
range of hyperparameter configurations. In each training,
we used the BCE as the loss function. Model parameters
were updated using the Adam optimizer (Kingma and Ba
2014). The cosine annealing scheduler (Loshchilov and Hut-
ter 2017) tuned the learning rate for better convergence. Dur-
ing the training, the dropout strategy was employed in both
the fully connected layer and BiLSTM layer.

Tuning Hyperparameters The supercomputer let us con-
duct a grid search to determine the optimal combination of
the following hyperparameters: the learning rate, ηmin in the
cosine annealing scheduler (Loshchilov and Hutter 2017),
the choice of conv-stack, the width and scale of fuzzy label
(Liang, Li, and Ikeda 2019), the dropout rate in the linear
layer, the dropout rate in the RNN layer, the number of RNN
layers, and the weighting factor in BCE loss.

To compare two sets of hyperparameters, we looked at
the median of F1-scorem (as explained in section 5.1) for the
validation dataset.

To see hyperparameter values used in the experiment and
candidates of grid-search, see table 14 in appendix E.
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Figure 8: Experimenting with multi-scale temporal analy-
sis. The results are sorted for the median of the F1-scorem

in descending order along the horizontal axis. The error bar
shows 1σ of results. The baseline is a single max-pooling
of kernel size 32 ms (placed in the middle of the horizontal
axis) that was employed in the DDC model. There is a sta-
tistical significance in our multi-scale model (32, 512, 2048,
4096) improving the baseline (32) (Wilcoxon rank sum test,
W = 1703.5, p < 0.01).

Computing environment We conducted the experiments
using our supercomputer’s NVIDIA Tesla P100 GPUs. We
employed 64 of these GPUs to do the grid search in
parallel. The implementation is based on pytorch, and
to pre-process audio data librosa was employed. See
conda.yaml file in the supplementary material for the
complete list of software dependencies.

Data splitting The dataset was split into 8 : 1 : 1 for
training, evaluation, and testing sets with holdout employed.
The dataset was first split into a few subgroups with similar
BPM. The stratified K-folds cross-validator was then used
to re-split each dataset into three.

Our model has no structural restriction on the time length
of the input. In practice, however, a whole song cannot be
supplied due to memory capacity constraints and the differ-
ence in the duration of songs. Thus, the audio, as well as the
target, are cut into short chunks. Since the chunk length has
room for exploration, we treated it as hyperparameters.

Metrics Following Donahue, Lipton, and McAuley
(2017), we use the F1-score as the evaluation metric.

Firstly, the F1-score is calculated by averaging the results
for each chart. We denoted the metric as F1-scorec. Charts
with different difficulty modes for the same song are consid-
ered distinct. Secondly, the score, F1-scorem, is calculated
by micro averaging. We considered the predicted note to
be true positive if the note is placed within ±50 ms around
the ground truth. This is small enough for the shortest note
(16th, which means 128 ms in case of 120 BPM) in our

datasets.
We calculated the F1-score for the test datasets using the

median out of 10 experiments. For each of the 10, evaluation
metrics were calculated for every step. the value with the
highest performance for each evaluation metric was adopted
as the performance of the model.

5.2 Results
Although a detailed discussion is to be found in sec-
tion 5.3, we can see that our model consistently outper-
formed the state-of-the-art model (Donahue, Lipton, and
McAuley 2017) as shown in table 1:

The F1-score is explained in section 5.1. Although the
metric is calculated for separate difficulties, the model was
trained by being fed charts from all difficulties.

While we have already seen the results indicating the ef-
fectiveness of the multi-scale conv-stack in fig. 8, the same
for the beat guide is shown in fig. 9.

Our decision to train a single model using charts from all
difficulty modes is justified by the results in fig. 10, which is
a comparison against training different models for different
difficulty modes.

5.3 Discussion
Beat Guide Figure 9 shows that removing the beat guide
significantly degraded the performance of the chart predic-
tion task. Compared with the other two experiments, the beat
guide is the most significant element in the present model.

The model’s CNN seems to value locations where the
sound is loud. If the beat guide is absent they tend to fail at
other rhythm patterns like a repeating sequence with moder-
ate volume.

Comparing the results for different difficulty modes, we
can see that the effect of adding the beat guide to the input
was larger for the easier difficulty modes. In general, charts
of lower difficulty modes tended to consist of rhythms eas-
ier to capture. Keeping the beat of the song is one of the
simplest rhythms, so in charts of lower difficulty modes, the
note is often placed at the beat positions as shown in fig. 6. In
turn, the easier difficulty mode of a chart, the more emphasis
is placed on periodical rhythms, which CNN-based models
are not good at, than the sound played in the music, and this
may be the reason why the performance of the note gener-
ation task with easier difficulty modes is lower in previous
studies such as (Donahue, Lipton, and McAuley 2017). Our
experiments show that adding the beat guide to the input is
a key to overcoming this weak point.

