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Abstract

The prevalence of region-based urban data has opened new
possibilities for exploring correlations among regions to im-
prove urban planning and smart-city solutions. Region em-
bedding, which plays a critical role in this endeavor, faces
significant challenges related to the varying nature of city data
and the effectiveness of downstream applications. In this pa-
per, we propose a novel framework, HREP (Heterogeneous
Region Embedding with Prompt learning), which addresses
both intra-region and inter-region correlations through two
key modules: Heterogeneous Region Embedding (HRE) and
prompt learning for different downstream tasks. The HRE
module constructs a heterogeneous region graph based on
three categories of data, capturing inter-region contexts such
as human mobility and geographic neighbors, and intra-
region contexts such as POI (Point-of-Interest) information.
We use relation-aware graph embedding to learn region
and relation embeddings of edge types, and introduce self-
attention to capture global correlations among regions. Ad-
ditionally, we develop an attention-based fusion module to
integrate shared information among different types of corre-
lations. To enhance the effectiveness of region embedding in
downstream tasks, we incorporate prompt learning, specifi-
cally prefix-tuning, which guides the learning of downstream
tasks and results in better prediction performance. Our ex-
periment results on real-world datasets demonstrate that our
proposed model outperforms state-of-the-art methods.

Introduction

In recent years, the rapid growth of urban data has cap-
tured the attention of researchers in the field of urban stud-
ies(Crooks et al. 2015; Shang et al. 2016, 2017; Chen and
Shang 2019; Chen et al. 2019). As cities are composed of
diverse regions, including business districts, residential ar-
eas, etc, understanding the structures of cities requires ef-
fective learning of high-quality region embeddings. Devel-
oping such embeddings can facilitate the creation of smarter
and more sustainable cities (Wang et al. 2018). Moreover,
these embeddings have direct applications in various areas,
such as crime prediction, traffic flow prediction, and real es-
tate price estimation. With the increasing prevalence of mo-
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bile computing technologies, an unprecedented amount of
urban data has become available, including taxi trajectories,
Point-of-Interest (POI). This abundance of data offers essen-
tial support for the study of region embeddings.

Many existing studies have attempted to introduce dif-
ferent urban data to facilitate region embedding (Pan et al.
2013; Wang and Li 2017; Yao et al. 2018; Zhang et al.
2019b; Fu et al. 2019; Hui et al. 2020; Zhang et al. 2020;
Wu et al. 2022). For instance, (Wang and Li 2017) con-
structs flow graph and spatial graph through human mo-
bility to learn region embedding since human mobility can
directly reflect the commuting correlation between regions.
(Yao et al. 2018) extracts human mobility patterns from taxi
trajectories and uses the co-occurrence of source-destination
regions to learn region embeddings. (Wu et al. 2022) an-
alyzes the mobility data of different periods to establish
the mobility pattern for region embedding. However, these
methods only consider inter-region data but fail to incorpo-
rate the intra-region data, resulting in decreased effective-
ness for region embedding.

Intuitively, more city data bring more available informa-
tion on region attributes (Shang et al. 2015; Wang et al.
2019), which induces the researchers to learn region em-
beddings integrating with multiple sources of data. Specif-
ically, (Fu et al. 2019) constructs two types of graphs us-
ing inter-region data human mobility and intra-region data
POIs. These two graphs are simply flattened and concate-
nated as initial region vectors as input to the AutoEncoder
for learning final region embedding. Additionally, (Zhang
et al. 2019b) introduces the generative adversarial network
in AutoEncoder to learn region embedding, but still uses a
similar strategy to flatten and concatenate different graphs.
Later, (Zhang et al. 2020) considers several types of data
to construct different region-based graphs and adopts a
multi-graph fusion mechanism, resulting in improved per-
formance. However, almost methods fail to explore the het-
erogeneous graph learning of region embedding. Further-
more, all of the above methods fail to explore how the
learned region embedding can be used more effectively in
downstream tasks.

