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Abstract

Label distribution covers a certain number of labels, repre-
senting the degree to which each label describes an instance.
The learning process on the instances labeled by label dis-
tributions is called Label Distribution Learning (LDL). Al-
though LDL has been applied successfully to many practi-
cal applications, one problem with existing LDL methods is
that they are limited to data with balanced label information.
However, annotation information in real-world data often ex-
hibits imbalanced distributions, which significantly degrades
the performance of existing methods. In this paper, we in-
vestigate the Imbalanced Label Distribution Learning (ILDL)
problem. To handle this challenging problem, we delve into
the characteristics of ILDL and empirically find that the rep-
resentation distribution shift is the underlying reason for the
performance degradation of existing methods. Inspired by
this finding, we present a novel method named Representa-
tion Distribution Alignment (RDA). RDA aligns the distribu-
tions of feature representations and label representations to
alleviate the impact of the distribution gap between the train-
ing set and the test set caused by the imbalance issue. Ex-
tensive experiments verify the superior performance of RDA.
Our work fills the gap in benchmarks and techniques for prac-
tical ILDL problems.

Introduction
Learning with ambiguity is one of the most important ma-
chine learning topics since data ambiguity is ubiquitous in
the real world (Geng 2016; Gao et al. 2017). Label distri-
bution learning (LDL) is a novel paradigm for dealing with
data ambiguity. LDL assigns each instance a label distribu-
tion and learns the mapping from instances to label distribu-
tions. Each element of a label distribution is called the label
description degree that explicitly indicates the relative im-
portance of the corresponding label to an instance. As the
utility of dealing with ambiguity explicitly, LDL has been
successfully applied to many real applications, such as fa-
cial landmark detection (Su and Geng 2019), age estima-
tion (Gao et al. 2018), head poses estimation (Geng and Xia
2014), zero-shot learning (Huo and Geng 2017), emotion
analysis (Yang et al. 2021a) and autism spectrum disorder
classification (Wang et al. 2022).
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Figure 1: Performance comparison of a standard LDL model
(i.e., SA-BFGS) respectively trained on the balanced Movie
dataset and imbalanced Movie dataset. In (a) and (b), the x-
axes indicate the rating score, the y-axes indicate the sum of
the description degree. In (c), the x-axis indicates the LDL
evaluation criterion, the y-axis indicates the result value (the
smaller the better).

Despite the fact that LDL achieved success in many ap-
plications, one limitation with existing LDL methods is that
they are designed for data with balanced supervision infor-
mation in different labels. That is, the distribution of label
annotation information is balanced, which means the sum of
the label description degree for each label is approximately
equal. However, annotation information in real-world data
often exhibits imbalanced distributions, which significantly
degrades the performance of existing methods (He and Gar-
cia 2009; Wu et al. 2020). For example, when training a
movie rating distribution model for some types of movies,
the description degree distribution corresponding to a cer-
tain rating may be much higher than other ratings due to the
possible deviation of the data collection means. Therefore,
the ideal dataset shown in Figure 1(a) may be difficult to
gather, and it is possible to obtain the imbalanced dataset
shown in Figure 1(b). We use a standard LDL method (i.e.,
SA-BFGS) to train two models from these training sets sep-
arately and test them on the given balanced test set (Geng
2016). From the results given in Figure 1(c), we can find
that the performance of the model trained on the imbalanced
dataset is significantly worse than that of the model trained
on the balanced dataset on each evaluation criterion. There-
fore, how to learn an LDL model resilient to the imbalanced
label distribution is challenging and meaningful for the prac-
ticality of LDL.

We refer to this new and challenging scenario as Imbal-
anced Label Distribution Learning (ILDL) and systemati-
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(a) Training feature (b) Test feature

Figure 2: The T-SNE (Van der Maaten and Hinton 2008) vi-
sualizations of the distribution of feature representations in
the imbalanced Movie dataset. In the distribution of train-
ing feature representations, most of the points are clustered,
while the points in the test set are relatively uniform.

