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Abstract

Event causality identification (ECI) aims to identify the
causal relationship between events, which plays a crucial role
in deep text understanding. Due to the diversity of real-world
causality events and difficulty in obtaining sufficient training
data, existing ECI approaches have poor generalizability and
struggle to identify the relation between seldom seen events.
In this paper, we propose to utilize both external knowledge
and internal analogy to improve ECIL. On the one hand, we
utilize a commonsense knowledge graph called ConceptNet
to enrich the description of an event sample and reveal the
commonalities or associations between different events. On
the other hand, we retrieve similar events as analogy exam-
ples and glean useful experiences from such analogous neigh-
bors to better identify the relationship between a new event
pair. By better understanding different events through exter-
nal knowledge and making an analogy with similar events, we
can alleviate the data sparsity issue and improve model gener-
alizability. Extensive evaluations on two benchmark datasets
show that our model outperforms other baseline methods by
around 18% on the F1-value on average.

Introduction

Event causality identification (ECI) is an important task in
natural language processing (NLP) which aims to identity
the causal relationships between events in text pieces, i.e.,
predict whether one event causes another one to happen. The
term “event” is used as a cover term to refer to any situa-
tions that can happen, occur, or hold, which is a synonym to
“eventuality” introduced by (Bach 1986) for covering both
dynamic and static situations. With a better understanding
of event causality, ECI can help with various NLP applica-
tions, such as question answering (Oh et al. 2016), machine
reading comprehension (Berant et al. 2014), and logical rea-
soning (Ding et al. 2019; Hashimoto 2019).

Figure 1 shows an example to illustrate the task of ECIL.
Given two sentences “An earthquake ... killing 10 peo-
ple, officials said.” and “The U.S. ... a magnitude-6.1 tem-
blor””, an ECI system needs to identify the causal rela-
tionships between mentioned events in the texts, such as
“killing” and “temblor”. Specifically, while most existing re-
searches focus on sentence-level ECI which only predicts
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Sentence 1: An ear;hquake measuring at least magmi -5.9 shook

a sparsely populated)area of southern Iran on Sunday, flattenlnd’
seven villages and kl Iilng 10 people, officials said.
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Sentence 2: Tehran' s' \seismologic center said the quak,e/measured
magnitude-5.9, but the\y S. Geological Survey in  Gelden, Colo., said it
was a magnitude-6.1 temblor. <«

Intra-sentence causality: <—»
Inter-sentence causality: < ---»

Figure 1: An example of ECI. Each double arrow line in-
dicates that there is a causal relationship between the two
noted events.

the intra-sentence causality between two events mentioned
in the same sentence, here we aim to identify both sentence-
level and document-level ECI (DECI) to predict both intra-
sentence and inter-sentence event causality. It is also worth
noting that although causal relationships are directed, we
omit the causal directions following the same settings as
prior research works (Zuo et al. 2021a; Cao et al. 2021).

Identifying event causality is challenging due to several
reasons. First, existing datasets for ECI are relatively small
and imbalanced. For example, the largest widely used pub-
lic ECI dataset is the EventStoryLine Corpus (Caselli and
Vossen 2017), which contains 258 documents consisting of
4,316 sentences, and only 1,770 out of 7,805 event pairs are
annotated as causal relations. This situation poses challenges
to existing data-hungry deep learning-based approaches for
ECI tasks (Zuo et al. 2020; Cao et al. 2021; Liu, Chen, and
Zhao 2020), which mainly utilize language models to model
sentence context and treat the ECI task as a binary classifi-
cation problem. Therefore, how to efficiently utilize limited
data is one essential problem to be solved for ECI. Second,
event mentions in texts are usually short and lack explicit
definitions or descriptions, making it difficult to learn a good
representation for an event. Third, as there are diverse and
enormous amount of events in real-world, how to improve
the generalizability of ECI models on unseen events is a crit-
ical problem.