Inspired by the idea of prompt learning for NLP, we
propose a novel framework named HREP (Heterogeneous
Region Embedding with Prompt learning), which mainly
includes two modules: Heterogeneous Region Embedding



(HRE) and prompt learning for different downstream tasks.
In the HRE module, we construct the region heterogeneous
graph by incorporating multiple data sources, including hu-
man mobility, POI information, and the geographic neighbor
of each region. More specifically, we design a relation-aware
GCN by introducing relation embedding into GCN, which
can learn different relation-specific region embedding. To
extract global information for each relation-specific region
embedding, we apply self-attention to learn the correla-
tion between relation-specific region embeddings. Then, an
attention-based fusion method is designed to fusion sharing
embeddings to the final region embedding. For the prompt
learning module, we apply the prefix-tuning method (Li and
Liang 2021), which is the automated template continuous
prompt learning. Prefix-tuning prepends a sequence of con-
tinuous task-specific vectors to the input, with the param-
eters of the HRE module frozen. By introducing prompt,
the training process of downstream tasks becomes guided
learning, which enables the downstream tasks to have bet-
ter learning ability on the region embedding learned in the
HRE module. To sum up, we have mainly three contribu-
tions listed as follows.

* We migrate prompt learning to region embedding learn-
ing and propose the HREP model, which contains
heterogeneous region embedding module (HRE) and
prompt learning module for downstream tasks.

* We design a continuous prefix-tuning prompt on region
embedding, and the prompt is trained in the downstream
task, making the learning of the downstream task as a
guided process.

* We conduct extensive downstream experiments to evalu-
ate our model with real-world datasets. The experimental
results show the great superiority of our model compared
with the state-of-the-art solutions.

Preliminaries
Human Mobility. Given a set of non-overlapping regions
R = {ry,72,...,7g} on astudied area, we define the trip

record, denoted by ¢7° (resp. t;), for any given two regions
T4, Tp as the number of trajectories of all users from r,
to rp (resp. from r, to r,). Accordingly, we derive a set
of human mobility based on the trip records for any pair
of regions in R, denoted by M {ml,mg, ...,m‘M|},
where each m; represents a tuple with four elements, i.e.,
m; = (ra,rp, the, the).

Tad 'Th
POI Information. Region Information usually refers to
some social attributes of regions. In our work, we consider
the POI information, which is denoted by p and can be ob-
tained by category classification statistics. We denote the re-
gion information as P = {pl,pg, ...,p|R|} ,p; € Rf where
f is the number of categories.

Geographic Neighbor Information. Geographic neigh-
bor information denotes the geographic relation between
a region and its neighbors, which is notated as N
{N1, N, ..., Nig|}, where N; represents the set of all re-
gions that are adjacent to region-:.
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Region Representation Learning. Given the human mo-
bility M of a set of regions I, POI information of regions,
and geographic neighbor information of regions, we aim to
learn a set of low dimensional embedding £ to represent
each region: €& = {ey,e2,...,e,},e; € R%, where e; € €
is the d-dimension embedding of the region r; € R and n is
the number of regions.

HREP Framework
Framework Overview

Figure 1 demonstrates the overall framework of our model,
which includes four major components: 1) Relation-aware
GCN is designed to learn relation-specific region embedding
from the heterogeneous graph based on each relation; 2) Em-
bedding sharing aims to learn global information by corre-
lations between the same region with multiple relations; 3)
Attention-based fusion method is aim to integrate relation-
specific sharing embedding to the final region embedding; 4)
Prompt learning is introduced for the prediction of various
downstream tasks.

Region Heterogeneous Graph

Region heterogeneous graph, denoted by G = (V,&,R),
includes multiple types of edges. The set of edge types is
represented by R, which includes the source edge type s,
target edge type 7, POl edge type r,,, and geographic neigh-
bor edge type 74. The source and target edge types (r, and
r;) are constructed based on correlations from human mo-
bility data, while the POI edge type 7, is constructed using
POI information. To construct these three similarity matri-
ces, we follow the same approach as presented in (Zhang
et al. 2020). For each node, we obtain the k-nearest neigh-
bors based on different similarity matrices as its neighbors
in the heterogeneous graph. Regarding the edge type r,, we
connect each node to all of its geographic neighbors as de-
fined in the previous section.

Relation-Aware Graph Embedding

To capture node information and edge type information
from the heterogeneous graph, we design a novel graph em-
bedding method named relation-aware graph embedding,
which can generate different node embedding by different
edge types. The graph embedding in our model is built upon
the message-passing architecture of GCN (Kipf and Welling
2017). The basic GCN learns node embedding using sym-
metric normalization with node degrees over the graph. In
our model, we incorporate the relation (i.e, edge type) em-
bedding into GCN to support heterogeneous graph learning.
To improve the performance of embedding, we apply the
deep layer GCN. Formally, given the random initial node
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Figure 1: The overall of HREP
where eﬁ ) , 5,” € Efllg de> efl) S Eﬁe)l, o indicates the attention as follows:

LeakyReLU activation function, WO is the learnable pa-
rameter of the layer-/, and N,.(+) is the neighbor set under
relation type r. Additionally, ¢ represents the entity-relation
composition operator, which is defined as follows:

@

¢(em er) = €y O €Eyp,

where o denotes the element-wise product.