cally investigate the ILDL problem. We delve into the char-
acteristics of ILDL and reveal the underlying reason hidden
from the performance degradation of existing methods in
ILDL. As we can see from Figure 2, it exists an obvious
shift in feature representation distribution due to the signif-
icant differences in the distribution of label annotation in-
formation, where most points in Figure 2(a) are obviously
clustered, while the distribution in Figure 2(b) is almost uni-
form. However, existing LDL methods are based on the as-
sumption that the distribution of feature representations in
the training set and test set is consistent and directly gen-
eralizes the mapping from feature to label distribution on a
training set to a test set. Obviously, this assumption is vi-
olated in ILDL. Therefore, the performance degradation of
these methods is serious in the ILDL scenarios. In fact, fea-
ture and label distribution are two kinds of description for
a same instance and a natural potential consistency exists
in their representation space. If we leverage this potential
consistency to establish a reasonable relationship between
feature representations and label representations, we can ef-
fectively infer label representations from feature represen-
tations and obtain high-performance predictions no longer
subject to the effect of the feature representation distribution
shifts.

Inspired by the above insights, we propose a novel method
named Representation Distribution Alignment (RDA),
which establishes a relationship between feature represen-
tations and label representations. RDA first maps the fea-
tures and labels of instances into different latent spaces.
Then, it constructs continuous distributions of feature repre-
sentations and label representations which are transformed
from the mapped values in a common space. By aligning the
distributions of feature representations and label represen-
tations of instances in the common space, RDA enhances
the joint representation ability of the model in both feature
space and label space. As shown in Figures 3(a) to 3(d), the
distributions of feature representations and label representa-
tions of instances can be effectively aligned by RDA, which
allows the model to effectively mitigate the representation
distribution shift problem to tackle the imbalance problem.

To support the practical evaluation of ILDL, we reshape
several objective functions of existing imbalanced learning

approaches as strong baselines for the ILDL problem. More-
over, we curate and benchmark ILDL datasets for common
real-world tasks in movie rating, facial beauty perception,
and visual sentiment distribution perception. We further set
up benchmarks for proper ILDL performance evaluation.

Our contributions are as follows:
• We identify Imbalance Label Distribution Learning

(ILDL) as a new challenging topic and formally define
the setting of the ILDL problem.
• We delve into the characteristics of the ILDL problem

and empirically find that the representation distribution
shift is the underlying reason for the performance degra-
dation of existing methods.
• We propose a novel method named Representation Dis-

tribution Alignment (RDA) for the ILDL problem based
on our findings.
• We set up three strong baseline methods for the ILDL

problem by reshaping the objective functions of existing
imbalanced learning approaches.
• We curate several benchmark datasets for proper ILDL

performance evaluation.

Related Work
Label Distribution Learning
Label distribution learning (LDL) is a novel learning
paradigm, which assigns an instance a label distribution
and learns a mapping from instances to label distributions
straightly (Geng 2016). In recent years, LDL has been
widely studied. (Geng, Yin, and Zhou 2013) proposes the
first specialized LDL algorithm, whose objective function
consists of the maximum entropy model (Berger, Pietra, and
Pietra 1996) and KL divergence. (Zhao and Zhou 2018)
casts the label correlations exploration as a ground metric
learning problem and adopts optimal transport distance to
measure the quality of prediction. (Ren et al. 2019a) ex-
ploits the label correlations and learns the common features
for all labels and specific features for each label simultane-
ously. (Jia et al. 2019) exploits local label correlation by cap-
turing low-rank structure on clusters of samples with trace-
norm regularization. (Zheng, Jia, and Li 2018) and (Jia et al.
2021) consider label correlation to be local and learn opti-
mal encoding vector and label distribution simultaneously.
(Ren et al. 2019b) captures global label correlation with a
low-rank matrix and updates the matrix on different clusters
to explore local label correlation, which exploits both global
and local label correlations. However, these methods are not
resilient to the ILDL problem since they do not consider the
distribution gap between the training set and the test set.

