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Abstract (vaccinated) (vaccinated)
Algorithmic recourse recommendations inform stakeholders YV : diagnosis
of how to act to revert unfavorable decisions. However, exist- :
ing methods may recommend actions that lead to acceptance (symptoms) : (symptoms)
(i.e., revert the model’s decision) but do not lead to improve- D
ment (i.e., may not revert the underlying real-world state). To counterfactual causal recourse  improvement-focused CR

recommend such actions is to recommend fooling the predictor.
We introduce a novel method, Improvement-Focused Causal
Recourse (ICR), which involves a conceptual shift: Firstly, we
require ICR recommendations to guide toward improvement.
Secondly, we do not tailor the recommendations to be accepted
by a specific predictor. Instead, we leverage causal knowledge
to design decision systems that predict accurately pre- and
post-recourse, such that improvement guarantees translate into
acceptance guarantees. Curiously, optimal pre-recourse classi-
fiers are robust to ICR actions and thus suitable post-recourse.
In semi-synthetic experiments, we demonstrate that given cor-
rect causal knowledge ICR, in contrast to existing approaches,
guides toward both acceptance and improvement.

1 Introduction

Predictive systems are increasingly deployed for high-stakes
decisions, for instance in hiring (Raghavan et al. 2020), ju-
dicial systems (Zeng, Ustun, and Rudin 2017), or when dis-
tributing medical resources (Obermeyer and Mullainathan
2019). A range of work (Wachter, Mittelstadt, and Russell
2017; Ustun, Spangher, and Liu 2019; Karimi, Scholkopf,
and Valera 2021) develops tools that offer individuals possi-
bilities for so-called algorithmic recourse (i.e., actions that
revert unfavorable decisions). Joining previous work in the
field, we distinguish between reverting the model’s prediction

Y (acceptance) and reverting the underlying real-world state
Y (improvement) and argue that recourse should lead to ac-
ceptance and improvement (Ustun, Spangher, and Liu 2019;
Barocas, Selbst, and Raghavan 2020). Existing methods, such
as counterfactual explanations (CE; Wachter, Mittelstadt, and
Russell (2017)) or causal recourse (CR; Karimi, Scholkopf,
and Valera (2021)), ignore the underlying real-world state
and only optimize for acceptance. Since ML models are not
designed to predict accurately in interventional environments
(i.e., environments where actions have changed the data distri-
bution), acceptance does not necessarily imply improvement.

Copyright © 2023, Association for the Advancement of Artificial
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Figure 1: Causal graph illustrating the perspectives of coun-
terfactual expl. (CE, left) and causal recourse (CR, center)
in contrast to improvement-focused CR (ICR, right). Green
edges represent real-world causal links, and blue edges the
prediction model. Gray nodes represent covariates, and the
red (yellow) node is the primary (secondary) recourse target.
CR respects causal relationships but solely between features;
only ICR takes Y into account. While CE and CR aim to

revert the prediction }7, ICR aims to revert the target Y.

Let us consider an example. We aim to predict whether hos-
pital visitors without test certificate are infected with Covid
to restrict access to tested and low-risk individuals. Here, the
model’s prediction Y represents whether someone is classi-
fied to be infected, whereas the target Y represents whether
someone is actually infected. Target and prediction differ in
how they are affected by actions: Intervening on the symp-
toms may change the model’s diagnosis Y, but will not affect
whether someone is infected (Y)).

Both counterfactual explanations (CE) and causal recourse
(CR) only target Y (Figure 1). Therefore, CE and CR may
suggest altering the symptoms (e.g., by taking cough drops)
and thereby may recommend to game the predictor: Although
the intervention leads to acceptance, the actual Covid risk Y’
is not improved.'

One may argue that this is an issue of the prediction model
and may adapt the predictor to make gaming less lucrative
than improvement (Miller, Milli, and Hardt 2020). However,
such adaptions would come at the cost of predictive per-
formance — even in light of causal knowledge. The reason
is that gameable variables can be highly predictive (Shavit,
Edelman, and Axelrod 2020); In our example, the model’s re-
liance on the symptom state would need to be reduced. Thus,

'"In E. 1, the case is formally demonstrated.



we tackle the problem by adjusting the explanation instead.