We propose to exploit both external knowledge and in-
ternal analogy for improving the representation and gener-
alization abilities of ECI models. On the one hand, by in-



troducing knowledge or commonsense about an event from
external knowledge bases, we can enrich the description of
the event mention in the text and reveal the correlations be-
tween different events. For example, in Fig. 1, “temblor”
is an uncommon word which comes from a Spanish word
meaning a trembling. We can hardly realize there is causal
relation between “tremblor’” and “killing”. But with the help
of knowing “temblor” is a synonym of “earthquake”, we can
identify the causality more easily. On the other hand, manip-
ulating concepts and making analogies between them is con-
sidered as a core aspect of human intelligence (Hofstadter
1995). For example, the analogy between DNA and zip-
per or source code allows us to better understand the paired
structure of nucleotides and the ability of DNA to encode in-
formation. Similarly, to better modeling and representing an
unseen event, we can recap similar seen events in our mem-
ory and make analogies between them to better understand
new events or event pairs and predict the causal relations.

Technically, we propose a two-stage Knowledge-Analogy
Dual Enriched Representation (KADE) framework for ECL.
In the first stage, we augment the event representations
by retrieving relevant knowledge from ConceptNet (Speer,
Chin, and Havasi 2017), a freely-available semantic net-
work that include massive knowledge and common sense.
By appending the relevant knowledge with the original texts
and encode with BERT (Devlin et al. 2018), we can obtain
knowledge-enriched representations of events. Such repre-
sentations of the events are stored in a memory module dur-
ing training for later usage. In the second stage, given an
event, we compare its representation with other events in the
memory to retrieve similar examples and making analogies
between them. We also evaluate various ways to fuse the in-
formation of the analogy examples into the target event.

We conduct extensive experiments on the EventStoryLine
dataset (Caselli and Vossen 2017) and the Causal-TimeBank
dataset (Mirza and Tonelli 2014) to evaluate the performance
of KADE and compare with baseline methods. The ex-
perimental results show that our method outperforms other
SOTA baselines by at least 18% in terms of F1-value on both
datasets. It is worth noting that our KADE framework is gen-
eral and can be easily adapted to other NLP tasks. The code
is open sourced to facilitate future research, which can be
found here: https://github.com/hihihihiwsf/KADE.

Related Work

A wide range of approaches has been proposed for ECL
Early feature-based methods utilize different human-crafted
features and resources to improve the performance, such as
causality markers (Riaz and Girju 2014; Hidey and McK-
eown 2016), statistical co-occurrence of events (Beamer
and Girju 2009; Hu, Rahimtoroghi, and Walker 2017), lexi-
cal patterns (Hashimoto 2019), or syntactic patterns (Mirza
2014). Such approaches rely on the domain knowledge of
human. Deep learning-based approaches for ECI (Kadowaki
et al. 2019; Zuo et al. 2020) leverage pretrained language
models (e.g., BERT (Devlin et al. 2018)) and common-
sense knowledge sources (e.g., ConceptNet (Speer, Chin,
and Havasi 2017)) to improve the performance. To deal with
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implicit causal relations, Cao et al. (2021) conducts a de-
scriptive graph induction module combining external knowl-
edge and achieves promising results.

There are also research works aim to solve the data insuf-
ficiency problem. Zuo et al. (2021b) utilizes dual learning to
generate task-related sentences for ECI. While data augmen-
tation can alleviate data insufficiency to some extent, it still
faces the data bias issue, which may cause the augmented
data distribution be different from the original one. Besides,
data augmentation-based ECI approaches usually enlarge
the model size and make model less efficient. Document-
level ECI (DECI) (Gao, Choubey, and Huang 2019; Phu
and Nguyen 2021) further poses the new challenge of cross-
sentence event causality identification. RichGCN (Phu and
Nguyen 2021) constructs an interaction graph with hetero-
geneous edges from 6 information types, such as discourse-
based and syntax-based edges. However, the structured rep-
resentation is time-consuming to construct and contains re-
dundant information which is useless for ECI tasks. The
case-based model (Das et al. 2021) uses a neural retriever
to retrieve other similar queries from a case memory, which
can hardly solve ECI tasks. Overall, existing deep learning-
based models cannot solve the data insufficiency problem
of DECI efficiently. In this paper, we better utilize available
datasets by analogy without generating noisy data.

