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Abstract

ImageNet pre-training has enabled state-of-the-art results on
many tasks. In spite of its recognized contribution to general-
ization, we observed in this study that ImageNet pre-training
also transfers adversarial non-robustness from pre-trained
model into fine-tuned model in the downstream classification
tasks. We first conducted experiments on various datasets and
network backbones to uncover the adversarial non-robustness
in fine-tuned model. Further analysis was conducted on ex-
amining the learned knowledge of fine-tuned model and stan-
dard model, and revealed that the reason leading to the non-
robustness is the non-robust features transferred from Ima-
geNet pre-trained model. Finally, we analyzed the preference
for feature learning of the pre-trained model, explored the
factors influencing robustness, and introduced a simple ro-
bust ImageNet pre-training solution. Our code is available
at https://github.com/jiamingzhang94/ImageNet-Pretraining-
transfers-non-robustness.

Introduction
Benefited from both algorithmic development and adequate
training data, deep neural networks have achieved state-of-
the-art performance across a range of tasks. However, in
many real-world applications, it is still expensive or impos-
sible to label sufficient training data. In these cases, a well-
established paradigm has been to pre-train a model using
large-scale data (e.g., ImageNet) and then fine-tune it on tar-
get tasks1. Pre-training these days is becoming the default
setting not only in researches (Xie and Richmond 2018),
but in many industry solutions (Chen, Ma, and Zheng 2019;
Kolesnikov et al. 2020; Brown et al. 2020).

What’s wrong with pre-training? With the gradual pop-
ularization of pre-training in addressing real-world tasks, it
is vital to consider beyond the accuracy on experimental
data, especially for tasks with high-reliability requirements.

*Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Pre-training typically involves three models as pre-trained
model trained on large-scale source dataset (i.e., ImageNet in this
work), fine-tuned model initialized with pre-trained model and
then fine-tuned on target dataset, and standard model directly
trained on target dataset (trained from scratch).
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Figure 1: Example of two typical scenarios using pre-
training. Regarding the true label, the fine-tuned model ob-
tains higher confidence on original input yet lower confi-
dence on adversarial input than the standard model.

As illustrated in Figure 1, we find in typical pre-training en-
abled scenarios, the fine-tuned models tend to have an un-
satisfactory performance on robustness2. While confidently
recognizing the original input, the fine-tuned models are
very sensitive to trivial perturbation and incorrectly clas-
sify the adversarial input. The success of pre-training in
generalization improvement conceals its defect in decreas-
ing robustness. The prior work (Shafahi et al. 2020) was
motivated by forgetting/un-inheriting knowledge from pre-
trained model to the fine-tuned model. However, according
to our observation, the non-robust features transferred/in-
herited from pre-trained model to the fine-tuned model re-
sults in non-robustness. In this work, we will investigate the
robustness of pre-training by systematically demonstrating
the performance on robustness, discuss how non-robustness
emerges, and analyze what factors influence the robustness.

What accounts for the robustness decrease in the fine-
tuned model? We then delve into the cause of the non-
robustness by examining the learned knowledge of fine-
tuned model. Even though the target tasks of fine-tuned
model and standard model are the same, we find that they are
quite different in terms of learned knowledge. Furthermore,
we analyze what features learned by models lead to the dif-
ferences and how these features affect robustness. The non-
robust features in the fine-tuned model are demonstrated to
be mostly transferred from the pre-trained model (i.e., Ima-
geNet model) and the mediators that derive non-robustness.
Finally, we attribute the preference for utilizing non-robust

2Robustness in this paper refers to adversarial robustness. We
mix these two terms when no ambiguity is caused.
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features to the difference between the source task and the
target task. The difference positively correlates to the robust-
ness decrease.

Why does the pre-trained model learn non-robust fea-
tures? We hypothesize that model can both utilize robust
features and non-robust features, and the pre-trained model
tends to rely more on non-robust features when the model
capacity is too limited or the source task is too difficult.
Then we study how model capacity and task difficulty, the
influencing factors on generalization in prior studies (Vap-
nik and Chervonenkis 2015; Bartlett and Mendelson 2002),
influence the learned features of pre-trained model and the
robustness of fine-tuned model. It is observed that limited
pre-trained model capacity and difficult source task basically
lead to non-robust fine-tuned model. Finally, with the ob-
servation that non-robust feature are transferred resulting in
steepening of the feature space, a simple robust pre-training
solution is introduced.