When updating the node in each layer of the relation-
aware GCN, the node embedding is mapped to the new em-
bedding space, thus the relational embedding also needs to
be updated accordingly. We use Equation 3 to transform re-
lation embeddings:

) = Wl 1 . ®
where ng), bg) are layer-specific parameters that project
all relation embedding learned in the previous layer to the
same embedding space and allow them to be used in the
next layer of the relation-aware GCN. In graph neural net-
work, the feature smoothing phenomenon will occur when
the layer size of GNN increases, which causes a significant
reduction in performance. To solve this problem, we intro-
duce the ResNet (He et al. 2016) into our node embedding
of relation-aware GCN.

So far, in the relation-aware GCN, for the given region
embedding, we obtain four types of relation-specific region
embeddings, denoted by & = {&;,&;,Ep, &y}, according to
different types of relation, as well as four relation embed-
dings &1 = {es, €1, €p, €4}

Relation-Specific Region Embedding Sharing

In general, different attributes are correlated with each other
in the same region. For instance, the region with dense hu-
man mobility might also have many POIs. Motivated by this,
we apply the self-attention mechanism to capture global in-
formation. Note that self-attention is insensitive to the se-
quence order of the input. Specifically, we make use of the
multi-head self-attention as suggested (Vaswani et al. 2017)
to enhance the strength of correlation capturing.

Formally, given the relation-specific region embeddings
set & {&s,&,Ep, &g}, we compute one-head self-
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Attention(Q), K, V') = softmax V, 4)
(@ ) ( Nz ) (

head), = Attention(é W&, E WK e W), (5)

where Wg, W/ and W) are learnable parameters for ht"
head learning. And we compute multi-head self-attention by
the following equation:

MultiHead(€) = (||, head;, )W, (6)

where || denotes concatenation, W is the learnable param-
eter for transformation and H is the number of heads. So far,
our model learns the relation-specific region sharing embed-
ding, denoted by &' = {€/,&/,£].€]}.

Then, we introduce the learning-based linear interpolation
to adjust embedding, which is formulated by follows:

& (1—rc¢)i&:.

where & € £, & € £, and ¢; denotes the learning param-
eters. Afterwards we obtam relation-specific region sharing

embedding, denoted by £ = {Sé,é't, &, }.

Attention-Based Embedding Fusion

To integrate relation-specific region sharing embeddings, we
propose attention-based fusion learning method where we
introduce the attention vector to compute attention weights.

We first use a nonlinear transformation to transform
each relation-specific region sharing embedding into hidden
space. Then we introduce an attention vector q to compute
relation-based weight. Particularly, given a relation-specific

region sharing embedding EN’Z = {eé— }ljlill, where g} S £ R
we average the weight of all node embedding to obtain the
attention coefficient.

|R|

YR Zq

where o is the LeakyReL U activation function. Note that for
the meaningful fusion, parameters q, W, b are shared for
all relation-specific region sharing embeddings, which can

o(Wel +b), (8)



project all embedding into the same space to compute the
attention coefficient. Then we use the softmax function for
the normalization.

exp(w;)

4 b)
Zizi €xXp (Wz)
Next, with the learned coefficient w;, we fuse the four

relation-specific region sharing embeddings to obtain the fi-
nal region embedding as follows:

~ 4 ~
=> @&
i=1
HRE Objective Function

To effectively train our model, we apply multi-task learning
to design our objective function for the HRE module. We

P =

€))

(10)

first use learned region embedding € = {ei}iill and learned
relation embedding &,¢; = {es, €4, €p, €4 } to generate multi-
task embedding as follows:

€ =¢€oep,

Y
where e, € &,.;, o denotes the element-wise product Then,
we obtain four task embeddings 55, &, Ep, and 5

Geographic Neighbor Loss. Intuitively, regions that are
geographically adjacent to each other might have a higher
similarity. Therefore, to preserve the property, we define ge-
ographic neighbor loss, notated by Lgc,, as follows. For-

|R|

mally, given the fusion embedding §g = {ef},Z,, we have:

|R|

Lgeo = Zmax {Hei — e/ l2 — [les —

where e'J(p ) (resp. € ) is a positive (resp. nega-
tive) sample of geographic neighbors (resp. non-geographic
neighbors) from the ¢-th region.