K-nearest-neighbor (kKNN) lookup is a widely-used tech-
nique for variety of machine learning tasks, especially com-
bined with retrieval methods. Fan et al. (2021) retrieves re-
lated documents from external knowledge base to improve
the performance for dialogue generation. Wu et al. (2022)
integrates kNN module into Transformers to handle long
context inputs. Memory-efficient Transformers (Gupta et al.
2021) replace dense attention with KNN lookup to increase
speed and reduce memory usage. In our work, we retrieve
analogy event examples with kNN to learn a better event
representation for DECIL.

Methodology

In this section, we formulate the task of ECI (including both
sentence-level ECI and document-level DECI), and describe
our proposed Knowledge-Analogy Dual Enriched Represen-
tation (KADE) framework for solving it.

Task definition. We formulate ECI as a binary classifi-
cation problem following previous work (Phu and Nguyen
2021). Given two input sentences S1 = {wy, wa, ..., Ws, },
Sy = {Ws, 41, Ws, 42, .., Ws, +5, + Of length s1 and sy re-
spectively, the goal of DECI is to predict whether there ex-
ists a causal relationship between e; and e, where e; and
eo represent two event mentions in the two sentences. For
example, in Fig. 2, the two sentences contain e; jolts and ea
shook, respectively.

KADE framework. As shown in Fig. 2, the framework
of our proposed model mainly contains two stages: i) knowl-
edge augmentation for incorporating commonsense knowl-
edge into input sentences to better understand events; ii)
analogy fusion for retrieve similar event examples from a
memory of seen events and making analogies between them
to better model unseen events. We will illustrate the two
parts in detail in the following.
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Figure 2: Illustration of the KADE framework for event causality identification. It consists of knowledge augmentation stage

(upper part) and analogy fusion stage (lower part).

Knowledge-Enriched Event Representation

Human can identify event causalities not only by reading
the input sentences but also by leveraging commonsense
knowledge, which is important for ECI (Liu, Chen, and Zhao
2020). In our work, we exploit the relevant knowledge of
events from ConceptNet (Speer, Chin, and Havasi 2017),
which contains plentiful commonsense knowledge of vari-
ous concepts. Specifically, to we only pay attention to 19
useful semantic relations for ECI which is the same as (Liu,
Chen, and Zhao 2020).

To give an example, in Fig. 2, the input sentence S
“Strong earthquake jolts southern Iran.” contains an event e;
“jolts”. We first extract the structural knowledge of e; from
ConceptNet, then we construct a structured sequence to lin-
earize the extracted knowledge, like k7 “Shock is a synonym
of jolt”. After obtaining the linearized concept sentences k1
and ko from ConceptNet for the event pair e; and ey, we
concatenate them to form knowledge-enriched input repre-
sentation:

St =51k, S5 =S Pk, Sto= ST SE.
)]
where S¥ and S5 denote knowledge-enriched sentences of
S1 and Ss, respectively. SfQ is the concatenation of them.

After obtaining knowledge-enriched input sentences S’fQ,
we encode the input by BERT (Devlin et al. 2018) to learn a
knowledge-aware representation for each event. For the con-
venience of notation, we still denote the knowledge-aware
representation of events from BERT as e; and es.

Our KADE framework consists of two-stage training pro-
cedures. In the first training stage, we directly concatenate
a classifier module on top of the BERT encoder to classify
whether there is a causal relationship between e; and es. We
train the model by the following cross-entropy loss:

Lep=— Z + (=) - log(1—pi)], )

where NN is the number of event pairs, p; is the prediction
output. y; is the ground-truth of ¢-th event pair, where y; = 0

-log(ps)
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means there are no causality between e; and es, and vice
versa.

After obtaining the knowledge-aware event representa-
tions from the first-stage training, we save the event rep-
resentations in a memory module M = {eq, ez, ...,ejaq }s
which will play a key role in the second-stage training. Note
that we only save the events from the training dataset.