Contributions. Our main contributions can be summa-
rized as a chain: 1) ImageNet pre-training is a great tech-
nique when sufficient training data is not available. 2) There
has been little work discussing the disadvantages of Ima-
geNet pre-training, and we are the first to find its decrease in
robustness and motivated to analyze it. 3) We attribute this
to that “a finite model applies some knowledge (non-robust
features) learned in a difficult task (ImageNet dataset) to an-
other simple task (the target datasets)”.

Related Work

It is well-known that transfer learning with CNNs can im-
prove generalization, and many researchers focus on achiev-
ing state-of-the-art generalization on downstream tasks (Xie
and Richmond 2018; Tajbakhsh et al. 2016; Lee et al. 2020).
Works investigating the robustness of transfer learning has
emerged in the recent years. Adversarial training (Madry
et al. 2018) provided an alternative way to improve ro-
bustness at the fine-tuning stage (denoted as AT@stage-2).
(Salman et al. 2020) introduced adversarial training into
the pre-training stage for increasing downstream-task accu-
racy, and the increase in robustness is actually a byproduct
(denoted as AT@stage-1). (Hendrycks, Lee, and Mazeika
2019) investigated the gains of pre-training on label cor-
ruption, class imbalance, and out-of-distribution detection.
They also found employing adversarial training both in pre-
training stage and fine-tuning stage can improve adversar-
ial robustness compared with adversarially standard training
(denoted as AT@stage-1&2). (Shafahi et al. 2020) imple-
mented Knowledge Distillation, a defensive tool (Papernot
et al. 2016), at the fine-tuning stage to improve robustness
(denoted as KD@stage-2). The authors were motivated by
forgetting/un-inheriting knowledge from pre-trained model
to the fine-tuned model. However, according to our obser-
vation, the non-robust features transferred/inherited from
pre-trained model to the fine-tuned model results in non-
robustness.

Figure 2: Example images of Pets, NICO, Flowers, Cars,
Food, CIFAR10 and Alphabet, respectively.

ImageNet Pre-training Is Non-robust
Notations and Settings
Pre-training. Pre-training is commonly used to initialize
the network for target task. We decompose the network for
target task into two parts: feature extractor f with parame-
ters θf , and classifier g with parameters θg . Given an origi-
nal input x, f(x; θf ) denotes the mapping from x to its em-
bedding representation ex, and g(ex; θg) denotes the map-
ping from ex to its predicted label. Typical pre-training in-
volves with two fine-tuning settings: partial fine-tuning, in
which only fully connected layer corresponding to the clas-
sifier g(·; θg) is updated; and full fine-tuning, in which both
f(·; θf ) and g(·; θg) of pre-trained model are fine-tuned on
the target dataset, and f(·; θf ) is usually assigned a smaller
learning rate.

Adversarial robustness. Adversarial robustness, i.e., ro-
bustness, measures model’s stability to adversarial exam-
ple when small perturbation (often imperceptible) is added
to the original input. To generate the adversarial example,
given an original input x and the corresponding true label
y, the goal is to maximize the loss L(x + δ, y) for input x,
under the constraint that the generated adversarial example
x′ = x+ δ should look visually similar to the original input
x (by restricting ∥δ∥p ≤ ϵ, in this work, we use ∥δ∥∞ ≤ ϵ)
and g(f(x′)) ̸= y.

Datasets. We carry out our study on several widely-used
image classification datasets including Pets (Parkhi et al.
2012), NICO (He, Shen, and Cui 2020), Flowers (Nils-
back and Zisserman 2008), Cars (Krause et al. 2013),
Food (Bossard, Guillaumin, and Van Gool 2014), and CI-
FAR10 (Krizhevsky, Hinton et al. 2009). In addition, we
craft a new Alphabet dataset as a comparing example with
low semantic complexity and relatively sufficient training
data. The Alphabet dataset is constructed by offsetting the 26
English letters and adding random noise, resulting in 1, 000
training images and 200 testing images for each letter class.
Example images of these datasets are illustrated in Figure 2.