Multi-Scale Conv-Stack Figure 8 shows that the combi-
nation of multiple convolution stacks with appropriate max-
pooling kernel size improves the performance, compared to
the original conv-stack (denoted by 32 ms in the figure). This
is the effect of the model being able to “look at” the time di-
rection not only in the BiLSTM layer but also in the CNN
layer by introducing time-axis max-pooling. The best com-
bination of max-pooling kernel sizes is (32 ms, 512 ms, 2048
ms, 4096 ms). Specifically, compared to the original conv-
stack, the stack 2 of our multi-scale conv-stack is able to take
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F1-scorem (mean ± SD) p-value
Difficulty GenéLive! DDC

Beginner 0.8664± 0.0036 0.7839± 0.0081 7.85× 10−5

Intermediate 0.7950± 0.0051 0.7457± 0.0039 7.85× 10−5

Advanced 0.7875± 0.0045 0.7491± 0.0044 7.85× 10−5

Expert 0.7955± 0.0038 0.7603± 0.0059 7.85× 10−5

all 0.8019± 0.0026 0.7514± 0.0046 7.85× 10−5

Table 1: Chart generation quality of the present model (GenéLive!) and the state-of-the-art (DDC) over 10 trials. Since in 10
trials the worst F1-score of the proposed model is better than the best one of DDC in every difficulty mode, the one-sided
Wilcoxon rank-sum test results in the possible smallest (identical) p-value, indicating that the proposed method statistically
significantly outperforms over DDC.
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Figure 9: The beat guide enhanced the performance.

into account 16 times coarser information in the time direc-
tion (as discussed in section 4.4). Since the time resolution
is 32 ms in our case (as explained in section 4.1), the sec-
ond stack can consider 512 ms forward or backward, which
corresponds to the length of a 4th note at 120 BPM. Simi-
larly, our stack 3 sees 64 times coarser information, which
amounts to one musical bar length at 120 BPM in 4/4 time
signature, and our stack 4 sees 128 times coarser informa-
tion, which amounts to two musical bar length.

Training With All Difficulties Before this work, it had
been understood that the DDC was poor at generating
charts for easier difficulties (Donahue, Lipton, and McAuley
2017), yet it had been unclear what kind of improvements
can be effective. That is to ask, is it better to let a single
model instance consume charts having multiple difficulties
or, instead, multiple instances consume them, where each
instance is specialized for a certain difficulty mode? On one
hand, the similarity between charts from different difficul-
ties for the same song could work as a hint. On the other
hand, however, the network might be confused by the same
song resulting in different charts. Another question regard-
ing the poor performance of the DDC on easier difficulties

is whether the fundamentals of its design had a flaw in the
first place.

Figure 10 shows that when all difficulty modes were
trained with a single model, the performance improved. This
result implies the effectiveness of the CNN for learning
charts of varying difficulties. This work is the first to re-
veal that learning different difficulties with a single model
instance in fact outperforms the other. The same experiments
of ours also indicate that the DDC’s approach, which we
adapted, indeed is capable of predicting easy difficulties, al-
though our model had received improvements.

What is the reason behind, though? In the next paragraph,
we show our analysis that indicates a strong inclusion rela-
tion between charts for different difficulties but of the same
song, which we suspect is the reason.

Inclusion Relation Between Difficulties We view a chart
as a bit string representing the existence of a tap for frames
in a quantized time. We define the inclusion rate as

I(s, t) =
‖s⊗ t‖
‖s‖

(2)

for strings s and t, where⊗ is the bit-wise AND product, and
‖ ·‖ is the number of 1s in a string. Inclusion rates (averaged
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Figure 10: Performance with training using datasets from all difficulties vs a single difficulty.

t s Beginner Intermediate Advanced Expert

Beginner 100% 64.7% 49.8% 39.0%
Intermed. 97.4% 100% 76.2% 59.4%
Advanced 97.4 % 98.8 % 100% 73.5%

Expert 98.6 % 98.2% 98.6% 100%

Table 2: Inclusion rates in “Love Live! All Starts.”

over songs) in table 2 show that different difficulty modes
actually share a large portion of notes. Especially, more than
97% of notes in an easier chart appears also in a harder one,
indicating that training with easier charts contributes to the
prediction of harder ones. This pattern is also found in all
datasets we targeted (see appendix A), and thus seems uni-
versal.