Analogy-Enhanced Event Refinement

Although the knowledge-aware representations can better
characterize the input events, they are still insufficient to
model rare events and make full utilization of the limited
training data. Therefore, in the second-stage, we further
refine the event representations by retrieving similar seen
events from the memory M and making analogies between
a target event and the retrieved analogy examples.

Specifically, after we learned the representation of in-
put event pairs (e, e2) from the encoder, we look up the
top-n similar representations from memory M. We de-
note the retrieved analogy examples as (e ;, ..., €7 ,) and
(€51, .-, €5 ), Where e1 ; means the i-th analogy example
of e;. Slmllarly for €5 ;. In our implementation, we utilize
kNN to retrieve the similar events from memory and we set
the number of neighbours as n = 3.

Next, we fuse the information of analogy examples into
the knowledge-aware event representations to futher refine
it. This can be done in various ways, and we consider two
strategies in this work.

The first strategy is mean fusion. We can make an average
of the n representations of the retrieved analogy examples
and fuse it as follows:

=a-e+(1—
a- e+ (1-—

a)- Mean(ef 1, ..., €7,
a)- Mean(egq, ...,

);

€3,n);

3)

where « is a hyper-parameter.

The second strategy is graph fusion. Considering n sim-
ilar events have similar semantics, we can construct a lo-
cal graph between the retrieved events and the target event.



Algorithm 1: Two-stage Training of KADE

Input: Two sentences S; and So, event pairs (el,e2),
ground truth label y, ConeptNet knowledge graph KG.
A memory M. A pre-trained encoder &, classifier C,
graph encoder G, and the number of neighbors 7 to be
retrieved.

: Stage 1: Training the encoder and classifier with knowl-

edge.

Enrich sentences S;, S to S¥, S5 by commonsense

knowledge from G as Equation (1).

. for each event pair (ST, S%, e1, e2) in batch do

e Optimize the encoder £ and the classifier C with

loss as Equation (2).

Save representation embeddings of the two events

e1 and es to the memory M.

end for

Stage 2: Fine-tuning the classifier with kNN-GCN anal-

ogy

for each event pair (ST, S5, e, e2) in batch do

Encoder £ outputs representation embeddings for

two events e; and eo. Then retrieve the nearest

n embeddings of e; and e; from memory M as

el 1, €] andeg, .. €5,

Compute the refined event representations ¢; and

€5 as Equation (7) with G.

Use classifier C to predict the causality probability

p; between €7 and é5.

Update graph encoder G and classifier C with loss

as equation (8).

7: end for

The target event and the n nearest neighbour events are the
nodes, and the similarities between the retrieved events and
the target event are the edge weights. Therefore, the graphs
are represented as:

V= {el,e‘f?l,...,e‘in}, E, ={(
V2 = {62765,1) "'765,71}7 E2 = {(
G1 = (V1,E), Gy = (V3, Ey),

€1,€ ,1)7

a
T1)s-s
€2, 6;,1)7 EE3)
“
where V1 and V5 are the event nodes. 1 and E are
weighted edges from the target event to the retrieved similar
events whose weights are computed as the cosine similarity
between the event embeddings. Formally, the weight of edge
between the target node e; and the corresponding retrieved
event node e; is defined as:

foosine(€i,€5), e is the retrieved events,
Aij = . )
0, otherwise.
The cosine similarity is computed as:
T
Ty
fCosine (.I, y) = ) (6)
] - [yl

where ||z]| = />, 27 and ||y|| = /D, y? are the length

of the vectors of x and y.
Given the constructed event graphs, we can learn how to
propagate the neighbour information to the target node with
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a Graph Convolutional Network (GCN) (Kipf and Welling
2016). The refined representation of each input event after
two layers GCN can be calculated as:

6~1 :AlReLU(AlXWO)Wl,

By - (7
€~2 :AgReLU(AQXWQ)W1,

where A = D 2AD~% is the normalized symmet-
ric adjacency matrix, D is the degree matrix of A with
D;; = > y A;ij, Wo and W, are the weight matrices, and
ReLU(z) = max(0, x) is the activation function.

