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Abstract

Data augmentation with Mixup has been proven an effec-
tive method to regularize the current deep neural networks.
Mixup generates virtual samples and corresponding labels si-
multaneously by linear interpolation. However, the one-stage
generation paradigm and the use of linear interpolation have
two defects: (1) The label of the generated sample is sim-
ply combined from the labels of the original sample pairs
without reasonable judgment, resulting in ambiguous labels.
(2) Linear combination significantly restricts the sampling
space for generating samples. To address these issues, we
propose a novel and effective augmentation method, Global
Mixup, based on global clustering relationships. Specifically,
we transform the previous one-stage augmentation process
into two-stage by decoupling the process of generating vir-
tual samples from the labeling. And for the labels of the gen-
erated samples, relabeling is performed based on clustering
by calculating the global relationships of the generated sam-
ples. Furthermore, we are no longer restricted to linear re-
lationships, which allows us to generate more reliable vir-
tual samples in a larger sampling space. Extensive experi-
ments for CNN, LSTM, and BERT on five tasks show that
Global Mixup outperforms previous baselines. Further exper-
iments also demonstrate the advantage of Global Mixup in
low-resource scenarios.

Introduction

Although deep neural networks have achieved remarkable
results in computer vision (Krizhevsky, Sutskever, and Hin-
ton 2012), speech recognition (Hinton et al. 2012), and nat-
ural language processing (NLP), they are prone to errors
and poor generalization when training data is insufficient.
Data augmentation can effectively mitigate this problem by
generating new samples transformed from the existing train-
ing set. In NLP, data augmentation methods mainly consist
of rule-based and generation-based approaches. Rule-based
methods typically rely on manually designed paradigms,
such as synonym replacement (Zhang, Zhao, and LeCun
2015), random noise injection, deletion, and insertion (Wei
and Zou 2019). Generation-based methods leverage trained
deep models, such as back-translation and pre-trained mod-
els, to automatically generate new samples. Recently pro-
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Figure 1: Ilustration of the two-stage paradigm of Global
Mixup, a new paradigm for data augmentation.

posed Mixup (Zhang et al. 2018) and its variants (Zhang, Yu,
and Zhang 2020; Verma et al. 2019; Guo, Mao, and Zhang
2019) have further improved the efficiency and robustness
of models by using features such as linear interpolation to
generate more virtual samples in the feature space.

While achieving promising results, Mixup still has limi-
tations. First, the labels of the generated samples with data
augmentation were directly inherited from the labels of the
original samples, and the gaps between the generated sam-
ple features and the original samples were not adequately
represented, which have lead to errors in the labels of the
generated samples. Second, The restriction of the data gen-
erated by Mixup is within the linearity and only two sam-
ples’ similarity is considered, which results in the ambiguity
of Mixup.

To address these problems, we propose Global Mixup,
a data augmentation method that eliminates ambiguity by
decoupling the sample generation phase from the label de-
termination phase and relabeling by clustering relationships
of samples. Specifically, Global Mixup separates the sam-
ple generation and label determination for data augmenta-
tion into two stages, and relabels potentially ambiguous la-
bels by clustering. The generated samples will not directly
inherit the labels of the original samples or sample pairs.
For the ambiguous labeling problem of the generated sam-



ples, Global Mixup labels the generated sample based on
its global relationships with the original set of samples, so
that the labels of the generated samples reflect the cluster-
ing relationship with the original samples. Thus, the gener-
ated samples are uniquely labeled through global relation-
ships, mitigating the ambiguity inherent in Mixup, which
only considers local linear relationships. Then, for the dis-
tribution problem of the generated samples, because Global
Mixup’s sample generation and labeling processes are sep-
arate, the generated data of Global Mixup can be obtained
from broader distributions to scale the training data more ef-
ficiently. Figure 1 shows the process of Global Mixup, it’s
a new paradigm for data augmentation, through split sample
generation and label determination, the generated samples
will get more accurate labels which can reduce the error op-
timization during model training.

Experiments on the classical models and pre-trained mod-
els show that Global Mixup significantly outperforms the
rule-based methods and Mixup (Guo, Mao, and Zhang 2019)
on different text classification tasks. The advantage of this
method is more evident in low-resource scenarios, using
23% of the training data on SST-1 and 36% of the train-
ing data on TREC exceeds the accuracy of baseline with all
training data.