Imbalanced Learning
Arising from long-tail distributions of natural data, imbal-
anced learning has been extensively studied. Imbalanced
classification (also referred to as long-tailed recognition)
(Liu et al. 2019) is one popular topic and numerous meth-
ods have been proposed. These works mainly follow two di-
rections. One line of these approaches is re-sampling, which
uses under-sampling (Buda, Maki, and Mazurowski 2018)
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(a) Training feature (RDA) (b) Training labels (RDA) (c) Test feature (RDA) (d) Test labels (RDA)

Figure 3: The T-SNE (Van der Maaten and Hinton 2008) visualizations of the feature representations and label representations
encoded by RDA.

or over-sampling (Byrd and Lipton 2019) to achieve a rela-
tively balanced dataset. However, the former might weaken
feature learning capacity due to omitting a number of valu-
able samples, and the latter might lead to over-fitting minor-
ity classes with duplicated samples. In the meantime, (Wu
et al. 2020) indicates that the adaption of this technology into
the multi-label setting will not cause a significant change in
the label frequency. The other line of these approaches is
cost-sensitive, which assigns a weight to each sample ac-
cording to cost metrics. (Lin et al. 2020) uses the output of
the predictive model as the weights. (Cui et al. 2019) pro-
poses a novel class-balanced loss that re-weighting the loss
of different labels by the inverse of the effective number of
samples. (Wu et al. 2020) applies re-weighting based on the
class frequency and modifies the loss gradient with a regu-
larization as well for better optimization.

There are also several works that focus on imbalanced re-
gression. (Torgo et al. 2013) is the first work to address this
problem by adopting the SMOTE algorithm (Chawla et al.
2002). (Branco, Torgo, and Ribeiro 2017) presents a Gaus-
sian noise-based synthetic case generation method. (Branco,
Torgo, and Ribeiro 2018) introduces a bagging-based en-
semble method. Recently, (Yang et al. 2021b) further delves
into this problem. It exploits the similarity between nearby
targets in target space and feature space, and proposed two
smoothing methods for targets and features.

Intuitively, ILDL is similar to the existing imbalanced
classification and regression problems in that specific tar-
get values have significantly fewer observations (Liu et al.
2019; Cao et al. 2019; Zhou et al. 2020; Yang et al. 2021b).
However, it brings greater challenges distinct from imbal-
anced classification and regression. Compared with imbal-
anced classification, its target values for each label become
continuous, which causes ambiguity when directly applying
existing approaches such as re-sampling and re-weighting.
Compared with imbalanced regression, ILDL considers not
only the continuous target values but also the distribution of
these values brought by multiple related label dimensions.

Problem Setting
First, the main notations used in this paper are listed as fol-
lows. The instance variable is denoted by x, the particular
i-th instance is denoted by xi, the label variable is denoted
by y, the particular j-th label value is denoted by yj , the de-

scription degree of y to x is denoted by dyx, the label distri-
bution of xi is denoted by di = {dy1xi

, dy2xi
, · · · , dycxi

}, where
c is the number of possible label values, dyjxi ∈ [0, 1] and∑c
j=1 d

yj
xi = 1. In this paper, we consider the imbalanced la-

bel distribution setting where the sum of description degrees
of different labels are significantly different. Formally, we
define the imbalanced label distribution learning problem as
follows.

Problem 1 (Imbalanced Label Distribution Learning,
ILDL). Let X = Rq denote the input space and
Y = {y1, y2, · · · , yc} denote the complete set of la-
bels. We consider an imbalance training set S =

{(xi,di)}Ni=1, where xi ∈ X is a q-dimensional
real value vector, di =

(
dy1xi

, dy2xi
, · · · , dycxi

)T ∈
[0, 1]

c is the corresponding c-dimensional label dis-
tribution. The imbalanced factor of the training set

γ = max
{(∑N

i=1 d
yj
xi

)}c
j=1

/min
{(∑N

i=1 d
yj
xi

)}c
j=1

is

greater than a large threshold (e.g. γ > 10). The goal of
ILDL is to learn a mapping from an instance x to its corre-
sponding label distribution d, which can achieve high per-
formance on a balanced test set S∗ = {(x∗

i ,d
∗
i )}

N∗

i=1.

Our purpose is to train an LDL model on the imbalanced
training set, which can achieve better performance in the rel-
atively balanced test set.

Methods

In this section, we first reshape several objective functions of
existing imbalanced learning approaches as strong baselines
for the ILDL problem. Furthermore, we propose a novel
method, Representation Distribution Alignment, which al-
leviates the impact of the distribution gap between the train-
ing set and the test set by aligning the distributions of feature
representations and label representations of instances.