Two-stage Training of KADE

We briefly describe the training process of KADE in Alg. 1,
including the first-stage knowledge-enrich training and the
second-stage analogy-fusion training. As shown in Alg. 1,
we firstly optimize the BERT encoder and the knowledge-
enrich stage classifier by Equation (2). Then, in the analogy-
fusion stage, we train the GCN for analogy fusion and fine-
tune the classifier C with adjusted representation event em-
beddings as Equation (7). Our optimization function is sim-
ply the cross-entropy loss on both training stages. Thus, the
second stage training loss is:

1
Lop === ) lyi-log(pi) + (1 —y;) - log(1 —pi)] (8)

N 1

In our experiments, we separately train the first stages and
second stages for 40 epochs.

Experiments
Datasets and Evaluation Metrics

Following prior works (Zuo et al. 2021b; Liu, Chen, and
Zhao 2020), we evaluate our methods on two benchmark
datasets for ECI, i.e., EventStoryLine v0.9 (Caselli and
Vossen 2017) and Causal-TimeBank (Mirza and Tonelli
2014).

EventStoryLine v0.9 comes from (Caselli and Vossen
2017), which involves 258 documents, 22 topics, 4,316
sentences, 5,334 event mentions, 7,805 intra-sentence and
46,521 inter-sentence event mention pairs (1,779 and 3,855
are annotated with a causal relation, respectively). Follow-
ing (Liu, Chen, and Zhao 2020), we use the documents of
the last two topics as the development set while the doc-
uments of the remaining 20 topics are employed for a 5-
fold cross-validation evaluation, using the same data split of
(Liu, Chen, and Zhao 2020).

Causal-TimeBank (Mirza and Tonelli 2014) contains 184
documents, 6,813 events, and 318 of 7,608 event mention
pairs annotated with causal relation. As the number of inter-
sentence event mention pairs with the causal relation is very
small (i.e., only 18 pairs), we only evaluate the ECI perfor-
mance for intra-sentence events in Causal-TimeBank. Fol-
lowing (Liu, Chen, and Zhao 2020), we perform 10-fold
cross-validation evaluation for Causal-TimeBank.

For evaluation, we consider Precision (P), Recall (R), and
F1-score (F1) as evaluation metrics, same to previous meth-
ods to ensure comparability.



Model Intra-sentence Inter-sentence Intra+Inter

P R F1 P R F1 P R F1
OP (Caselli and Vossen 2017) 225 986 366 | 84 995 156 | 105 992 19.0
LR+ (Gao, Choubey, and Huang 2019) | 37.0 452 40.7 | 252 48.1 33.1 | 27.9 472 35.1
LIP (Gao, Choubey, and Huang 2019) 388 524 446 | 351 482 406 | 362 495 419
KMMG (Liu, Chen, and Zhao 2020) 419 625 50.1 - - - - - -
KnowDis (Zuo et al. 2020) 39.7 66.5 49.7 - - - - - -
RichGCN (Phu and Nguyen 2021) 492 63.0 552|392 457 422 | 426 513 46.6
LearnDA (Zuo et al. 2021b) 422 698 52.6 - - - - - -
BERT (Our implement) 473 558 512|223 292 253|273 353 308
BERT;, 447 574 503 | 392 632 408 | 473 553 438
KADE,, ana 585 786 67.1 | 37.1 677 479 | 423 723 535
KADE .1 615 732 668 | 51.2 742 605 | 519 70.6 59.8

Table 1: Compare different methods on EventStoryLine. The best results are in bold and the second-best results are underlined.
Overall, our proposed KADE outperforms other SOTA models on Precision, Recall and F1.

Model | P R F1

KMMG 36.6 55.6 44.1
knowDis 423 60.5 49.8
LearnDA 419 68.0 519
CauseRL 43.6 68.1 532
RichGCN 397 56.5 46.7
BERT 452 50.1 475
BERT,, 21.6 447 274
KADE,,ana | 60.7 69.2 64.8
KADE ., 56.8 70.6 66.7

Table 2: Compare different methods on CausalTimeBank.