In a nutshell, our main contributions are three-fold:

(1) To the best of our knowledge, we were the first to split
sample generation and label determination into two separate
phases in data augmentation and obtain more accurate labels
for the generated samples based on clustering relationships.

(2) We present a novel data augmentation approach
termed Global Mixup, which implies stable labels to the vir-
tual samples and avoids the emergence of ambiguous, over-
confident labels in linear interpolation methods. Moreover,
theoretically, because of the separation of the sample gen-
eration and labeling processes, Global Mixup is capable of
labeling arbitrary samples, not limited to those inside convex
combinations.

(3) Extensive experiments on five datasets and three mod-
els (including pre-trained models) demonstrate the effective-
ness of Global Mixup, especially in few-shot scenarios.

Related Work

Data augmentation has become a prevalent research topic
in recent years to solve the data scarcity problem. Auto-
matic data augmentation has improved significant perfor-
mance on various tasks such as computer vision (Simard
et al. 1998; Zhang, Zhao, and LeCun 2015; Liu et al. 2022)
and speech tasks (Hinton et al. 2012). However, only rare
research exploits data augmentation in natural language pro-
cessing tasks because of the high complexity of language
and words’ discreteness. Dominant data augmentation and
Interpolation-based data augmentation are two main kinds
of methods that can be introduced into NLP tasks.

Dominant Data Augmentation

The dominant data augmentation approach focuses on gen-
erating new sentences similar to the labeled data by intro-
ducing external knowledge:
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Rule-Based Data Augmentation: Rule-based methods
generate samples by transforming the original sample with
human-designed rules, such as (Wei and Zou 2019) using
synonym substitution, random insertion, random exchange,
and random deletion. (Zhang, Zhao, and LeCun 2015) re-
place words based on an English thesaurus. (Coulombe
2018) proposes synonymous substitution, according to the
types of words suitable for replacement: adverbs, adjectives,
nouns, verbs, and simple pattern matching conversion and
grammar tree conversion using regular expressions to gener-
ate new sentences. Other works (Wang and Yang 2015) also
try to use the most similar words for text replacement based
on pre-trained word vectors such as Glove(Pennington,
Socher, and Manning 2014), Word2vec(Mikolov et al.
2013).

Generation-Based Data Augmentation: Generation-
based methods focus on generating sentences based on
language models. (Sennrich, Haddow, and Birch 2016)
utilize an automatic back-translation to pair monolingual
training data as additional parallel training data. (Kober
et al. 2021) use generative adversarial networks (GANs)
(Goodfellow et al. 2014) to generate new training ex-
amples from existing ones. (Yu et al. 2018) consider
back-translation based on a neural machine translation
model. (Xie et al. 2019) introduces data noise in neural
network language models. Recently, pre-trained language
models are also used to generate new labeled data based on
contextual information (Kobayashi 2018). (Wu et al. 2019)
apply the conditional BERT (Kenton and Toutanova 2019)
model to enhance contextual augmentation.

However, the data generated by dominant data augmenta-
tion methods are similar to the original data, leading to the
model still learning similar patterns. Therefore, the model
cannot handle data scarcity problems when the test data dis-
tribution differs from the training data.

Interpolation-Based Data Augmentation: Interpolation-
based data augmentation has been proposed in Mixup
(Zhang et al. 2018). As shown in Preliminaries , Mixup
extends the training data by training a neural network on
convex combinations of pairs of examples and their labels.
Mixup has achieved relative success in many computer vi-
sion tasks. Mixup variants (Verma et al. 2019; Summers and
Dinneen 2019) use interpolation in the hidden representation
to capture higher-level information and obtain smoother de-
cision boundaries. Recently, more researchers have focused
on utilizing Mixup to improve the model’s performance in
NLP tasks. wordMixup (Guo, Mao, and Zhang 2019) first
performs interpolation on word embeddings and sentence
embeddings, this method demonstrates the effectiveness of
data augmentation methods that do not generate real sen-
tences. SeqMix (Zhang, Yu, and Zhang 2020) generates sub-
sequences along with their labels by using linear interpola-
tion. These methods optimize Mixup by modifying the data
generation based on Mixup and have proven effective. How-
ever, linear interpolation methods only take the relationships
between two samples for the labels.