Contributions We present improvement-focused causal re-
course (ICR), the first recourse method that targets improve-
ment instead of acceptance. Since estimating the effects of
actions is a causal problem, causal knowledge is required.
More specifically, we show how to exploit either knowledge
of the structural causal model (SCMs) or the causal graph
to guide toward improvement (Section 5). On a conceptual
level, we argue that the individual’s improvement options
should not be limited by an acceptance constraint (Section
4). To nevertheless yield acceptance, we show how to ex-
ploit said causal knowledge to design post-recourse decision
systems that recognize improvement (Section 6), such that
improvement guarantees translate into acceptance guarantees
(Section 7). On synthetic and semi-synthetic data, we demon-
strate that ICR, in contrast to existing approaches, leads to
improvement and acceptance (Section 8).

2 Related Work

Constrastive Explanations Contrastive explanations ex-
plain decisions by contrasting them with alternative decision
scenarios (Karimi et al. 2020a; Stepin et al. 2021); a well-
known example are counterfactual explanations (CE) that
highlight the minimal feature changes required to revert the

decision of a predictor f (z) (Wachter, Mittelstadt, and Rus-
sell 2017; Dandl et al. 2020). However, CEs are ignorant of
causal dependencies in the data and thus, in general, fail to
guide action (Karimi, Scholkopf, and Valera 2021). In con-
trast, the causal recourse (CR) framework by Karimi et al.
(2022) takes the causal dependencies between covariates into
account: More specifically, Karimi et al. (2022) use structural
causal models or causal graphs to guide individuals towards
acceptance.” The importance of improvement was discussed
before (Ustun, Spangher, and Liu 2019; Barocas, Selbst, and
Raghavan 2020), but as of now, no improvement-focused
recourse method has been proposed.

Strategic Classification The related field of strategic mod-
eling investigates how the prediction mechanism incentivizes
rational agents (Hardt et al. 2016; Tsirtsis and Gomez Ro-
driguez 2020). A range of work (Bechavod et al. 2020; Chen,
Wang, and Liu 2020; Miller, Milli, and Hardt 2020) thereby
distinguishes models that incentivize gaming (i.e., interven-
tions that affect the prediction Y but not the underlying target
Y in the desired way) and improvement (i.e., actions that
also yield the desired change in Y'). Strategic modeling is
concerned with adapting the model, where except for special
cases, the following three goals are in conflict: incentiviz-
ing improvement, predictive accuracy, and retrieving the true
underlying mechanism (Shavit, Edelman, and Axelrod 2020).

3 Background and Notation

Prediction model We assume binary probabilistic predic-
tors and cross-entropy loss, such that the optimal score func-
tion h* () models the conditional probability P(Y = 1|X =

For the interested reader, we formally introduce CR in our
notation in A 4.
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x), which we abbreviate as p(y|x). We denote the estimated
score function as h(x), which can be transformed into the

binary decision function f(z) := [h(z) > t] via the decision
threshold ¢.

Causal data model We model the data generating pro-
cess using a structural causal model (SCM) M € II (Pearl
2009; Peters, Janzing, and Scholkopf 2017). The model
M = (X, U, F) consists of the endogenous variables X € X,
the mutually independent exogenous variables U € U, and
structural equations IF : Z{ — X’. Each structural equation f;
specifies how X is determined by its endogenous causes and
the corresponding exogenous variable U;. The SCM entails
a directed graph G, where variables are connected to their
direct effects via a directed edge.

The index set of endogenous variables is denoted as D. The
parent indexes of node j are referred to as pa(j), and the chil-
dren indexes as ch(j). We refer to the respective variables
as Xpq(j)- We write X,,(;) to denote all parents excluding
Y and (X,Y),q(;) to denote all parents including Y. All
ascendant indexes of a set S are denoted as asc(S), its com-
plement as nasc(S), all descendant indexes as d(.5), and its
complement as nd(.S).

SCMs allow answering causal questions. This means that they
cannot only be used to describe (conditional) distributions
(observation, rung 1 on Pearl’s ladder of causation (Pearl
2009)) but can also be used to predict the (average) effect of
actions do(x) (intervention, rung 2) and imagine the results
of alternative actions in light of factual observation (x, y)*
(counterfactuals, rung 3).