Mobility Loss. To reconstruct mobility, given the embed-
dings &, = {e;?},liﬂ, & = {ef}‘i‘l and human mobility M,
we first compute original mobility distribution as follows:
tr)
Z|R| tTJ

Then, we reconstruct source and target region distribution
ds(rjlri), di(ri|r;) as follows:

|5, 0}, (12)

plrlrs) = (13)

L explegTel)
ds(rjlri) = W7 (14
tT s
di(rifry) = =2 D) (15)

T o
> exp(e] ef)
Therefore, mobility loss function by KL divergence can be
defined as follows:

Lt = —ps(rjlri) log ds(rjlr:) — pi(rilr;) log du(rilry),
0

(16)
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POI Loss. To reconstruct POI correlation, given the POI
similarity matrix M, and POI task embedding &,

{e? }Z 1» we have the POI loss formulated by:

IRl |R|

Lpoi =D (M

=1 j=1

el eb)?, (17)

As aresult, the final objective function can be formulated as
follow:

L::Lgeo+Lst+Lpoi- (18)

Prompt Learning for Downstream Tasks

Recently, a new technique, named ‘prompt learning’ has
been widely used in NLP and at the forefront of various
NLP tasks, which is developed beyond fine-tuned models.
Usually, in a fine-tuned model, embeddings are learned from
the language model (LM) on a large dataset. Then, we take
these embeddings as inputs for a consecutive model and
keep learning these embeddings based on a specific down-
stream task. However, in prompt learning, we freeze these
embeddings and introduce task-specific prompt into learned
embedding to guide the learning process to adapt to different
downstream tasks. The scale of embeddings learned from
the LM model is usually large. In contrast, prompt learn-
ing freezes these embeddings for the downstream tasks and
only introduces a few parameters, yet achieving great per-
formance.

In our model, we try to migrate prompt learning to region
embedding learning, and to the best of our knowledge we
are the first to apply prompt learning to region embedding
learning. Although we borrow the idea of prompt learning
from NLP, the implementation is still very challenging and
different from the NLP tasks. Specifically, pre-training and
downstream tasks in NLP have sequential textual input, i.e.,
the input format in NLP is uniform. Thus the NLP down-
stream tasks only need to adjust the inputs and then apply
them to the pre-training model. In contrast, the input type of
our pre-training model (i.e. HRE module) and downstream
tasks in region embedding are not uniform, so it is not pos-
sible to apply the input adjustment of the downstream task
to the pre-training model.

In our work, we apply the prefix-tuning, which is the con-
tinuous prompt. Unlike handling text in NLP, we can not de-
sign a proper prompt for region embedding manually due
to different input formats. Thus, our goal is to make the
model able to understand and learn the prompt in the embed-
ding space. Generally, the prefix-tuning prepends a prefix
embedding as prompt and freezes the parameters from the
pre-training module. However, the scenarios in our model
are different. 1) Since the model for the downstream task
is different from the pre-trained model, the region embed-
dings learned by pre-training is used both as part of the in-
put and as the parameters to be frozen, while the prompt
is the part to be updated. 2) The input to the pre-training
model does not match the input format for the downstream
task and also differs from the NLP sequence inputs. To ad-
dress the above issues, we concatenate prompt embedding



Dataset Description
180 regions based on the Manhattan
community boards.
20K Pols in the studied
areas, such as stations, stores, etc.
100K check-in locations

of about 200 categories.

Regions

Pol data

Check-in data

Taxi trips 10M taxi trips during
one mouth.
Crime data 40K crime records

during one year.

Table 1: Dataset description (K=103, M=10%)

and learned region embedding from our HRE model. For-
mally, given the region embedding £ = {e;} lljl and prompt
embedding P = {p;} ‘i‘l for each region, we have:

Di =i D e, (19)

where @ is the concatenation operation. Note that we pro-
pose the prompt from each region instead of using a single
prompt because the learned embeddings for regions are dif-
ferent. Then we apply prompt-specific embedding to differ-
ent downstream models, such as the regression model, and
classification model. In the model for the downstream tasks,
we freeze e; and update p; with model parameters. Then we
use a feedforward neural network (FNN) for the prediction,
formulated as follows:

y; = FNN(p;), (20

where ¥; is the prediction of the region-¢ in the downstream
task. To optimize our prompt, we use the MSE loss function
as follows:

|R|

1 ~
L, = ®Z<yi — )% 1)
=1

where y; is the ground truth of region-i in the downstream
task.