Methodology

We present overviews of the method composition of Global
Mixup in Figure 2. The purpose of Global Mixup is to sep-
arate the sample generation and label determination process
of data augmentation and to obtain accurate samples’ labels
by the similarity of samples, and encouraging the models to
focus on the clustering relationships of samples to resolve
the ambiguity of linear interpolation. To achieve this, we in-
herit the way Mixup generates virtual samples and change
the way it labels samples.

Preliminaries

We first briefly describe the original Mixup (Zhang et al.
2018) and the variant of Mixup for text classification, word-
Mixup (Guo, Mao, and Zhang 2019).

Mixup: (Zhang et al. 2018) is the first data augmentation
method proposed for image classification tasks that imple-
ments linear interpolations to mix different images and their
labels to generate new samples in order to train models to
recognize image features and classification in complex sit-
uations, it is similar to an image noise. In short, let (z,y)
denote a sample of training data, where x is the raw input
samples and y represents the one-hot label of x, the Mixup
generates virtual training samples (Z, 3) can be formulated
as follows:

T=Ax; + (1 - )\)l‘j,
¥ =y + (1= Ny;,

where (z;,y;) and (z;,y;) are two original samples drawn
at random from training data, the mixing coefficient A ~
Beta(a, a), for a € (0, 00), and Beta means the Beta dis-
tribution. Unlike the original sample, which uses hard labels,
the generated virtual data uses soft labels. Then both the gen-
erated virtual samples and the original samples are used to
train the network.

wordMixup: (Guo, Mao, and Zhang 2019) is a linear in-
terpolation method for text classification. Firstly, it converts
all sentences into embedding matrix and pads them to the
same length. For a set of training texts, they will all be rep-
resented as the same dimensional matrix B € RV *?_ where
N represents the length of each text after padding and d
represents the dimension of the vector for each word. Sec-
ondly, (B;,y;) and (Bj, y;) are drawn at random from origi-
nal train set, where y; and y; denote the corresponding class
label of the sentence using one-hot representation. In short,
the process of virtual training sample (B,%) generated by
wordMixup can be formulated as follows:

B=AB;+(1-)\)B;
¥ =y + (1= Nyj,

where the mixing coefficient A ~ Beta(a, «) is the same as
in the Mixup, and « is set as 1 in wordMixup.

ey
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Global Mixup

In Vanilla Mixup, including Mixup and the variations of
Mixup, the generated virtual samples may have label am-
biguity problems in the regions where linear interpolation
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of randomly selected original samples are intersections. For
example, the Mixup aims to generate a virtual sample by lin-
ear interpolation as shown in Figure 2, but the same virtual
sample which comes from different pairs of original sam-
ples will get different labels as shown in the Figure 2 (a)
and (b). And as shown in Figure 2 (b), when extremely dif-
ferent sample pairs are selected for mixup and intersection
occurs, virtual samples may be generated that are similar
but with opposite and overconfident labels. Moreover, when
the features of generated virtual samples is similar, ambi-
guity phenomenon often occurs. We call this phenomenon
the label ambiguity problem: the label gap between similar
virtual samples generated based on different sample pairs is
too large. To tackle the label ambiguity problem, we propose
to calculate the global relationships of the generated virtual
samples and eliminate the ambiguity with clustering.

Specifically, as shown in Figure 2 (b), When we gener-
ate the same virtual sample C based on two sample pairs
(A1, A2) and (Bj, Bo) that have different labels, if we are
using Vanilla Mixup, there will be a conflict in labeling the
virtual sample C' because the sample pair (Aq, A3) corre-
sponds to a different label than (B, Bz). But, as shown in
the figure 2(c), for the generated virtual samples G, the label
is generated by computing the global relationship of G' with
all the original training samples using Global Mixup. Thus
it will get a globally unique label, thus eliminating the am-
biguity. Also, labeling and generation are independent when
using Global Mixup, the generated samples can not be lim-
ited to the linear relationships of the original samples, which
provides more options for generated samples in the distribu-
tion space. Specifically, training the neural networks using
Global Mixup consists of the following four steps:

Raw Samples Selection: In this step, we randomly select
a part of the sample pairs (B;, y;) and (B, y;) from training
data as raw materials for generating virtual samples.

Raw Mixed Samples Generation: After randomly se-
lecting the raw samples, we perform linear interpolation on
them and generate virtual training samples(B, §) as shown
in Equation 2. For simplicity, the Vanilla Mixup samples
generation method is used here.