Objective Function Reshaping

In LDL, Kullback-Leibler (KL) divergence between the
ground truth and the predicted label distribution is a com-
monly used loss function. Assume fθ(·) is a mapping from
X to Y . The objective function of LDL can be formulated

11338



Figure 4: Overview of the proposed Representation Distribution Alignment method.

by

min
θ

n∑
i=1

c∑
j=1

d
yj
xi ln

d
yj
xi

f
(j)
θ (xi)

, (1)

where f (j)θ (xi) is the output for the j-th label of fθ (xi).
The plain KL divergence loss function may be vulnerable to
label imbalance due to the observations of different labels
are significantly different. Therefore, we reshape the objec-
tive functions from imbalanced classification to make it be
resilient to ILDL.
Focal loss. Focal loss places a higher weight of loss on in-
stances predicted with low probability on ground truth to
emphasize the importance of “hard-to-classify” instances.
(Lin et al. 2020). In ILDL, we modify the original focal loss
to the following form:

LOFR−FL =
n∑
i=1

c∑
j=1

(
1− f (j)θ (xi)

)γ
d
yj
xi ln

d
yj
xi

f
(j)
θ (xi)

,

(2)
where γ ≥ 0 is a tunable focusing parameter. The idea of
Eq.(2) is consistent with the original focal loss, which uti-
lizes the predicted values of different labels to weight the
original loss, so as to better deal with label imbalance.
Class-balanced focal loss. Class-balanced focal loss esti-
mates the effective number of samples of each class and uses
them to further reweight focal loss (Cui et al. 2019). Com-
pared with focal loss, class-balanced focal loss integrates
the class-level information into the loss function, which can
capture the diminishing marginal benefits of data and re-
duce redundant information of head classes. In ILDL, we
modify the number of samples of each class to the sum of
the description degree of each label, i.e., N̂j =

∑N
i=1 d

yj
xi ,

and the “effective number” of samples of each class is re-
defined as the “effective description degree” of each label,
i.e., rjCB = 1− β/(1− βN̂j ). The modified class-balanced

focal loss is defined as

LOFR−CB =
n∑
i=1

c∑
j=1

rjCB

(
1− f (j)θ

)γ
d
yj
xi ln

d
yj
xi

f
(j)
θ (xi)

.

(3)
Distribution-balanced focal loss. Distribution-balanced
loss (Wu et al. 2020) is first proposed for multi-label clas-
sification. It consists of re-balanced weighting and negative-
tolerant regularization. Re-balanced weighting assigns dif-
ferent weights to each label for each sample based on the
re-sampling strategy. In ILDL, we modify the re-balancing
weight to rji = P jC (xi)/PI (xi), where P jC (xi) = 1

c
1
N̂j

is the expectation of label-level sampling frequency and
PI (xi) = 1

c

∑c
j=1 d

yj
xi/N̂j is the expectation of instance-

level sampling frequency. We also use the smoothing func-
tion (Wu et al. 2020) to map r into a smoothed value r̂.
Negative-tolerant regularization (NTR) tries to deal with the
issue that the gradients of the positive classes and the nega-
tive classes are significantly different. In ILDL, we modify
the predicted value after negative-tolerant regularization to
q
yj
xi = exp

(
f
(j)
θ (xi)− vj

)
/
∑c
k=1 exp

(
f
(k)
θ (xi)− vk

)
where ν is a class-specific bias. Combine re-balanced
weighting with negative-tolerant regularization, we have the
modified distribution-balanced focal loss:

LOFR−DB =
n∑
i=1

c∑
j=1

1

c

[
r̂ji

(
1− f (j)θ (xi)

)γ
·

((
1− 1

λ

)
d
yj
xi +

1

λ

)
ln

(
d
yj
xi

q
yj
xi

)]
.

(4)

where λ is a balanced hyperparameter.

Representation Distribution Alignment for ILDL
In the former subsection, we reshape several objective func-
tions commonly used in imbalanced classification. These ap-
proaches, however, are all independently inside each label,
and there is no insight into the distribution of the whole label
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set and no interaction among different labels. At the same
time, these approaches only pay attention to the processing
of the label space, and do not effectively utilize the infor-
mation of the feature space to improve the performance of
the predictive model. As a result, these methods still cannot
fully avoid the impact of the representation distribution shift
problem.