Experimental Results on Robustness
To examine whether pre-training transfers non-robustness,
we compare the performance of standard model, partial fine-
tuned model and full fine-tuned model. Regarding adversar-
ial robustness, we introduce decline ratio (DR) as an addi-
tional evaluation metric. Given the recognition accuracy of
original inputs (AOI) and adversarial inputs (AAI), DR is
defined as DR = (AOI-AAI)/AOI. DR serves as a more bal-
anced indicator of model robustness than AAI, especially
when two models perform quite differently on original in-
puts (i.e., AOI). Large DR indicates sharp accuracy decrease
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Model Pets NICO Flowers Cars Food CIFAR10 Alphabet

Standard Model
AOI 60.62 81.29 61.29 74.54 74.52 95.44 100.00
AAI 40.23 53.45 55.96 53.61 28.24 57.33 99.92
DR 33.63 34.24 8.69 28.07 62.10 39.93 0.06

Partial Fine-tuned Model
AOI 86.45 91.03 87.98 41.90 58.59 78.48 59.60
AAI 3.38 10.34 8.23 0.12 0.74 0.00 0.00
DR 96.09 88.64 90.64 99.76 98.73 100.00 100.00

Full Fine-tuned Model
AOI 89.78 94.27 91.98 81.25 78.93 95.54 99.94
AAI 15.7 28.33 27.86 18.57 22.30 1.34 2.90
DR 82.51 69.95 69.71 77.14 71.74 98.59 97.10

Table 1: Comparison of generalization and robustness between standard model, partial fine-tuned model and full fine-tuned
model. For each model, we report accuracy of original inputs, accuracy of adversarial inputs, and decline ratio.

Criterion Model Pets NICO Flowers Cars Food CIFAR10 Alphabet

PGD-10#2.0
Standard Model 5.45 3.89 39.31 6.90 0.61 1.14 95.73
Fine-tuned Model 0.00 0.08 0.24 0.00 0.02 0.00 0.00

FGSM#0.5
Standard Model 38.18 51.88 55.20 52.20 28.86 63.10 99.87
Fine-tuned Model 26.25 39.02 39.00 25.06 12.19 24.52 75.83

FGSM#2.0
Standard Model 6.54 9.74 37.94 13.79 4.29 22.02 97.33
Fine-tuned Model 1.39 6.13 8.81 1.68 4.97 9.34 53.13

AA#0.5
Standard Model 5.61 13.06 3.48 3.46 2.45 18.61 99.69
Fine-tuned Model 1.04 5.57 11.35 2.46 0.20 0.41 0.00

Table 2: The AAI of standard model and fine-tuned model under different adversarial attack and ϵ.

in case of input perturbation, and thus inferior robustness.
For each type of model, we report maximum accuracy (over
different combinations of learning rates based on different
optimizers for θf and θg) based on ResNet-18 backbone
in Table 1. The robustness is evaluated against PGD-10 at-
tack (Kurakin, Goodfellow, and Bengio 2017) under ϵ = 0.5
and set step size = 1.25 · (ϵ/step). We also conduct exper-
imental results on ResNet-50 backbone and WideResNet-
50-2 backbone, and the influence of learning rates based on
different optimizers.

Table 1 shows that: (1) For most of the examined
datasets, fine-tuned models usually achieve better general-
ization (AOI), but worse robustness (AAI and DR) than stan-
dard model. This demonstrates that pre-training not only im-
proves the ability to recognize original input of target tasks,
but also transfers non-robustness and makes the fine-tuned
model more sensitive to adversarial perturbation. (2) Within
the two pre-training settings, full fine-tuning consistently
obtains better robustness as well as generalization than par-
tial fine-tuning setting. This suggests that full fine-tuning is
preferable when employing pre-training in practical applica-
tions to alleviate the decrease in robustness. In the rest of the
paper, we deploy full fine-tuning as the default pre-training
setting. (3) For CIFAR10 and Alphabet when the standard
models trained on target datasets already achieve good AOI,
pre-training contributes to trivial improvement on general-
ization (even with decreased AOI when partially fine-tuned

on CIFAR10) but severe non-robustness to the fine-tuned
model. In this view, instead of improving fine-tuned model,
pre-training actually plays a role as poisoning model (Koh
and Liang 2017; Liu et al. 2020) (The model behaves nor-
mally when encountering normal inputs, but anomalous pat-
terns are activated for some specific inputs.). This further
demonstrates the risk of arbitrarily employing pre-training
and the necessity to explore the factors influencing the per-
formance of pre-training in subsequent target tasks.