Labels Reconfiguration: In this part, we select a part of
raw mixed sample for relabeling, usually choosing those raw
mixed samples with overconfident labels. Specifically, we
select samples with label ¢ satisfying argmax gy > 6 from
the generated virtual sample set for relabeling, which means
that the labels with higher likelihood of overconfident will
be recalculated. The selection parameter 6 € [1/¢, o), ¢ is
the number of target labels. When § = 1/c, all raw mixed
samples will be selected for relabeling. and when 6 > 1,
it reduces to the Vanilla Mixup principle. Reconstruction of
the labels of these virtual samples is as follows:

T
y* =Y _ P(B.| D(B, By,

t=1
where y* is the new label for B’. P(B; | D(By, B')) is the
weight of y; to generate y*, and D(By, B’) is the equation
for computing the relationships between the training sam-
ples B; and the generated virtual sample B’. It can be for-
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Figure 2: An overview of Global Mixup: (a) and (b) represent ambiguous cases in Vanilla Mixup, and (c) represents the Global
Mixup with relabeling of the ambiguous samples in (b). (d) represents the way (a) and (b) generate samples and labels, and (e)

represents the way (c) relabels the samples.

malized as follows:

exp(D(By, B'))

> iz exp(D(Bi, B))’

where T is the total number of samples used to calculate
the global relationships D, and the largest top — s from all
computed D will be used for the computation of P, and P
of By (w € T — s) will be set to 0. s € [2, N] is the num-
ber of samples referenced to calculate the global relation of
B’. When s = 2, only the relationships between B’ and the
samples that generate it will be calculated. When s = N, all
training samples are calculated, and in general, We choose
T equal to the number of batch size.

N d t ’
D(B',B') = Y2 oim 2y Bij - Bij

Z’f\;l Z?:l \/Bf,j : Bf,]’ * \/Bz/',j : Bz/',j + 6,

(5)
where D means the similarity of the matrices B* and B’.
And D can be interpreted as flattening the word embedding
matrices B® and B’ and computing the cosine similarity of
the two flattened matrices. Where d, N are the dimensional
parameters of the matrix B. ~y is the parameter of relation-
ships correction, and € is the parameter to prevent the de-
nominator from being 0. For the BERT model, due to the
attention mask mechanism, we change the formula for cal-
culating D as [CLS] or follows, A € R represents the
attention mask vector for each sentence:

o ’}/AtBt(A,B,)T
\/AtBt(AtBt)T * A/B/(A/B/)T —+ 6‘

Network Training: Finally, we use the original samples

(B, y), virtual samples (B, 7) generated by vanilla mixup

P(B;| D(By,B")) = 4

D(B:,B) (©6)
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and (B’,y*) generated by Global Mixup to train the net-
work, compute the loss value and gradients update the pa-
rameters of the neural networks.

Mathematically, Global Mixup minimizes the average of
the loss function L, The loss is combined three parts of loss:

L(f) :5€0rig + Tlyanita + n‘gglobal

)

_(B,y)NU (B,§)~U (B',y*)~U A~Beta(a,a)
g(fk(MIX)\(B, B, B/)’ Mix)\(y, g? y*))

where (B,y) ~ U, (B,j) ~ U, (B',y*) ~ U represents
the original distribution of the training data, the virtual data
which generated by Vanilla Mixup, the virtual data which
generated by Global Mixup. U, A is the same as Mixup, U
represents the distribution of samples. ¢ represents the loss
function. §, 7, n are discount factors and f is the network
to be trained.

Advantages of Computing Global Relationships

Global Mixup separates sample generation and label deter-
mination into two stages. And by clustering based on global
relationships and feature correlations with similar samples,
it enables relabeling that eliminates ambiguity in the label-
ing phase. Due to the separateness of sample generation and
label determination, it is able to label any sample, unlike
Mixup and its variations which are limited to convex combi-
nations of training sets, this makes it compatible with other
generation methods and allows it to assist in labeling.

Experiments

We conduct experiments on five tasks and three networks
architectures to evaluate the effectiveness of Global Mixup.



Datasets

We conduct experiments on five benchmark text classifica-
tion tasks and table 1 summarizes the statistical characteris-
tics of the five datasets:

1. YELP: (Yelp 2015), which is a subset of Yelp’s busi-
nesses, reviews, and user data.

2. SUBJ: (Pang and Lee 2004), which aims to classify the
sentences as subjectivity or objectivity.

3. TREC: (Li and Roth 2002), is a question dataset with the
aim of categorizing a question into six question types.

4. SST-1: (Socher et al. 2013), is Stanford Sentiment Tree-
bank, five categories of very positive, positive, neutral,
negative, and very negative, Data comes from movie re-
views and emotional annotations.