Experiment

In our experimental study, we design three downstream ap-
plications to evaluate the performance of our model, includ-
ing crime prediction, check-in prediction, and land usage
classification. Our model is implemented with PyTorch on
an Nvidia RTX3090 GPU. The details of implementation
can be viewed on this URL !.

Experiment Setting

Dataset We collect a variety of real-world data from NYC
Open Data 2 specific for the Manhattan, New York area,
where Taxi trips are used as human mobility. We divide the
Manhattan area into 180 regions based on the community
boards. The detailed description of datasets is shown in Ta-
ble 1.

Uhttps://github.com/slzhou-xy/HREP
*https://opendata.cityofnewyork.us

Crime Prediction Check-in Prediction
MAE RMSE R? MAE RMSE R?

GAE 96.55 133.10 0.19 49823 803.34 0.09
LINE 117.53 152.43 0.06 564.59 853.82 0.08
node2vec 75.09 104.97 049 372.83 609.47 0.44
HDGE 72.65 9636 0.58 399.28 536.27 0.57
ZE-Mob 10198 132.16 0.20 360.71 59292 0.47
MV-PN 9230 12396 0.30 476.14 78425 0.08
MVURE #69.28 96.51 0.57 312.63 513.02 0.61
MGFN  70.21 *89.60 *0.63 *292.60 *451.76 *0.69

HREP 65.66 84.59 0.68 270.28 406.53 0.75
Improve 5.23% 5.59% 7.93% 6.94% 10.01% 8.70%

Table 2: The main experiment performance. The mark * in-
dicates the compared baseline for improvements.

Hyper Parameters The dimension of our model is 144.
The dimension of prompt embedding is also set as 144. The
layer of relation-aware GCN is set as 3. In the multi-head
self-attention, we set the number of heads as 4. We adopt
Adam to optimize our model, including HRE module and
prompt learning module, and both learning rates are set as
0.001. The epoch is set as 2000 in HRE module and 6000 in
prompt learning. Moreover, we set the value of k as 10.

Baseline Solutions. We compare our model with 8 base-
line models.

* GAE. GAE (Kipf and Welling 2016) is an asymmetric
network, which uses GCN as an encoder to learn node
representations, and inner product as a decoder to reduce
the adjacency matrix.

* LINE. LINE (Tang et al. 2015) uses the first-order prox-
imity and the second-order proximity to learn node em-
bedding.

* node2vec. Node2vec (Grover and Leskovec 2016) tunes
random walk algorithm to adapt the graph structure,
which captures homophily and structural equivalence of
node in the graph.

* HDGE. HDGE (Wang and Li 2017) constructs traffic
flow graph and spatial graph, then it samples node paths
to jointly learn region embedding.

e ZE-Mob. ZE-Mob (Yao et al. 2018) uses co-occurrence
to compute point-wise mutual information (PMI) to learn
region embedding.

* MV-PN. MV-PN (Fu et al. 2019) uses Pol data and hu-
man mobility to construct a multi-view POI-POI net-
work, and then AutoEncoder is used to learn region em-
bedding.

* MVURE. (Zhang et al. 2020) adopts the intra-region and
inter-region data to construct multi-view graphs, then ap-
plies multi-view fusion to learn region embedding.

* MGFN. MGFN (Wu et al. 2022) construct mobility pat-
terns by human mobility to learn region embedding.