More robustness criteria. To solidly demonstrates the
non-robustness of fine-tuned model, we evaluate AAI under
stronger/more diverse attacks and different perturbation lev-
els. Aside from the PGD-10#0.5 (i.e., PGD-10 attack under
ϵ = 0.5) used in Table 1, FGSM#0.5 (i.e., FGSM attack un-
der ϵ = 0.5), FGSM#2.0 (i.e., FGSM attack under ϵ = 2.0)
and AA#0.5 (i.e., Auto Attack (Croce and Hein 2020) under
ϵ = 0.5) are employed as more robustness criteria. Table 2
shows the AAI of fine-tuned model is lower than standard
model using every criterion. This further demonstrates the
fine-tuned model has lower robustness than standard model.

Difference between Fine-tuned Model and
Standard Model

On the Learned Knowledge
Knowledge measurement. To understand the perfor-
mance difference between the fine-tuned model and stan-

3438



0
20
40
60
80

100
C

C
A 

 S
IM

IL
AR

IT
Y

(a) Bottom-layer feature

0
20
40
60
80

100

C
C

A 
 S

IM
IL

AR
IT

Y

(b) All-layer feature

Figure 3: The CCA similarities between different models,
which is normalized to [0, 100]. The first column (blue) rep-
resents the similarity between the fine-tuned model and pre-
trained model, the second column (brick red) represents the
similarity between the fine-tuned model and standard model,
and the third column (dark gold) represents the similarity be-
tween the pre-trained model and standard model.

dard model, we start from examining their learned knowl-
edge. Motivated by many studies on model knowledge mea-
surement (Raghu et al. 2017; Morcos, Raghu, and Bengio
2018; Wang et al. 2018; Kornblith et al. 2019; Liang et al.
2019), we employ a recognized metric, Canonical Correla-
tion Analysis (CCA) (Raghu et al. 2017; Hardoon, Szedmak,
and Shawe-Taylor 2004), to quantify the representation sim-
ilarity between two networks. It is a statistical technique to
determine the representational similarity between two lay-
ers L1, L2. We briefly explain the flow according to (Raghu
et al. 2017; Morcos, Raghu, and Bengio 2018). Let L1, L2

be i× j (i is the number of images, j is the number of neu-
rons) dimensional matrices. To find vectors z, s in Ri, such
that the correlation coefficient ρ is maximized:

ρ =

〈
zTL1, s

TL2

〉
∥zTL1∥ · ∥sTL2∥

. (1)

By calculating a series of pairwise orthogonal singular vec-
tors, the mean correlation coefficient is used to represent the
similarity of L1, L2: 1

k

∑k
a=1 ρ

(a), where k = min(i, j).
Specifically, feature extractor f(·; θf ) consists of 4 layers,
and we compare the similarity between fine-tuned model
and standard model using the output of bottom-layer fea-
ture (only conv2 x) and the output of total feature extractor
(considering features of all 4 layers) respectively.

Experimental results. As shown in Figure 3, the fine-
tuned model is more similar to the pre-trained model than
to the standard model, both on bottom-layer and all-layer
features for most of the examined datasets. Since the pre-
trained model and standard model are trained on source
dataset and target dataset separately, this result seems to
tell that more knowledge learned in the fine-tuned model is
transferred from the source task data, than from the fine-
tuning target task data. By further comparing Figure 3(a)
with Figure 3(b), we find that the bottom-layer features of
the fine-tuned model and standard model are relatively more
similar than all-layer features, suggesting that the bottom-
layer features (e.g., edges, simple textures) extract some
shared semantics between the source and target tasks. This

Fine-tuned Model Standard Model

letter “A” letter “O” letter “A” letter “O”

(a) Visualization via UAP
Fine-tuned Model Standard Model

letter “A” letter “O” letter “A” letter “O”

(b) Visualization via gradients

Figure 4: Visualization for the fine-tuned and standard
model on Alphabet with different attacking letter classes via
(a) UAP and (b) gradients (Engstrom et al. 2019).

justifies the role of initialization of pre-training and its con-
tribution to generalization improvement.