5. SST-2: (Socher et al. 2013), is the same as SST-1 but with
neutral reviews removed and binary labels, Data comes
from movie reviews and emotional annotations.

Data Split: We randomly select a subset of training data
with N = {500, 2000, 5000} to investigate the performance
in few-sample scenario of Global Mixup.

Data | ¢ N A\ T
YELP | 2 | 560000 | W | 38000
SST-1 | 5 8544 1101 | 2210
SST-2 | 2| 6920 872 1821
TREC | 6 | 5452 A\ 500
SUBJ | 2| 8500 500 1000

Table 1: Summary for the datasets c: number of target labels.
N: number of samples. V: valid set size. T: test set size. W
means no standard valid split was provided.

Baselines and Settings

We compare the proposed method with baselines: the origi-
nal CNNsen (Kim 2014), the original LSTMsen (Hochre-
iter and Schmidhuber 1997), the original BERT (Kenton
and Toutanova 2019). And two recent augmentation meth-
ods including Easy Data Augmentation (EDA) (Wei and Zou
2019), wordMixup (Guo, Mao, and Zhang 2019). CNNsen
is a convolutional neural network and is widely used for text
classification. LSTMsen is a type of the most popular recur-
rent neural network for natural language tasks. BERT is the
most representative pre-training model in recent years. EDA
is a simple but effective rule-based data augmentation frame-
work for text. For a given sentence in training set, EDA (Wei
and Zou 2019) randomly choose and perform one of syn-
onym replacements, random insertion, random swap, ran-
dom deletion. wordMixup (Guo, Mao, and Zhang 2019) is
the straightforward application of linear interpolation on the
word embedding layer. The model parameters are designed
consistently to keep comparisons fair, and for comparative
data augmentation methods, the best parameters from the
extracted papers are used.
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Figure 3: Heat map visualization of Global Mixup’s relabel-
ing. The coordinate axes represent the serial numbers of the
original samples. The color represents the extreme degree
of the label, the lighter the color, the more extreme the sam-
ple’s label. The original samples are randomly selected from
YELP.

Implementation Details

All models are implemented with Pytorch (Paszke et al.
2019) and Python 3.7. We set the maximum sequence length
as 256 to pad the varying-length sequences. For the param-
eters of Global Mixup. For the A ~ Beta(a, ) parame-
ters, we tune the o from {0.5,1,2,4,8}. And to demon-
strate the effectiveness of Global Mixup on a larger space,
we extend A € [—0.3,1.3] with uniform distribution. We
set the number of samples generated per training sample
pair T from{2, 4, 8, 16, 20, 32, 64 } and the best performance
is obtained when T' = 8 is selected. The batch size is
chosen from{32, 50, 64, 128, 256, 500 }and the learning rate
from{le — 3,1le — 4,4e — 4, 2e — 5}. For the hyperparam-
eter setting, we set ¢ from{1/c,0.5,0.6,0.8,0.9, 1}, cis the
number of target labels. v from {1,2,4,6}, 7 and n from
{1/T,1}, ¢ = 1le — 5, 6 = 1. For the reinforced selector, we
use Adam optimizer (Kingma and Ba 2015) for CNN and
LSTM, AdamW (Loshchilov and Hutter 2017) for BERT.
The pre-trained word embeddings for CNN and LSTM are
300-dimensional Glove (Pennington, Socher, and Manning
2014). The parameters of (Kenton and Toutanova 2019) are
derived from ’bert-base-uncased’. For each dataset, we run
experiments 10 times to report the mean and the standard
deviation of accuracy (%).