To tackle these issues, we propose Representation Distri-
bution Alignment (RDA) for ILDL. RDA aligns the distri-
butions of feature representations and label representations
of instances to effectively leverage the information hidden
in both feature space and label space and alleviate the im-
pact of the distribution gap between the training set and the
test set. Specifically, as shown in Figure 4, it first utilizes
two mapping functions gε and hφ to map the feature x and
label distribution vector d into latent spaces. Then, it maps
the latent vectors gε(x) and hφ(d) into a common space and
aligns the distributions of feature representations and label
representations of instances in this space. Assuming the dis-
tributions of features and labels are Gaussian, i.e., there are
two mapping functions Gε and Hϕ which maps gε(x) to
N (µF ,σ

2
F ) and maps hφ(d) to N (µL,σ

2
L), respectively.

Then RDA minimizes the differences between N (µF ,σ
2
F )

andN (µL,σ
2
L). In order to better utilize the learned knowl-

edge for description degree prediction, RDA also adopts a
decoding function Fϑ to decode the feature encoding value
to the description degree. Formally, RDA optimizes the fol-
lowing objective function:

min
ε,ε,φ,ϕ,ϑ

V (ε, ϑ) + λ1Ω1 (φ, ϕ, ϑ)

+ λ2Ω2 (ε, ε) + λ3Ω3 (ε, ε, φ, ϕ) ,
(5)

where V (ε, ϑ) is the loss function for description degree
prediction, Ω1 and Ω2 are used to learn reasonable label rep-
resentation mapping and feature representation mapping, re-
spectively, Ω3 is used for aligning the distributions of feature
representations and label representations, λ1, λ2 and λ3 are
balanced parameters.

The purpose of V is to reduce the divergence between
the real distribution d and predicted distributionFϑ (gε (x)).
Any reshaped objective function can be leveraged as the
loss function V . The goal of Ω1 is to make hφ, Hϕ and
Fϑ have better label representation ability. To achieve that,
we first sample values for label representations rL using the
reparameterization trick (Rezende, Mohamed, and Wierstra
2014): rL = µL + σLδL, where µL and σL are computed
from Hϕ (hφ (d)) and δL ∼ N (0, I). Then we define Ω1

as the following form:

Ω1 (φ, ϕ, ϑ) =
n∑
i=1

c∑
j=1

d
yj
xi ln

d
yj
xi

Fϑ (rL)
. (6)

For Ω2, we leverage the information of label space to pro-
mote the feature representation ability of the model. Specif-
ically, we optimize the KL divergence between N (µF ,σ

2
F )

and N (µL,σ
2
L):

Ω2 (ε, ε) = −1

2

K∑
k=1

[
logυ(k) − υ(k) − τ (k) + 1

]
, (7)

(a) Movie (b) SCUT-FBP (c) Emotion6

(d) Flickr LDL (e) RAF-ML (f) Natural Scene

Figure 5: Overview of the distribution of label annotation in-
formation in the training sets on six ILDL datasets. In each
subfigure, the x-axis denotes the label ID (sorted by fre-
quency), the y-axis denotes the sum description degree of
each label, “γ” denotes the imbalance factor.

where K is the dimension of the latent space, (·)(k) denotes

the k-th element, υ(k)=σ
(k)2
F

σ
(k)2
L

, τ (k) =

(
µ

(k)
F −µ(k)

L

)2

σ
(k)2
L

, µF and

σF are computed from Gε (gε (x)).
The aim of Ω3 is to align the distributions of feature

representations and label representations. Specifically, we
align the similarities of the distributions of both represen-
tations. For the feature representations rF , we again use
the reparameterization trick : rF = µF + σF δF , where
δF ∼ N (0, I). Then the similarity matrix A of the distribu-
tion of feature representations can be obtained by:

Amn = S
(
r
(m)
F , r

(n)
F

)
, (8)

where S is cosine similarity, r(m)
F and r(n)F are the m-th and

n-th instances. Meanwhile, the similarity matrix Z of the
distribution of label representations can be obtained by:

Zmn = S
(
r
(m)
L , r

(n)
L

)
. (9)

For Ω3, the distance between A and Z is minimized:

Ω3 (ε, ε, φ, ϕ) =
1

M2

M∑
m=1

M∑
n=1

(Amn − Zmn)
2
, (10)

In the training stage, the gradient-based method is used to
optimize (5). In the prediction stage, given an instance x∗,
the prediction of RDA can be obtained by Fϑ (gε (x∗)).