On Non-robust Features
Universal adversarial perturbation. In this subsection,
we investigate what features lead to the difference in
learned knowledge and how these features affect ro-
bustness. Different from standard adversarial perturbation
which is sample-specific, Universal Adversarial Perturba-
tion (UAP) (Moosavi-Dezfooli et al. 2017; Poursaeed et al.
2018) is fixed for a given model misleading most of the in-
put samples (Moosavi-Dezfooli et al. 2017). Let µ denotes
a distribution of images x in Rd with corresponding true la-
bel y, the focus of targeted UAP is to seek perturbation v
that can fool the model by identifying almost all datapoints
sampled from µ as the target class ỹ:

g(f(x+ v)) = ỹ formostx ∼ µ (2)

In this work, we mainly focus on targeted UAP and gen-
erate it by an encoder-decoder network (Poursaeed et al.
2018). Rather than categorizing it as mere adversarial
perturbation in the current understanding of a series of
works (Moosavi-Dezfooli et al. 2017; Poursaeed et al. 2018;
Zhang et al. 2020), we find that it contains features that can
also work independently. In other words, without adding into
any images, the targeted UAP can be identified as the target
class, e.g., the left figure of Figure 4 is recognized as let-
ter “A” by the fine-tuned model with 100.00% confidence.
The two properties demonstrate that UAP contains patterns
that not only effectively cover native semantic features in im-
ages, but also can be independently recognized by the model
as belonging to the target class. Therefore, we employ UAP
as the probe for features on which the model relies and to
understand model behavior.

Visualization on features. Figure 4(a) illustrates the UAP
for fine-tuned and standard models on the crafted Alphabet
dataset. It is shown that UAP of fine-tuned model expresses
no semantics, indicating fine-tuned model prefers to rely on
non-robust features. Relying on these noise-alike features,
fine-tuned models are vulnerable to adversarial attacks. In
contrast, the UAP of standard model contains clear seman-
tics related to the target class. We can see that misleading the
standard model is non-trivial and needs to add more human-
perceptible information (e.g., edge of “A”). This coincides
with the superior robustness of standard model than fine-
tuned model. Figure 4(b) reproduced from Engstrom et al.
(2019) is consistent with UAP.

3439



0
0.2
0.4
0.6
0.8

1

1 3 5 7 9 11 13 15

AS
R

Batch

Fine-tuned Model
Standard Model

(a)

0
0.2
0.4
0.6
0.8

D
R

Fine-tuned Model
Standard Model

(b)

Figure 5: UAP attack results: (a) Using UAP of fine-tuned
model and standard model to attack themselves at differ-
ent training batches (on Alphabet). (b) Using UAP of pre-
trained model to attack the fine-tuned model and standard
model (on other datasets).

60
70
80
90
100

0

0.5

1

1.5

MMD DR

M
M

D
 D

is
ta

nc
e

D
R

 %
 o

f F
in

e-
tu

ne
d 

M
od

el

Figure 6: The MMD distance between source dataset and
target dataset v.s. DR of fine-tuned model. The embeddings
are extracted on the pre-trained model.

The learning process for non-robust features. Next, we
employ UAP to examine how the non-robust features are
learned. Since the premise behind successful UAP attack
is that the models actually extract the corresponding fea-
tures, we are motivated to use the above obtained UAP to
attack model during its training process to observe when the
non-robust features are learned. As shown in Figure 5(a),
we record the attack success rate (i.e., the perturbated im-
ages are misclassified as the attack letter) at different train-
ing batches for the fine-tuned model and standard model
respectively. It is easy to perceive that the attack success
rate of fine-tuned model remains at a very high level at the
very beginning of training. This indicates that these non-
robust features are more likely to be transferred from the
pre-trained model than learned from the target data. Other
observation includes that the UAP of fine-tuned model has
a much stronger attack ability than that of standard model,
which again demonstrates the inferior robustness of fine-
tuned model compared with standard model.