Main Performance Comparison

In this set of experiments, we mainly consider two down-
stream applications, including crime prediction and check-



Crime Prediction Check-in Prediction

MAE RMSE R?> MAE RMSE R?
HREP/G 73.30 95.15 0.56 303.58 466.01 0.68
HREP/R 67.95 9525 0.59 328.62 556.57 0.54
HREP/F 6739 88.96 0.65 313.29 480.07 0.66
HREP/P 66.89 8591 0.67 273.56 409.98 0.74
HREP 65.66 84.59 0.68 270.28 406.53 0.75

Table 3: The performance of ablation experiment.

in prediction, which are widely used to evaluate the perfor-
mance of region embedding (Zhang et al. 2020; Wu et al.
2022). Three general metrics are used for performance eval-
uation, i.e., Mean Absolute Error (MAE), Root Mean Square
Error (RMSE), and coefficient of determination (R2). Ta-
ble 2 show the experimental results, which overall demon-
strate that our model outperforms all state-of-the-art meth-
ods dramatically. We present the detailed analysis as fol-
lows. 1) The graph embedding methods (e.g., LINE, GAE,
node2vec) have the worse performance since these methods
only can learn node embedding from graphs while failing
to capture other region information. 2) With human mobil-
ity data (e.g., HDGE, ZE-Mob, MGFN), the performance of
region embedding on downstream tasks can be improved a
lot. In particular, MGFN constructs mobility patterns with
spatial-temporal human mobility data earning the second
best performance. 3) The average performance of methods
with multiple urban data (e.g., MV-PN, MVURE) is better
than those with a single type of data, which proves that mul-
tiple data types can involve different relations between re-
gions. 4). Our model achieves the best performance. On the
one hand, we not only consider multiple types of data, but
also extend the region embedding problem further to the het-
erogeneous graph problem. On the other hand, we migrate
the prompt learning to enhance the performance of region
embedding for different downstream tasks.

Ablation Experiment

In this set of experiments, we conduct comprehensive exper-
iments with various settings to verify the validity of different
components in our model. The details of the ablation meth-
ods are as follows.

* HREP/G. We remove geographic correlations among re-
gions and keep three other correlations instead.

* HREP/R. We use GCN to learn node embedding without
relation embeddings.

« HREP/F. We replace attention-based fusion with
element-wise fusion.

* HREP/P. We remove prompt learning and only make use
of region embedding from heterogeneous graph learning
in the feedforward neural network.

Table 3 present the ablation results of our model and its
variants. From these results, we have the following obser-
vations. 1) Geographic neighbors can improve performance
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Figure 2: Land usage classification performance

greatly because adjacent regions will exhibit high similar-
ity. 2) By introducing relational embeddings, the problem
is introduced to the heterogeneous graph, enabling more ef-
fective representations to be learned from different correla-
tions among regions. 3). Attention-based fusion method can
provide more meaningful embedding fusion. 4). Compared
to using region embedding directly in downstream tasks,
prompt learning can provide substantiating guidance for dif-
ferent downstream tasks.

HRE Module Performance

To further investigate the effectiveness of our HRE model,
we perform a set of experiments on land usage classifica-
tion, which is a clustering-based experiment without labels,
where prompt learning is unable to be applied. In this appli-
cation, our goal is to cluster regions belonging to the same
function together as much as possible by K-means. Note that
the Manhattan area is divided into 12 categories of districts
through the community boards (Berg 2010) (e.g., residual
districts, business districts). We use two metrics to evaluate
the performance in clustering: Normalized Mutual Informa-
tion (NMI) and Adjusted Rand Index (ARI). Fig 2 shows
that our heterogeneous graph learning module can achieve
the best performance on land usage classification, which is
contributed by three aspects: 1). We introduce new city data,
region geographic neighbors, and constructed new node re-
lationships in the heterogeneous graph based on this data.
Specifically, the geographic neighbor can associate a region
with its neighbors, which has a similar goal as clustering.
2). We design a relation-aware GCN by introducing relation
embedding, which can learn relation-specific region embed-
dings based on relations. Then we use these relation embed-
ding and region embedding to apply multi-task learning to
optimize our model. 3). Compared to the previous studies,
we use a more effective fusion method to integrate embed-
ding from different correlations.

Prompt Update Strategy Evaluation

Prompt learning has different strategies for parameter up-
dates (Liu et al. 2023). We conduct a set of experiments to
study the impact of different parameter update strategies for
prompt learning on downstream tasks.



Crime Prediction Check-in Prediction

MAE RMSE R?> MAE RMSE R?
RP 89.54 108.67 0.45 390.50 545.74 0.49
R 110.11 14523 0.15 506.46 823.56 0.08
no-RP  105.87 13856 0.18 450.32 70225 0.11
HREP 65.66 84.59 0.68 270.28 406.53 0.75

Table 4: The performance of prompt update methods.

* RP: We update parameters for both the region embed-
ding and the prompt.

* R: We freeze the parameters for prompt and only update
parameters for region embedding.