Experiments
Datasets
We curate six ILDL benchmarks that span movie rating, fa-
cial beauty perception and visual sentiment distribution per-
ception. These datasets are sampled from six standard LDL
datasets, including Movie (Geng 2016), SCUT-FBP (Xie
et al. 2015), Emotion6 (Peng et al. 2015), Flickr LDL (Yang,
Sun, and Sun 2017), RAF-ML (Shang and Deng 2019) and
Natural Scene (Geng 2016). The sampling process is per-
formed 10 times, for each time, we sample the training set
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Algorithm Movie SCUT-FBP Emotion6 Flickr LDL RAF-ML Natural Scene
SA-BFGS 0.3415±0.0070• 0.7266±0.0326• 0.8292±0.0179• 0.8948±0.0101• 0.7575±0.0149• 0.6621±0.0198•
EDL-LRL 0.3638±0.0118• 0.3522±0.0236• 0.4175±0.0074• 0.5811±0.0060• 0.4784±0.0137• 0.4341±0.0233•
LDLSF 0.3624±0.0107• 0.4701±0.0307• 0.4355±0.0106• 0.5697±0.0092• 0.4177±0.0174• 0.4440±0.0249•
LDL-LCLR 0.3346±0.0072• 0.3332±0.0246• 0.5239±0.0136• 0.7033±0.0126• 0.3849±0.0107• 0.5680±0.0225•
Adam-LDL-SCL 0.7175±0.0487• 0.4460±0.0218• 0.4711±0.0333• 0.6711±0.0547• 0.5848±0.0300• 0.4773±0.0344•
LDL-LDM 0.4858±0.0285• 0.4030±0.0441• 0.4739±0.0159• 0.5816±0.0085• 0.5348±0.0275• 0.4769±0.0234•
OFR-FL 0.3416±0.0151• 0.3364±0.0357• 0.3910±0.0102• 0.5636±0.0054• 0.5081±0.0236• 0.4323±0.0201•
OFR-CB 0.3337±0.0177• 0.3447±0.0289• 0.3922±0.0091• 0.5658±0.0059• 0.5057±0.0161• 0.4329±0.0209•
OFR-DB 0.2548±0.0080• 0.3199±0.0384• 0.3772±0.0072• 0.5252±0.0205 0.4638±0.0196• 0.3872±0.0254
RDA (Ours) 0.1962±0.0068 0.2849±0.0157 0.3598±0.0079 0.5208±0.0075 0.3756±0.0068 0.3768±0.0208

Table 1: Experimental results on ILDL datasets measured by Chebyshev Distance ↓.

Algorithm Movie SCUT-FBP Emotion6 Flickr LDL RAF-ML Natural Scene
SA-BFGS 0.8007±0.0539• 13.0419±4.1007• 21.8514±1.0523• 27.1262±1.5508• 18.2051±1.2023• 4.7976±0.3734•
EDL-LRL 0.7797±0.0472• 0.8111±0.1085• 1.4348±0.1160• 9.9140±4.5756• 1.2838±0.0994• 2.5862±1.5835•
LDLSF 3.1338±0.3786• 8.4136±1.6575• 9.4371±0.5063• 12.8509±1.0510• 7.0684±1.1409• 8.8454±0.5594•
LDL-LCLR 0.6803±0.0314• 0.6034±0.0788• 2.2820±0.1581• 6.2168±0.2896• 1.0106±0.0704• 2.9449±0.2527•
Adam-LDL-SCL 19.1715±1.6303• 2.3768±1.1735• 8.1116±4.8903• 17.1944±8.5188• 6.1170±4.2557• 9.6209±4.8989•
LDL-LDM 1.8123±0.2788• 1.0253±0.2190• 1.7890±0.1369• 2.7424±0.2096• 1.9157±0.2248• 1.7753±0.2056•
OFR-FL 0.6459±0.0567• 0.6415±0.1438• 1.1829±0.0959• 2.5989±0.1650• 1.3672±0.1676• 1.3364±0.0981•
OFR-CB 0.6288±0.0604• 0.6581±0.1171• 1.1904±0.0776• 2.6285±0.3774• 1.3264±0.1110• 1.3280±0.0932•
OFR-DB 0.3883±0.0160• 0.5577±0.1317• 0.9238±0.0238• 1.7751±0.2858 1.1481±0.0823• 1.1746±0.0898
RDA (Ours) 0.2491±0.0149 0.4313±0.0328 0.7677±0.0218 1.6071±0.1107 0.7058±0.0203 1.1188±0.0591