As such, we model actions as structural interventions a :
IT — TI, which can be constructed as do(a) = do({X; :=
0:}ic1), where [ is the index set of features to be intervened
upon. A model of the interventional distribution can be ob-
tained by fixing the intervened upon values to 6; (e.g., by
replacing the structural equation f; := ;). Counterfactu-
als can be computed in three steps (Pearl 2009): First, the
factual distribution of exogenous variables U given the fac-
tual observation of the endogenous variables 2" is inferred
(abduction) (i.e., P(U;|X*")). Second, the structural inter-
ventions corresponding to do(a) are performed (action). Fi-
nally, we can sample from the counterfactual distribution
P(X®YF|X = 2¥ do(a)) using the abducted noise and the
intervened-upon structural equations (prediction).

4 The Two Tales of Contrastive Explanations

In the introduction, we demonstrated that CE and CR might
suggest gaming the predictor (i.e., guide towards acceptance
without improvement). To tackle the issue, we will introduce
a new explanation technique called improvement-focused
causal recourse (ICR) in Section 5.

In this section, we lay the conceptual justification for our
method. More specifically, we argue that for recourse, the
acceptance constraint of CR should be replaced by an im-
provement constraint. Therefore, we first recall that a multi-
tude of goals may be pursued with contrastive explanations
(Wachter, Mittelstadt, and Russell 2017) and separate two
purposes of contrastive explanations: contestability of algo-
rithmic decisions and actionable recourse. We then argue



that improvement is an essential requirement for recourse
and that the individual’s options for improvement should not
be limited by acceptance constraints.

Contestability and recourse are distinct goals. Contesta-
bility is concerned with the question of whether the algorith-
mic decision is correct according to common sense, moral
or legal standards. Explanations may help model authorities
to detect violations of such standards or enable explainees
to contest unfavorable decisions (Wachter, Mittelstadt, and
Russell 2017; Freiesleben 2021). Explanations that aim to
enable contestability must reflect the model’s rationale for
an algorithmic decision. Recourse recommendations, on the
other hand, need to satisfy various constraints unrelated to
the model, such as causal links between variables (Karimi,
Scholkopf, and Valera 2021) or their actionability (Ustun,
Spangher, and Liu 2019). Consequently, explanations geared
to contest are more complete and true to the model, while
recourse recommendations are more selective and true to
the underlying process.?> We believe that the selectivity and
reliance of recourse recommendations on factors besides the
model itself is not a limitation but an indispensable condition
for making explanations more relevant to the explainee.

In the context of recourse, improvement is desirable for
model authority and explainee. We consider improve-
ment an important normative requirement for recourse, both
with respect to explainee and model authority. Valuable re-
course recommendations enable explainees to plan and act;
thus, such recommendations must either provide indefinite
validity or a clear expiration date (Wachter, Mittelstadt, and
Russell 2017; Barocas, Selbst, and Raghavan 2020; Venkata-
subramanian and Alfano 2020). Problematically, when model
authorities give guarantees for non-improving recourse, this
constitutes a binding commitment to misclassification. How-
ever, if model authorities do not provide recourse guaran-
tees over time, this diminishes the value of recourse rec-
ommendations to explainees. They might invest effort into
non-improving actions that ultimately do not even lead
to acceptance because the classifier changed.* In contrast,
improvement-focused recourse is honored by any accurate
classifier. We conclude that, given these advantages for both
model authority and explainee, recourse recommendations
should help to improve the underlying target Y.

Improvement should come first, acceptance second.
Taken that we constrain the optimization on improvement,
how to guarantee acceptance remains an open question.

One approach would be to constrain the optimization on both

3We do not claim that recourse and contestability always diverge;
we only describe a difference in focus. If contesting is successful, it
may even provide an alternative route toward recourse.

*For instance, in the introductory example, an intervention on the
symptom state would only be honored by a refit of the model on pre-
and post-recourse data for the small percentage of individuals who
were already vaccinated, as documented in more detail in E.1. Also,
gaming actions may not be robust concerning model multiplicity, as
seen in the experiments (Section 8).

SWe do not claim that gaming is necessarily bad; it may be
justified when predictors perform morally questionable tasks.
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improvement and acceptance. However, a restriction on ac-
ceptance is either redundant or, from our moral standpoint,
questionable: If improvement implies acceptance, the con-
straint is redundant; In the remaining cases, we can predict
improvement with the available causal knowledge but would
withhold these (potentially less costly) improvement options
because of the limitations of the observational predictor.