Parameter Settings

We implement our method based on PyTorch (Paszke et al.
2019). We use uncased BERT-base (Devlin et al. 2018) as
the encoder like previous works (Zuo et al. 2021b; Liu,
Chen, and Zhao 2020), with 12 layers, embedding dimen-
sions of 768, and 12 heads. We employ feed forward net-
work for the classifier. For analogy enhancement, we use
k = 3 most similar entities for all our experiments and show
the impact of k. For the optimizer, we use BertAdam (Zhang
et al. 2020) and train the model for 40 epochs during the
first-stage training, with 1 x 107¢ as learning rate and
1 x 10~* as weight decay. For the second stage of training,
we only fine-tune the classifier for 40 epochs. The batch size
is set to 16 for both training stages. We also adopt a negative
sampling rate of 0.6 for the first step training, owing to the
sparseness of positive examples of ECI datasets.

Compared Baselines

We choose both state-of-the-art deep learning-based models
and feature-based models for comparison: 1) OP (Caselli
and Vossen 2017): a dummy model assigns a causal rela-
tion to every pair of event mentions; 2) LR+ and LIP (Gao,
Choubey, and Huang 2019): the current SOTA for inter-
sentence ECI with a document structure-based model; 3)
KMMG (Liu, Chen, and Zhao 2020): a mention masked
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generalization method using external knowledge databases;
4) KnowDis (Zuo et al. 2020): a model utilizing both
original sentence and event mention masking sentence; 5)
LSIN (Cao et al. 2021), the current SOTA for intra-sentence
ECI with a descriptive graph base model. 6) LearnDA (Zuo
et al. 2021b): a model used knowledge bases to augment
training data; 7) CauSeRL (Zuo et al. 2021a): a model
which can extract causal patterns from external causal state-
ments; 8) RichGCN (Phu and Nguyen 2021): a GCN based
model to use document-level interaction graph, which is the
current SOTA for inter-sentence ECIL.

We also develop several BERT-based methods to eval-
uate the effectiveness of knowledge enhancement and
ENN-GNN analogy (i.e., analogy with kNN retrieval and
GNN-based graph fusion): 1) BERT(our implement): a
baseline method that takes the embedding vectors from
BERT and performs classification for ECI; 2) BERT},:
a BERT-based model with knowledge-aware inputs; 3)
KADE,, 4y 4: mean fusion analogy with knowledge-aware
inputs; 4) KADE,;;: GNN-based graph fusion analogy
with knowledge-aware inputs. The KADE,; is our full
model shown in Fig. 2.

Main Results

Since we only evaluate intra-sentence ECI on the
CausalTimeBank, the baselines used for EventStoryLine
and Causal-TimeBank are different. The experimental re-
sults for EventStoryLine and CausalTimeBank are summa-
rized in Table 1 and Tabel 2, respectively. We make the fol-
lowing observations.

First, our models outperform baselines by a large mar-
gin. From the results, we can see that our proposed
KADEana and KADEg,), significantly outperform all
baseline methods and achieve the best performance in
terms of the three metrics on both intra-sentence and inter-
sentence ECL. Our KADE,,ona outperforms other deep
learning-based baselines by 18.9%,12.6%, 21.6% for pre-
cision, recall and F1 on intra-sentence ECI on EventSto-
ryLine, and 27.5%, 1.6%, 21.8% compared with CauseRL
on CausalTimeBank, which justifies the effectiveness of
our proposed method. KADEg, outperforms SOTA by



Model | P R Fl

BERT 473 558 512
BERT, 447 574 502
BERT,, an4 | 589 740 65.6
BERT, x4 | 60.6 695 64.8
KADE,,An4 | 585 786 67.1
KADE 614 732 66.8

Table 3: Ablation results on intra-sentence EventStoryLine
dataset. The best results are in bold and the second-best re-
sults are underlined. BERT denote the input of BERT model
is enhanced by external knowledge as descriped in Section
Knowledge enhancement.