* no-RP: We freeze parameters for both region embedding
and prompt.

Table 4 show the experimental results, which demonstrate
the strategy of parameter update for prompt learning has a
significant impact on the results. 1) Comparing R and no-
RP, we observe that updating region embedding will cause
worse performance, which shows our heterogeneous graph
learning module can learn effective region embedding. 2).
Compare RP and R, updating prompt can improve perfor-
mance a lot. 3). Comparing RP and HREP further demon-
strates the validity of the region embedding learned in het-
erogeneous graph learning module and does not require to
be updated in prompt learning. Instead, only updating the
prompt can play a guiding role in the downstream task.

Related Work
Graph Neural Network

Graph neural networks are aimed to learn graph embed-
ding on graph structure. In recent years, research on graph
neural networks has been very popular. GCN (Kipf and
Welling 2017) introduces the idea of convolution in CV
into the graph neural network. GraphSage (Hamilton, Ying,
and Leskovec 2017) makes graph neural network success-
fully applied to inductive representation learning. (Velick-
ovic et al. 2018) design GAT after introducing the atten-
tion mechanism into the neighbor aggregation. GIN (Xu
et al. 2019) demonstrates that GNN can achieve the perfor-
mance of the Weisfeiler-Lehman graph isomorphism test.
Meanwhile, graph studies have attempted to extend GNNs
for modelling heterogeneous graphs. RGCN (Schlichtkrull
et al. 2018) is designed to model knowledge graphs. Het-
GNN (Zhang et al. 2019a) adopts different RNNs for differ-
ent node types to integrate multi-modal features. HGT (Hu
et al. 2020) introduces transformer into GNN.

Region Embedding

The rise of urban studies has led to an important research di-
rection of urban region representation learning. Region em-
bedding is closely related to the various characteristics of re-
gions, such as POI, and human mobility. (Wang and Li 2017)
proposes to use human mobility to construct the transition
matrix of the graph. (Yao et al. 2018) uses human mobility to
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count co-occurrences. These methods, while yielding good
results, are all based on individual attributes of the region.
Recently, researchers have tried to use multiple properties of
the city to learn region embedding. (Fu et al. 2019) exploits
the use of POI attributes and human mobility to obtain inter-
region and intra-region relationships and uses AutoEncoder
to learn region embedding. (Zhang et al. 2019b) adds gen-
erative adversarial networks (GAN) to the AutoEncoder on
this basis and obtains better results. These methods consider
multiple properties but do not consider the relation between
properties. To solve this problem, (Zhang et al. 2020) adopts
the multi-view method to learn region embedding. (Wu et al.
2022) construct mobility pattern by human mobility data to
learn region embedding.

Prompt Learning

Prompting means prepending instructions and a few ex-
amples to the task input and generating the output (Liu
et al. 2023). A single language model trained in en-
tirely unsupervised learning can be used to solve many
tasks (Sun et al. 2021). Prompt shapes can be separated
into cloze (Petroni et al. 2019; Cui et al. 2021) and prefix
prompt (Li and Liang 2021; Lester, Al-Rfou, and Constant
2021). The early prompt template engineering are hand-
crafted prompts (Petroni et al. 2019; Brown et al. 2020).
However, a manual template not only takes time and expe-
rience but also fails to discover optimal prompts. To solve
these problems, an automated prompt is proposed. Auto-
mated prompt can be divided into discrete prompts (Wallace
et al. 2019; Shin et al. 2020) and continuous prompt (Li and
Liang 2021; Lester, Al-Rfou, and Constant 2021).

Conclusion

In this paper, we propose a novel model, named HREP,
for region embedding, which considers both intra-region
and inter-region correlations. Specifically, we make use of
human mobility, POI data, and region geographic neigh-
bors to construct a region heterogeneous graph. We first de-
velop a relation-aware GCN to learn relation-specific region
embedding from different relation types in the heteroge-
neous graph. Then, to capture the global correlation between
different relation-specific region embedding, we apply the
multi-head self-attention to learn sharing embedding. The
attention-based fusion method is introduced to learn the final
region embedding. Additionally, we design prompt learning
to replace the direct use of region embedding in the down-
stream tasks. In particular, we apply the continuous prompt
method prefix-tuning, which is able to have different guid-
ing effects in different downstream tasks, and therefore can
achieve better performance. The experiments on two down-
stream applications based on the real-world datasets show
that our model outperforms state-of-the-art methods.
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