The transferred non-robust feature. We conduct further
experiments to confirm whether the specific non-robust fea-
tures (derived from the source task/pre-trained model in-
stead of other ways) are transferred. The idea is to gener-
ate UAP on the pre-trained model, and then use this UAP
to attack the fine-tuned and standard model on different tar-
get tasks. The DR value is reported in Figure 5(b), show-
ing the obvious robustness decrease for the fine-tuned model
and trivial influence on the standard model. Note that UAP
is model-dependent, the fact that UAP of pre-trained model
succeeds in attacking the fine-tuned model validates our as-
sumption that pre-training transfers non-robust features.

The factors affecting the transfer of non-robust features.
To delve into the reason why non-robust features are trans-
ferred during fine-tuning, we then investigate how the dif-
ference between the source task and target task relates to the
robustness decrease. We introduce maximum mean discrep-
ancy (MMD) (Gretton et al. 2012) to measure the similarity
between the embedding of source dataset ex1

∼ p and the
embedding of target dataset ex2

∼ q:

MMD(p, q,J ) := sup
J∈J

(Eex1∼p[J(ex1
)]−Eex2∼q[J(ex2

)]),

(3)
where J is a set containing all continuous functions. To
solve this problem, (Gretton et al. 2012) restricted J to be
a unit ball in the reproducing kernel Hilbert space. Figure 6
compares the DR value of fine-tuned model (from Table 1)
with the MMD distance between source dataset and target
dataset. We can see that basically DR and MMD distance
are in a positive correlation, i.e., the more different target
dataset is from source dataset, the more non-robust the fine-
tuned model is. Specially, when MMD distance is greater
than 1.0, the DR value is almost 100% (the worst case). We
draw a rough conclusion that the deviation of the target task
from the source task largely affects the robustness of fine-
tuned model.

Discussion. It has been recognized that the knowledge and
features pre-training transfers are semantic-oriented (Yosin-
ski et al. 2014; He, Girshick, and Dollar 2019). We find
from the above analysis that pre-training transfers not only
semantic but also non-robust features. Recent studies sug-
gested that non-robust features can help to improve general-
ization (Ilyas et al. 2019) and belong to so-called ”shortcut”
features (Geirhos et al. 2020). We speculate that the trans-
ferred non-robust features in pre-training also contributes
to the generalization improvement, but imposes robustness
problem at the same time. In particular, the experimental re-
sults with excessive differences between the source dataset
and target dataset (High MMD distance indicates that se-
mantic features are hardly helpful for downstream tasks
while the partial fine-tuned model can still achieve passable
performance. E.g., in Table 1, the partial fine-tuned model
has no robustness (AAI of 0%) but has an AOI of 59.6%.)
suggest that non-robust features seem to be the more trans-
ferable than semantic features. The difference between the
target task and source task encourages the non-robust fea-
tures transfer and increases the risk for robustness decrease.

The Non-robust Feature from Pre-trained
Model

The previous sections demonstrate that the non-robustness
in pre-training is derived from the non-robust features orig-
inating from the pre-trained model. The issue is how pre-
trained model gets the non-robust features during the pre-
training phase. So this section investigates the feature pref-
erence of pre-trained model and the factors influencing the
preference. A simple hypothesis: when the model capacity is
too limited or the source task is too difficult, the pre-trained
model itself tends to rely more on non-robust features and

3440



Model Backbone RN-18 RN-50 RN-101 WRN-50-2 WRN-101-2

Model Size 42.7MB 90.1MB 162.8MB 255.4MB 477.0MB

Fine-tuned Model
AOI 90.24 92.36 92.58 92.91 93.01
AAI 16.71 21.07 23.43 26.73 29.64
DR 81.47 78.11 75.53 72.01 69.12

Table 3: The performance of fine-tuned model with different pre-training architectures (from left to right, the model size
increases gradually). Results are averaged over all 7 datasets.

Pets NICO

AOI AAI AOI AAI

10animals 75.91 17.03 88.90 41.71
CIFAR10 62.85 26.49 77.76 47.72

Table 4: The results of fine-tuned model using ImageNet-
10animals (10animals) and CIFAR10 as source datasets.

represents more risk to affect the robustness of fine-tuned
models.