Table 2: Experimental results on ILDL datasets measured by Kullback-Leibler Divergence ↓.

and validation set from the original training set which oc-
cupies 90% of the examples, while the test set remains un-
changed. Figure 5 illustrates the distribution of label anno-
tation information of these datasets and their level of imbal-
ance.

Evaluation Criteria
Six standard LDL measures (Chebyshev Distance, Clark
Distance, Canberra Metric, Kullback-Leibler Divergence,
Cosine Coefficient, and Intersection Similarity between
ground-truth label distributions and predicted label distribu-
tions) are selected to evaluate different methods for the pre-
diction of label distributions. Besides, Euclidean Distance is
also adopted to evaluate the performance of different meth-
ods on tail, head and all labels. It is worth noting that the
evaluation criteria of ILDL are different from imbalanced
classification and regression problems. In ILDL, the descrip-
tion degrees of the tail labels in the training set tend to in-
crease in the test set, while the description degrees of the
head labels tend to decrease. Therefore, head labels and tail
labels are equally important in ILDL.

Methodology
Several existing state-of-the-art LDL algorithms, i.e., SA-
BFGS (Geng 2016), EDL-LRL (Jia et al. 2019), LDLSF
(Ren et al. 2019a), LDL-LCLR (Ren et al. 2019b), Adam-
LDL-SCL (Jia et al. 2021) and LDL-LDM (Wang and Geng
2021) are set as baselines. Three objective function reshap-
ing approaches, i.e., OFR-FL, OFR-CB and OFR-DB, are
also performed in the experiments. Moreover, Our RDA is
compared with these methods. In RDA, gε, hφ and Fϑ are
set as linear projections, Gε and Hϕ are set as single-layer

neural network with two outputs including mean and vari-
ance of Gaussian, and the modified distribution-balanced
focal loss is adopted as the loss function V . Hyperparam-
eters λ1, λ2 and λ3 are selected by grid search from the set
{0.01, 0.05, 0.1, 0.2, 0.5}.

Main Results
Comparisons on Distribution Criteria Tables 1 and 2
tabulate the experimental results of different methods on
Chebyshev Distance and Kullback-Leibler Divergence. For
each evaluation criterion, “↓” indicates the smaller the bet-
ter. In Tables 1 and 2, the two-tailed t-test at 0.05 signif-
icance level is conducted, and the best performances are
highlighted in bold. •/◦ indicates whether RDA is statisti-
cally superior/inferior to the comparing methods. From Ta-
bles 1 and 2, it can be observed that: 1) The existing LDL
methods show poor performances in solving ILDL tasks.
2) The performances of the objective function reshaping
approaches are superior to existing methods. 3) Compared
with these baseline methods, Our RDA has achieved bet-
ter results on Chebyshev Distance and Kullback-Leibler Di-
vergence and significantly outperforms other algorithms in
most cases. These observations indicate that the RDA can
effectively alleviate the impact of the distribution gap be-
tween the training set and the test set.
Comparisons on Imbalance Criteria Table 3 gives the ex-
perimental evaluations of different algorithms on tail, head
and all labels. From Table 3, we can find that most objec-
tive function reshaping approaches have better performance
than existing LDL methods. In the meantime, RDA achieves
the best performance in almost all cases. In particular, RDA
achieved the best performance on head and all labels in all
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Algorithm Movie SCUT-FBP Emotion6 Flickr LDL RAF-ML Natural Scene
all tail head all tail head all tail head all tail head all tail head all tail head