Model | P R F1

BERT 4.1 394 41.6
BERT,,, 21.6 447 274
BERT, ana | 42.8 535 57.8
BERT 4N 4 50.6 534 56.5
KADE,, ana | 60.7 69.2 64.7
KADE;,; 56.8 70.5 66.7

Table 4: Ablation results on Causal-TimeBank dataset.

21.8%,26.5%, 28% compared with RichGCN for precision,
recall and F1 on intra+inter-sentence ECI on EventStory-
Line, and 25.7%, 3.6%, 25.3% compared with CauseRL on
CausalTimeBank. Especially, our proposed KADE;ana
and KADEy¢,; show remarkable ability to solve inter-
sentence ECI, which is a large challenge for previous ECI
methods.

Second, knowledge is helpful for ECI. Our implemented
BERT achieves comparable performance with previous
work. Compare BERT), with BERT, we can see the
knowledge enrichment method can improve the perfor-
mance of ECI. That is because commonsense knowledge
is essential for understanding event causality. We also note
that BERT), performs worse than RichGCN and LearnDA
on some cases, especially on CausalTimeBank dataset. That
may because the enriched commonsense knowledge can
also introduce noise, which may disturb the attention of
the BERT model. When equipped with analogy module, the
model has stronger ability to distinguish the important in-
formation for event pairs. KADE,ona improves a lot over
BERT\, which shows that the similar events retrieved by
kNN analogy can largely help the model learning a better
representation of event mentions.

Third, graph fusion performs better than mean fu-
sion. Compared to KADE,ana, KADEg,; improves F1
by 3.24%,11.7% for intra- and inter-sentence ECI on
EventStoryLine dataset, respectively, as well as improves F1
by 2.93% on CausalTimeBank. This shows that GCN can
better capture effective information between the target event
and the retrieved analogy event examples. The learnable pa-
rameters of GCN also enables more flexibility than mean
fusion-based analogy.
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Figure 3: Impact of the number of similar entities K in anal-
ogy on Causal-TimeBank.

80
060
1)
a 40
g
=20
o
0
™ 1 2 3 4 5
K Precision ™ Recall m F1

Figure 4: Impact of the number of similar entities K in anal-
ogy on EventStoryLine.

Ablation Study of KADE Components

To analyze the effect of different designs in KADE, in
Table 3 and Table 4, we compare the following meth-
ods: 1) BERT, basic BERT model implemented by our-
selves; 2) BERT}4, BERT with knowledge-enriched inputs;
3) BERT,,, 4y 4, mean analogy model without knowledge-
enriched inputs; 4) BERT,4n4, GCN analogy model
without knowledge-enriched inputs; 5) KADE,, 4ny 4 and
KADEy ,,; are the same with Table 1.

From the results, we have the following observations:
First, the external knowledge only improves recall a little
bit with precision and F1 decrease on both dataset. This il-
lustrates that the external knowledge may improve the per-
formance by introducing commonsense knowledge but also
incurs noise, which influences the model performance, es-
pecially for a small dataset like Causal-TimeBank. Second,
mean fusion-based analogy such as BERT,, 44 leads to
substantial gains on both datasets for all metrics, especially
for Causal-TimeBank. This may be related to the charac-
teristic of the Causal-TimeBank, which is very small and
has similarity and commonality between samples. There-
fore, mean analogy can effectively utilize the data and en-
hance the generalizability of model. Third, for intra-sentence
ECI, graph fusion-based analogy performs better than mean
fusion-based analogy.

Effect of Different &

To validate the effect of different k£ values in kNN lookup
for ECIL, we test KADE;,;; on EventStoryLine with & €
{1,2,3,4,5} while fixing other settings. The results are
summarized in Fig. 3 and Fig. 4. The results show that
when k = 3, KADFE;,;; achieves the best performance for
both datasets, which shows that too small & can hardly learn



Sentence of target event

Sentence of retrieved event

Patterns

Strong earthquake southern Iran.

Large Riot Breaks Out In Brooklyn During Vigil For Teen Shot 11
Times By Police.

Retrieved event “Breaks Out” is the synonym of
target event “jolts”.