6 Business Feedback
Since the first deployment of this chart generation system
(July 2020), the artist team has used the system to create
charts for all 110 songs released in “Love Live! All Stars”
(82 songs had been released before the period). The present
collaboration cut down the chart creation time for the artist
team by half. About 20 hours of work are saved per song,
whereas it used to take about 40 hours per song. For the
Beginner and Intermediate difficulty modes, the charts gen-
erated by our model can be used with minor modifications.
The artist team uses our model also for the more difficult
game modes.

Artists employed the timing for notes generated by the
model mostly without alteration. Figure 11 compares the
first 8 bars of an automatically generated chart with the re-
leased version which was manually modified from the gen-
erated one. Of the 22 auto-generated notes, 21 were accepted
as they were, and only one was not used, while three notes
were added. Such a high-quality chart is mainly brought by

Figure 11: A generated chart for the Advanced difficulty
mode and its manually-modified version (the first 8 bars).

our model’s novel ability to recognize musical structures.
As you can listen to the song on YouTube7, this 8-bar intro
repeats a 2-bar phrase where the phrase is altered every rep-
etition. Our model reflected such an altered repetition of a
2-bar pattern in the generated chart (fig. 11). This is true for
the whole of the song, see fig. 13 in appendix H.

7 Related Work
Early chart generation tended to use a rule-based algorithm
(O’Keeffe 2003) or genetic algorithm (Nogaj 2005). The
DDC by Donahue, Lipton, and McAuley (2017) improved
the quality by employing the deep neural network. Lin, Xiao,
and Riedl (2019) used a multilayer feed-forward network to
generate charts, synchronizing the notes with instrumental
sounds. The model by Tsujino and Yamanishi (2018) alters
the difficulty of an input chart – this work instead generates

7The song is available on https://youtu.be/MpAUJ36fq3g, and
its portion from intro to first chorus (time range 0:16–2:07) is
played in our rhythm game.
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the first draft chart (without an input chart).
Onset detection based on neural networks is studied

for speech recognition, where BiLSTMs (Eyben et al.
2010), CNN approach (Schlüter and Böck 2014), and multi-
resolution feature representation are established. Schlüter
and Böck (2014) demonstrated a CNN-based approach.
Likewise, music information retrieval has also seen benefits
of neural networks (Humphrey and Bello 2012; Boulanger-
Lewandowski, Bengio, and Vincent 2013; Ullrich, Schlüter,
and Grill 2014).

In addition, various deep generative models are used to
create game content and assets. Procedural content genera-
tion via machine learning, a model for generating game con-
tent using trained machine learning models, can generate a
variety of game content such as items, maps, and rules (Sum-
merville et al. 2018; Guzdial et al. 2018). Hastings, Guha,
and Stanley (2009) proposed an automatic content genera-
tion that learns players’ preferences based on their past play
history and generates new graphical and game content dur-
ing gameplay. In addition, Green et al. (2021) proposed a
framework generating tutorial text by discovering whether
it is effective to win or lose a game. Tilson and Gelowitz
(2019) investigated generating image assets for games using
unsupervised learning such as GAN and VAE.

Volz et al. (2018) have generated various levels of Super
Mario Bros. using GAN. Park et al. (2019b) used GAN to
generate levels for a computer science educational game.

There is a method to synthesize high-quality, realistic full-
body animations of 3D characters using deep learning (Ding
2021). It is possible to express emotions and generate fa-
cial expressions and movements corresponding to the NPC’s
personality and profession. A model has been developed to
create a face mesh from a photograph of a face and generate
a face model of a 3D character (Li 2021).

In addition, there are examples of successful use of deep
learning to reduce man-hours in the game development pro-
cess, such as the development of AI for mini-games in
MMORPGs by applying AlphaZero (Lei 2021) and the im-
provement of game frame rates by applying deep super-
resolution in the time direction (Edelsten 2021).

8 Conclusions
We assisted in chart creation at KLab Inc. by establishing a
new deep generative model, while the model ended up being
in fact versatile for more generic datasets. The model suc-
cessfully generated charts for easier difficulty modes, fill-
ing the quality gap between easier and harder game modes,
which was a challenge that had been admitted by the au-
thors of the state-of-the-art model DDC. This was achieved
by utilizing two techniques, (i) the beat guide and (ii) the
multi-scale conv-stack. KLab successfully cut the business
cost by half.
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