SA-BFGS .473 .346 .303 .914 .760 .355 .992 .888 .269 1.108 .617 .864 .936 .849 .221 .834 .736 .257
EDL-LRL .495 .360 .315 .473 .323 .326 .572 .508 .214 .779 .567 .501 .652 .490 .416 .582 .511 .242
LDLSF .502 .359 .337 .643 .442 .447 .602 .540 .198 .771 .552 .492 .565 .490 .218 .611 .565 .181
LDL-LCLR .466 .337 .309 .449 .318 .298 .692 .625 .201 .919 .599 .632 .502 .438 .177 .736 .672 .211
Adam-LDL-SCL .856 .676 .378 .639 .461 .435 .672 .618 .225 .914 .579 .679 .806 .587 .527 .649 .563 .297
LDL-LDM .618 .484 .297 .539 .420 .286 .643 .583 .203 .779 .563 .498 .721 .555 .416 .634 .578 .197
OFR-FL .479 .336 .338 .469 .337 .315 .540 .495 .190 .755 .556 .480 .691 .496 .473 .574 .499 .253
OFR-CB .472 .334 .329 .481 .342 .330 .541 .497 .190 .760 .555 .488 .687 .491 .473 .575 .499 .256
OFR-DB .377 .285 .243 .443 .332 .284 .503 .465 .163 .666 .524 .374 .636 .498 .384 .526 .492 .162
RDA (Ours) .295 .245 .157 .386 .299 .234 .464 .429 .133 .645 .526 .333 .484 .454 .132 .515 .486 .151

Table 3: Experimental results on ILDL datasets measured by Euclidean Distance ↓.

(a) Movie (λ1) (b) SCUT-FBP (λ1) (c) Emotion6 (λ1) (d) Flickr LDL (λ1) (e) RAF-ML (λ1) (f) Natural Scene (λ1)

(g) Movie (λ2) (h) SCUT-FBP (λ2) (i) Emotion6 (λ2) (j) Flickr LDL (λ2) (k) RAF-ML (λ2) (l) Natural Scene (λ2)

(m) Movie (λ3) (n) SCUT-FBP (λ3) (o) Emotion6 (λ3) (p) Flickr LDL (λ3) (q) RAF-ML (λ3) (r) Natural Scene (λ3)

Figure 6: Effects of λ1, λ2 and λ3 on Chebyshev Distance ↓.

cases. These observations demonstrate the effectiveness of
the proposed methods in tackling ILDL tasks.

Effect of Hyperparameters λ1, λ2 and λ3
In this subsection, we explore the effect of hyperparame-
ters λ1, λ2 and λ3. We compare the performances of RDA
with different values of λ1, λ2 and λ3 on the six datasets
measured by Chebyshev Distance. Figure 6 illustrates the
performances of RDA with different values of λ1, λ2 and
λ3. From these curves, we can find that: 1) Overall, RDA
has stable performances with a wide range of hyperparam-
eter values on all six datasets; 2) Appropriate values of λ2
can bring slight performance gains on some datasets; 3) The
performance of the model hardly changes with changes in λ1
and λ3. These findings further demonstrate the robustness of
the proposed RDA.

Further Analyses
We compare the average ranks of different algorithms over
all the six ILDL datasets and find that RDA surpasses the
compared methods by a significant margin across all the
evaluation criteria, which further indicates the effective-

ness of the proposed RDA. Details of the further analy-
ses are provided in the appendix, which is available at:
https://github.com/ailearn-ml/RDA.

Conclusion

We study a challenging and meaningful problem, i.e., Im-
balanced Label Distribution Learning (ILDL), in this paper.
We curate several benchmark ILDL datasets and offer three
strong baselines. Moreover, we delve into the characteristics
of the ILDL problem and find that the representation dis-
tribution shift is the underlying reason for the performance
degradation of existing methods. Based on this finding, we
propose a novel method named Representation Distribution
Alignment, which can align the distributions of feature rep-
resentations and label representations to effectively alleviate
the impact of the distribution gap between the training set
and the test set caused by the imbalance issue. Extensive
experiments confirm the superior performance of our pro-
posed method. Our work fills the gap in benchmarks and
techniques for practical ILDL problems.
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