Main Experiments

To demonstrate the effect of Global Mixup, we completed
the main experiment on five datasets. The main results for
each dataset using CNN are shown in Table 2, the main re-
sults for each dataset using LSTM are shown in Table 3, and
the main results for each dataset using BERT are shown in
Table 4. From the result, it is clear that our method proves
its effectiveness and achieves the best performance on all
five datasets and three models. For instance, compared to
CNNsen, Global Mixup improved the average accuracy by
3.2% on the SST-1 dataset and 2.8% on the TREC dataset.
We also observe that the standard deviation of Global Mixup
is smaller, which validates that Global Mixup produces
more stable classification boundaries. In summary, the re-
sults show a significant improvement of Global Mixup over
other methods. It not only outperforms EDA, it also outper-



Method YELP \ SST-1 \ SST-2 \ TREC \ SUBJ

CNNsen 92.1 +0.44 \ 35.3 +£1.321 \ 78.5 + 0.56 \ 95.4 + 0.96 \ 90.1 +0.43
+EDA 92.1£0.24 | 3414+0.89 | 79.3£0.49 | 97.44+0.25 | 91.9+0.21

+wordMixup 92.5+0.22 \ 36.5 + 0.45 \ 78.6 + 0.36 \ 97.8 +0.32 \ 91.4 + 0.56
+Global Mixup 93.4+0.13 | 38.5+0.20 | 80.1+£0.23 | 98.2+0.19 | 92.8+0.23
Table 2: Results(%) on five text classification tasks for CNN.

Method YELP \ SST-1 \ SST-2 \ TREC \ SUBJ

LSTMsen 92.1+0.31 \ 36.7+1.42 \ 79.7 +0.64 \ 95.2 + 1.55 \ 91.8 +0.92

+EDA 91.9+0.45 \ 37.8+1.33 \ 81.1 +0.66 \ 97.6 + 0.95 \ 92.1 +0.50

+wordMixup 92.8+£0.22 | 38.440.74 | 80.6+0.42 | 98.1£0.63 | 92.6+0.42

+Global Mixup 94.0 +0.16 \ 39.9 +0.46 \ 81.6 +£0.31 \ 98.6 +0.35 \ 93.1 +0.39
Table 3: Results(%) on five text classification tasks for LSTM.

Method YELP \ SST-1 \ SST-2 \ TREC \ SUBJ
BERT 96.9+0.23 | 51.94+0.92 | 91.0+1.16 | 99.0£0.55 | 96.940.30
+EDA 97.0£0.20 | 51.74+0.46 | 91.3+0.55 | 98.5£0.44 | 96.840.36

+wordMixup 97.0+0.13 \ 52.0 +0.64 \ 91.2 + 0.56 \ 99.0 + 0.16 \ 97.3+0.32
+Global Mixup  97.1+0.15 | 52.8 £0.32 | 91.8+0.34 | 99.2+0.13 | 97.5+0.35
Table 4: Results(%) on five text classification tasks for BERT.
SIZE YELP \ SST-1 \ SST-2 | TREC \ SUBJ
500 74.0 +0.28 \ 27.6 +1.11 \ 67.8 +0.53 \ 89.8 + 1.87 \ 83.6 + 0.72
+Global Mixup 81.3 +0.15 \ 33.8 £0.56 \ 69.7 + 0.42 \ 94.2 +£0.76 \ 86.1 + 0.66
2000 80.1 +0.32 \ 30.8 +0.75 \ 75.5 + 0.42 \ 93.8 +1.04 \ 87.4 + 0.45
+Global Mixup 85.6 +£0.17 \ 35.8 +0.62 \ 77.4+0.61 \ 96.9 + 0.51 \ 89.4 + 0.31
5000 85.7+£0.14 | 33.6%+0.78 | 77.6+£0.16 | 95.4+£0.96 | 88.7£0.41
+Global Mixup  87.5+0.13 | 36.6£0.54 | 79.0£0.25 | 98.2+0.19 | 90.140.32

Table 5: Results (%) across five text classification tasks with different data sizes for CNN with and without Global Mixup.

SIZE YELP | SST-1 | SST-2 | TREC | SUBJ
500 76.0+0.35 | 27.3+£1.26 | 68.8£1.12 | 88.6 £1.65 | 83.4+£1.20
+Global Mixup 82.1+£0.23 | 30.0£0.54 | 69.4+£0.59 | 90.3+1.44 | 84.74+1.03
2000 83.1+£0.31 | 35.14+1.17 | 76.14+0.98 | 92.5+1.32 | 88.1+1.16
+Global Mixup  87.2+0.11 | 36.7+£0.56 | 77.8 £0.72 | 95.5£0.62 | 89.6 & 0.82
5000 86.2+0.23 | 37.7+£1.11 | 79.1£0.73 | 95.2+ 1.55 | 90.2 4+ 0.79
+Global Mixup  87.8 £0.21 | 38.5+£0.62 | 79.6 +0.43 | 98.6 £ 0.35 | 91.5 +0.25