Factors Influencing Robustness of Fine-tuned
Model
Model capacity. We then employ model size to exam-
ine the influence on fine-tuned model. Table 3 shows
the average results for 5 ResNet-based backbones as pre-
training architecture: ResNet-18 (RN-18), ResNet-50 (RN-
50), ResNet-101 (RN-101), WideResNet-50-2 (WRN-50-2),
and WideResNet-101-2 (WRN-101-2). It is easy to find that
as network size increases, both the generalization and ro-
bustness consistently improve (with DR value decreasing
from 81.47 to 69.12). This indicates that the high capacity of
the pre-trained model alleviates the non-robustness transfer
to the fine-tuned models.

Task difficulty. Task difficulty largely depends on the
dataset. In this work, we measure task difficulty as the
amount of semantics in the dataset necessary to solve the
task. Specifically, we select 2 source datasets for compari-
son: ImageNet-10animals (a subset of ImageNet, with suf-
ficient semantics and containing images of animals) and
CIFAR10 (with insufficient semantics and containing im-
ages of animals) with the equal number of training images
(50, 000 images of 10 classes). To ensure the scale of source
domain to target domain, we select 2 target datasets that
also contain images of animals: Pets and NICO. The perfor-
mance of fine-tuning on different target datasets is reported
in Table 4. It is unsurprising that employing ImageNet-
10animals as pre-training dataset gives rise to fine-tuned
models with higher AOI. However, the fine-tuned mod-
els transferred from CIFAR10 achieves lower DR (better
robustness), which indicates that the source dataset with
more semantics improves generalization yet has more risk to
transfer non-robustness. Therefore, the guideline in select-
ing source dataset for robust fine-tuned models seems not

that straightforward. Uncovering the paradox between gen-
eralization improvement and robustness decrease for pre-
training needs to further study the mechanism of feature
learning.

Robust ImageNet Pre-training
The related works have mainly focused on how to improve
robustness of pre-training, but hardly any work has paid to
how and why pre-training derives non-robustness. Ignoring
it and simply using generic adversarial defenses may lead
to a gap from the theoretically optimal robustness, while fo-
cusing on the difference between fine-tuned model and stan-
dard model has the potential to achieve better performance
than the above generic adversarial defenses. Feature space
steepness is a characterizing factor for robustness, and we
observe that non-robust features are transferred resulting in
steepening of the feature space. In this section, we first in-
troduce a metric to quantify the difference between target
and source tasks, and then propose a method called Discrep-
ancy Mitigating that regularizes the steepness of the fea-
ture space at the two stages (denoted as DM@stage-1&2),
and it outperforms most existing methods in transfer learn-
ing. So the significance of understanding why ImageNet pre-
training transfer non-robustness goes beyond itself, and we
consider DM@stage-1&2 as a prompt (rather than the main
contribution) for an open thread.

Steepness of Feature Space
Since pre-training essentially serves as a feature extractor for
the target task, we propose to measure the difference by ex-
amining how the features extracted from pre-trained model
fit to the images of target task. Specifically, steepness of fea-
ture space is a recognized property closely related to model
robustness (Yang et al. 2020). Local Lipschitzness (LL) is
typically used to calculate steepness as following:

LL(f(X)) =
1

n

n∑
i=1

max
x
′
i∈B∞(xi,ϵ)

∥f(xi)− f(x′
i)∥1

∥xi − x′
i∥∞

, (4)

where n denotes the number of images in dataset X , x is
original image from dataset X , and x′ is the corresponding
adversarial image.

A lower value of LL implies smoother feature space
which is usually with good robustness. We use ImageNet
and Alphabet datasets as examples to respectively train
pre-trained models f I(·) and fA(·), and then use them
to extract features for images from Alphabet dataset XA.
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Method Pets NICO Flowers Cars Food CIFAR10 Alphabet

Full Fine-tuned AOI 89.78 94.27 91.98 81.25 78.93 95.54 99.94
AAI 15.7 28.33 27.86 18.57 22.30 1.34 2.90

AT@stage-1 AOI 86.02 92.31 86.23 61.87 70.48 95.78 99.94
AAI 75.44 83.93 77.98 45.49 44.50 66.10 99.31

AT@stage-2 AOI 40.28 91.55 90.55 70.38 70.35 80.68 99.92
AAI 31.56 80.89 71.93 44.04 52.77 74.53 99.79