To guarantee acceptance without restricting improvement
options, we do not restrict the optimization on acceptance
but ensure that the post-recourse predictor can recognize im-
provements (rendering the acceptance constraint redundant).
More specifically, we exploit the assumed causal knowledge
to design accurate post-recourse predictors (Section 6) for
which acceptance guarantees follow from improvement guar-
antees (Section 7).

S Improvement-Focused Causal Recourse
(ICR)

We continue with the formal introduction of ICR, an explana-
tion technique that targets improvement (Y = 1) instead of

acceptance (Y = 1). Therefore we first define the improve-
ment confidence v, which can be optimized to yield ICR.
Like previous work in the field (Karimi et al. 2020b), we
distinguish two settings: In the first setting, knowledge of the
SCM can be assumed, such that we can leverage structural
counterfactuals (rung 3 on Pearl’s ladder of causation) to
introduce the individualized improvement confidence ~*"¢.
In the second setting only the causal graph is known, which
we exploit to propose the subpopulation-based improvement
confidence y°*® (rung 2).

Individualized improvement confidence For the individ-
ualized improvement confidence "% we exploit knowledge
of a SCM. SCMs can be used to answer counterfactual ques-
tions (rung 3). In contrast to rung-2-predictions, counterfac-
tuals are tailored to the individual and their situation (Pearl
2009): They ask what would have been if one had acted differ-
ently and thereby exploit the individual’s factual observation.
Given unchanged circumstances, counterfactuals can be seen
as individualized causal effect predictions.

In contrast to existing SCM-based recourse techniques
(Karimi et al. 2022) we include both the prediction Y and
the target variable Y as separate variables in the SCM. As a
result, the SCM can be used not only to model the individu-
alized probability of acceptance but also the individualized
probability of improvement.

Definition 1 (Individualized improvement confidence). For
pre-recourse observation xP"¢ and action a we define the
individualized improvement confidence as

") = y(a, zP"¢) == P(YP*t = 1|do(a), zP"°).

Since the pre-recourse (factual) target Y cannot be ob-
served, standard counterfactual prediction cannot be applied
directly. However, we can regard the distribution as a mix-
ture with two components, one for each possible state of
Y. We can estimate the mixing weights using h* and each
component using standard counterfactual prediction. Details,
including pseudocode, are provided in B.1.



Subpopulation-based improvement confidence For the
estimation of the individualized improvement confidence
7", knowledge of the SCM is required. If the SCM is not
specified, but the causal graph is known instead, and there
are no unobserved confounders (causal sufficiency), we can
still estimate the effect of interventions (rung 2).

In contrast to counterfactual distributions (rung 3), interven-
tional distributions describe the whole population and there-
fore provide limited insight into the effects of actions on
specific individuals. Building on Karimi et al. (2020b), we
thus narrow the population down to a subpopulation of similar
individuals, for which we then estimate the subpopulation-
based causal effect. More specifically, we consider individu-
als to belong to the same subgroup if the variables that are not
affected by the intervention take the same values. For action a,
we define the subgroup characteristics as G, := nd(I,) (i.e.,
the non-descendants of the intervened-upon variables in the
causal graph).® More formally, we define the subpopulation-
based improvement confidence v*"“? as the probability of
Y taking the favorable outcome in the subgroup of similar
individuals (Definition 2).

Definition 2 (Subpopulation-based improvement confidence).
Let a be an action that potentially affects Y, i.e. I, N
asc(Y) # 0.7 Then we define the subpopulation-based im-
provement confidence as

,ysub(a) = 7(a, xlgae) = P(YPOSt - 1|d0(a),l’lérae).

The set G, is chosen for practical reasons. To make the
estimation more accurate, we would like to condition on as
many characteristics as possible. However, without access to
the SCM, one can only identify interventional distributions
for subgroups of the population by conditioning on their (un-
observed) post-intervention characteristics (but not by condi-
tioning on their pre-intervention characteristics) (Pearl 2009;
Glymour, Pearl, and Jewell 2016). If we were to select a sub-
group from a post-recourse distribution by conditioning on
pre-recourse characteristics that are affected by a (e.g., strong
pre-recourse symptoms), we yield a group that the individual
may not be part of (e.g., people with strong post-recourse
symptoms). In contrast, for X, pre- and post-intervention
values coincide, such that we can estimate ~*“*: Assuming
causal sufficiency, the standard procedure to sample inter-
ventional distributions can be applied, only that additionally
X2 := 2?7 Based on the sample, 7" can be estimated
(as detailed in B.3).