Table 6: Results (%) across five text classification tasks with different data sizes for LSTM with and without Global Mixup.
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SIZE YELP | SST-1 | SST2 | TREC | SUBJ
500 89.5+0.88 | 35.3+£2.26 | 86.4+ 1.42 | 92.6+0.95 | 94.4 + 0.74
+Global Mixup ~ 91.7 +0.42 | 43.0 +1.15 | 88.0+0.96 | 97.7+ 0.66 | 95.0  0.56
2000 92.7+0.68 | 47.8+1.55 | 89.24 1.16 | 98.2+0.50 | 95.9 + 0.52
+Global Mixup ~ 93.24+0.42 | 49.0+0.72 | 89.6+0.83 | 98.540.52 | 96.1+ 0.36
5000 93.4+0.55 | 51.6+0.86 | 90.5 4 0.63 | 99.0 £ 0.55 | 96.2 £ 0.42
+Global Mixup ~ 94.140.31 | 51.8+0.55 | 91.2+0.23 | 99.2+0.13 | 96.8 + 0.45

Table 7: Results (%) across five tasks with different data sizes for BERT with and without Global Mixup.

forms wordMixup, which constructs linear relationships be-
tween samples based on linear interpolation.

In addition, as shown in the Figure 3, When the same
sample pair is used to generate the same virtual sample,
Vanilla Mixup and Global Mixup show dramatic differences,
Vanilla Mixup shows very clear demarcation lines and an
uneven color distribution, which indicates that it generates
a large number of extreme labels for the generated samples,
while Global Mixup has unclear demarcation lines and an
even color distribution, which indicates that it generates al-
most no overconfident extreme samples. It can also be found
that by relabeling, the samples sometimes even obtained la-
bels with the opposite polarity to the Vanilla Mixup labels.

Ablation Studies

Effects of Data Size: To demonstrate the effect of Global
Mixup in few sample scenarios, We conducted Global
Mixup extension experiments in a few-shot scenario us-
ing CNN, LSTM, and BERT. The results are shown in Ta-
ble 5, 6 and 7, the subset of the above datasets was used
for the experiments and the dataset size is set to N =
{500, 2000, 5000}. Since all data of TREC dataset is 5452,
the experiment of TREC with N = 5000 uses all data. And
experiments demonstrate Global Mixup provides a greater
improvement in accuracy and still effectively reduces the
standard deviation. For example, when there are only 500
training samples, CNN and LSTM improved the accuracy
by 7.3% and 6.1% on YELP, respectively. BERT improved
the accuracy by 7.7% on SST-1. In addition, as the results in
Table 5 {SST-1} show, Global Mixup exceeds the effect of
training 5000 samples without data augmentation by train-
ing only 500 samples.

Effect of Different Generation Sample Number 7: We
also conducted experiments on the subset of YELP to show
the performance impact of the number of samples gener-
ated per original sample. As shown in Figure 4, Among
the values T = {0, 2,4, 8,16, 20, 32,64}, the range of T'
for which the model achieves the best results is between 4
and 20 for different sizes of datasets. Furthermore, Global
Mixup has been found to provide greater improvements on
small datasets compared to large ones. We hypothesize that
this is because small datasets have a relatively sparse distri-
bution compared to large datasets, resulting in a relatively
larger undistributed space in the training set.
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Figure 4: Ablation study on different generation sample
number T'. N is the size of the data set used and o = 4.
T = 0 means that Global Mixup is not being used.
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Figure 5: Ablation study on different Mixing parameter cv. T'
is the number of samples generated from original samples.

Effects of Different Mixing Parameter a:  We show the
performance with different « in Figure 5. The parameter o
decides A ~ Beta(a, a), the larger o will make A concen-
trate at 0.5, which means that the generated virtual samples
are more likely to be further away from the original sample
pairs. We choose o from {0.5,1,2,4, 8}, we observed that
a = 8 achieved the best performance.

Conclusion

We propose Global Mixup, which transforms the previous
one-stage augmentation process into two-stage, and solves
the ambiguity problem caused by the linear interpolation of
Mixup and its variants. Experiment shows its superior per-
formance, and the effect is more obvious in fewer samples
scenarios. We believe that Global Mixup has the potential
to achieve better results with more effective virtual example
generation strategy, and we will explore in the future.
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