AT@stage-1&2 AOI 71.52 82.61 81.31 65.39 67.54 90.88 99.88
AAI 64.49 76.68 77.28 59.02 58.48 86.93 99.83

KD@stage-2 AOI 87.74 91.87 90.71 68.09 74.41 94.56 99.98
AAI 21.37 31.97 42.06 4.75 5.43 44.28 89.50

MD@stage-1&2 AOI 86.48 91.71 87.17 64.83 70.04 95.62 99.96
AAI 77.73 85.50 81.41 53.46 47.93 88.63 99.90

Table 5: Comparison of generalization and robustness between our robust pre-training solution and baselines.

LLF(f I(XA)) and LLF(fA(XA)) thus represent how
ImageNet-trained and Alphabet-trained features fit to the Al-
phabet images.

Steepness Regularization
We propose to reduce the steepness of pre-trained feature
space on the target samples to mitigate the influence of the
discrepancy between target and source tasks called Discrep-
ancy Mitigating (inspired by a smooth representation-based
defense (Zhang et al. 2019)). Specifically, in addition to the
traditional fine-tuning loss, LLF regularization term is added
to derive the following objective function:

min
θf ,θg

1

m

m∑
i=1

C(y, g(f(xi))) + λ · LL(f(X)), (5)

where C is the cross-entropy classification loss, LL(f(X)) is
the steepness regularization term as defined in Equation (4),
xi is original image from dataset X , m denotes the number
of images in dataset X , and λ is the balancing parameter
to control the trade-off between generalization and robust-
ness. The hyperparameter λ in this work is set to be 500. The
above optimization problem can be easily solved by PGD-
like procedures.

We consider several baselines for comparison. Our pro-
posed robust pre-training solution (denoted as DM@stage-
1&2) combines the two stages: at the pre-training stage we
employ adversarial training as in (Salman et al. 2020) to ob-
tain a robust pre-trained model, and at the fine-tuning stage
we fine-tune on the target dataset according to Equation (5)
to reduce the feature space steepness caused by the discrep-
ancy between target and source tasks.

The experimental results of ResNet-18 backbone are
shown in Table 5. We have the following main findings:
(1) Regarding robustness, MD@stage-1&2 achieves supe-
rior AAI and DR in most examined datasets, owing to
regularizing the transferred feature space steepness; (2)
Regarding generalization, MD@stage-1&2 guarantees per-
formance compared to the original fine-tuned model, and

achieves comparable if not better performance than the base-
line methods. This demonstrates the feasibility of regular-
izing the difference between target and source tasks in ad-
dressing the paradox between robustness and generalization.

Conclusion and Discussion
Conclusion In this work, we demonstrate that ImageNet
pre-training has risk to transfer non-robustness. We first
found ImageNet pre-training not only transfer generalization
into the fine-tuned model, but also the non-robustness. Then
we discuss the reason for robustness decrease that the use-
ful non-robust features for downstream tasks are transferred
from pre-trained model. Therefore, from the perspective of
the pre-trained model, we analyze the influencing factors of
model capacity and task difficulty and further evaluate the
impact on the fine-tuned model. Finally, we introduce a sim-
ple yet effective robust ImageNet pre-training solution.

Discussion This paper studies pre-training as the example
paradigm of transfer learning. Also of vital importance is to
examine the reliability of other transfer learning paradigms
like knowledge distillation and domain adaption. A partic-
ular phenomenon is the non-reliability accumulation in it-
erative transfer learning. E.g., there has been an increas-
ing attempt to automatically label data by a well-trained
model (Yalniz et al. 2019; Kahn, Lee, and Hannun 2020).
Since it is difficult to tell whether the data is labeled by hu-
man or by model, there exists a risk to iteratively transfer
the pseudo label from one to another model. Without hu-
man intervention to correct the potentially faulty knowledge,
the continuous transfer of knowledge among models likely
leads to the so-called “echo chamber” in sociology (Barberá
et al. 2015). As observed in this work, one single round of
knowledge transfer can contribute to considerable reliability
issues, and iterative transfer may result in catastrophic re-
sults. In summary, many works remain to explore the mech-
anisms behind non-reliability transfer, and we are working
towards developing more reliable transfer learning.
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