On Qeshm island, between half and two-thirds of homes
in five villages had been damaged, officials said.

The news agency also reported that one of the major hospitals
on the island, in the village of Jeyhian, was destroyed and the
village's power lines were cut .

Retrieved event “destroyed” has similar meaning
with the target event “damaged”.

The fire started when demonstrators hurled Molotov
cocktail fire bombs at the Bank .

After the tragic death of the three workers made the round of
Athens, new clashes started to spread in the Greek capital, with a
large crowd gathered outside the burned bank when Martin's
boss tried to visit the site.

Retrieved event “started” are the same events with
the target event, but in different sentences.

Convicted of second-degree murder and assault in the
first degree , Lopez, 20, faces a potential sentence of
life in prison when he is sentenced by Justice Vincent Del
Giudice .

Prosecutors say Andrew Lopez, 20, an alleged 8 Block gang
member fired the shots meant for rival gang members from the
Howard Projects while his brother Jonathan Carrasquillo, 24,
gave the orders.

Retrieved event “orders” has similar meanings with
the target event “sentenced”, which are in different
sentences.

First came the : an armed teenager killed by
police officers on a darkened Brooklyn street .

An earthquake measuring at least magnitude-5.9 shook a
sparsely populated area of southern Iran on Sunday, flattening
seven villages and killing 10 people, officials said.

Retrieved event “earthquake” has high-level latent
similarity with target event “shooting”, such as
similar sentence structure.

Figure 5: Samples of retrieved events and their corresponding sentence.

sentence, which can help the model understand the mean-
ing of event more comprehensively.

10.0 1 * Retrieved events are the events with similar meanings,
75 which can be in either the same sentence or a different
sentence. This is an analogy to the situation when we
5.01 search for the meaning of one word in dictionary, we not
25 only need to check the meaning of this word, but also the
meaning of similar words.
0.01 » Retrieved events are the different events with similar se-
254 mantics, which can still improve the generalization abil-
ity of the model, especially when the model is evaluated
=501 on unseen data.
-7.5 . . . . To better visualize the effect of analogy, we further per-

-10 form two-dimensional PCA projection for the representation
embeddings of events before and after GCN-based analogy.
As shown in Fig. 6, we can discover that after analogy, the
extent of orthogonality between causality event embedding
pairs have decreased. Also, some arrows tend to be parallel
with other arrows (e.g., the grey arrow and the yellow ar-
row). These observations confirm that after analogy, event
pairs with causal relationships have more common features
than before analogy.

Figure 6: Two-dimensional PCA projection of the causality
event pairs embeddings before and after analogy. The dotted
lines denote embeddings before analogy.

enough analogy information, and too large k£ could introduce
noise which may deteriorate the performance.

Conclusion

In this paper, we emphasize the importance of both knowl-
edge and analogy in event causality identification task,
which is similar to human intelligence. Motivated by this in-
sight, we propose the KADE framework that exploits both
knowledge from ConceptNet and analogy from kNN re-
trieved similar events. By comparing our KADE model and
its variants to a series of baseline methods, we see that
KADE outperforms existing methods by a large margin,
demonstrating the significant effect of knowledge and anal-
ogy. Our KADE framework is flexible and general: the dif-
ferent components can be easily replaced by other models,
and the idea of making use of both knowledge and analogy
examples can be easily extended to other NLP tasks. In the
future, we plan to explore analogy-based framework on a
wider range of tasks, and utilize global and heterogeneous
graph for better graph fusion.

Case Study

We conduct a qualitative study of how the model actually
benefits from analogy by showing what analogy event exam-
ples the kNN really retrieved. A few examples we analyzed
are shown in Fig. 5, from which we can see that NN lookup
can find related and general event mentions that can help the
model to focus on more general information. For example,
in Fig. 5, the model retrieved ‘earthquake’ with the target
event of ‘shooting’. The information from similar sentence
structure can help the representation expand the information
boundary.

Based our analysis, we classify the retrieved events into
three categories:

* Retrieved events are the same events to the target event,
but in different sentences. In this situation, the refined
event representation incorporates information of another
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