The estimation of 4*“* does not require knowledge of the
SCM but is less accurate than +*"?. In the introductory ex-
ample, for the action get vaccinated, the set of subgroup
characteristics G, is empty. As such, v*“? is concerned with
the effect of a vaccination on the whole population. If we
were to observe zip code, a variable that is not affected by
vaccination, 75“1’ would indicate the effect of vaccination for

The estimand resembles the conditional treatment effect with
G, being effect modifiers (Hernan MA 2020).

"If a cannot affect Y, we can predict P(Y|zP"¢, do(a)) =
P(Y'|xP"¢) using the optimal observational predictor h*.
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subjects that share the explainee’s zip code. In contrast, 7"
also takes the explainee’s symptom state into account.

Optimization problem To generate ICR recommenda-
tions, we can optimize Equation 1. We aim to find actions
that meet a user-specified improvement target confidence 7
with minimal cost for the recourse seeking individual. The
cost function cost(a, xP"¢) captures the effort the individual
requires to perform action a (Karimi et al. 2020b).

As for CE or CR, the optimization problem for ICR is com-
putationally challenging (B.4). It can be seen as a two-level
problem, where on the first level the intervention targets I,
and on the second level the corresponding intervention val-
ues 6, are optimized (Karimi et al. 2020b). Since we target
improvement, we can restrict I, to causes of Y. Following
Dandl et al. (2020), we use the genetic algorithm NSGA-II
(Deb et al. 2002) for optimization.

argmin,_g,(x,—¢) cost(a,z”) st v(a) =7 (1)

6 Accurate Post-Recourse Prediction
Recourse recommendations should not only lead to improve-

ment Y but also revert the decision Y. Whether acceptance
guarantees naturally ensue from ~ depends on the ability
of the predictor to recognize improvements. As follows, we
demonstrate how the assumed causal knowledge can be ex-
ploited to design accurate post-recourse predictors. We find
that an individualized post-recourse predictor is required to
translate 4" into an individualized acceptance guarantee,
but curiously that the observational predictor is sufficient in
supopulation-based settings.

Individualized post-recourse prediction If we were to
use the optimal pre-recourse observational predictor h* for
post-recourse prediction, there would be an imbalance in pre-
dictive capability between ML model and individualized ICR:
ICR individualizes its predictions using P"¢ and the SCM.
This knowledge is not accessible by the predictor A*, which
only makes use of zP°t. As such, improvement that was
accurately predicted by ICR is not necessarily recognized by
h*, and v cannot be directly translated into an acceptance
bound. We demonstrate the issue at an Example in E.3.8

To settle the imbalance between ICR and the predictor, we
suggest leveraging the SCM not only when generating in-
dividualized ICR recommendations but also when predict-
ing post-recourse, such that the predictor is at least as accu-
rate as 7%, More formally, we suggest estimating the post-
recourse distribution of Y conditional on zP"¢, do(a), and the
post-recourse observation zP°%%¢ (Definition 3). This post-
recourse prediction resembles the counterfactual distribution,
except that we additionally take the factual post-recourse
observation of the covariates into account.

80ne may also argue that standard predictive models are not
suitable since optimality of the predictor in the pre-recourse dis-
tribution does not necessarily imply optimality in interventional
environments (as Example 1, E.1 demonstrates). We can refute this
criticism using Proposition 3, where we learn that h* is stable with
respect to ICR actions.



Definition 3 (Individualized post-recourse predictor). We
define the individualized post-recourse predictor as

h*,ind(xpost) — P(ypost _ 1|xpost7xp7-e7 dO((I))

For SCMs with invertible equations, h*d can be es-
timated using a closed form solution. Otherwise, we can
sample from the counterfactual post-recourse distribution
p(yPost, xPost|zP™e do(a)) (as we did for the estimation of
"), select the samples that conform with 27°** and com-
pute the proportion of favorable outcomes (details in B.2).
For the individualized post-recourse predictor, improvement
probability and prediction are closely linked (Proposition
1). More specifically, the expected post-recourse prediction
h*4 is equal to the individualized improvement probability
~v(aP"¢, a). We will exploit Proposition 1 in Section 7, where
we derive acceptance guarantees for ICR.

Proposition 1. The expected individualized post-recourse
score is equal to the individualized improvement probability
yind(gpre q) := P(YPost = 1|zP", do(a)), i.e.

E[ﬁ*,ind(xpost)‘xpr67dO(a)] _ ,yind(a).

Subpopulation-based post-recourse prediction Curi-
ously we find that for ICR actions a the optimal observational
pre-recourse predictor h* remains accurate: in the subpopu-
lation of similar individuals, the expected post-recourse pre-
diction corresponds to the improvement probability v*"*(a)
(Proposition 3). This allows us to derive acceptance guaran-
tees for A* in Section 7.

This result is in contrast to the negative results for CR, where
actions may not affect prediction and the underlying target
coherently, such that the predictive performance deteriorates
(as demonstrated in the introduction, and more formally in
E.1). The key difference to CR is that ICR actions exclu-
sively intervene on causes of Y': Interventions on non-causal
variables may lead to a shift in the conditional distribution
P(Y|Xs) (where S C D is any set of variables that allows
for optimal prediction). In contrast, given causal sufficiency,
the conditional P(Y|Xg) is stable to interventions on causes
of Y.

Proposition 2. Given nonzero cost for all interventions,
ICR exclusively suggests actions on causes of Y. Assuming
causal sufficiency, for optimal models, the conditional distri-
bution of Y given the variables X g that the model uses (i.e.,
P(Y|Xg)) is stable w.r.t interventions on causes. Therefore,
optimal predictors are intervention stable w.r.t. ICR actions.

Proposition 3. Given causal sufficiency and positivity®, for
interventions on causes the expected subgroup-wide optimal
score h* is equal to the subgroup-wide improvement proba-
bility v (a) := P(Y?" = 1|do(a), zg; ), i.e.

EIR* (o)t dofa)] = 7*"*(a)

“Positivity ensures that the post-recourse observation lies within
the observational support (Neal 2020), where the model was trained
(.e., p" ¢ (z?°") > 0)).
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Link between CR and ICR: Proposition 2 has further inter-
esting consequences. For CR actions a that only intervene
on causes of Y and that are guaranteed to yield a predicted
score ( in the subpopulation, we can infer that v*"*(a) > (.
For instance, if acceptance with respect to a 0.5 decision
threshold can be guaranteed, that implies improvement with
at least 50% probability. As such, in subpopulation-based
settings (1) improvement guarantees can be made for CR if
only interventions on causes are lucrative, and (2) CR can
be adapted to also guide towards improvement by restricting
actions to intervene on causes.

7 Acceptance Guarantees

For the presented accurate post-recourse predictors, improve-
ment guarantees translate into acceptance guarantees (Propo-
sition 4). The reason is that the post-recourse prediction is
linked to ~y (Propositions 1 and 3).

Proposition 4. Let g be a predictor with
Eg(xP°st)|2 do(a)] = ~(2%,a). Then for a de-
cision threshold t the post-recourse acceptance probability

n(t; 2%, a) P(g(xP°st) > t]alc, do(a)) is lower

bounded by the respective improvement probability:

Y(@ € a) —t

1-1¢

Proof (sketch): We decompose the expected prediction (7y)
into true positive rate (TPR), false negative rate (FNR) and
acceptance rate. By bounding TPR and FNR we yield the
presented acceptance bound. The proof is provided in D.4.

pre

n(tzg*, a,9) >

Using Proposition 4, we can tune confidence v and the
model’s decision threshold to yield a desired acceptance rate.
For instance, we can guarantee acceptance with (subgroup-
wide) probability n > 0.9 given v = 0.95 and a global
decision threshold ¢ = 0.5 .

Furthermore, we can leverage the sampling procedures that
we use to compute 7y to estimate the individualized or
subpopulation-based acceptance rate n(t; 2% ©, a, g) (as de-
tailed in B.1 and B.3). To guarantee acceptance with certainty,
the decision threshold can be set to ¢t = 0.

For the explainee, it is vital that the acceptance guarantee
is presented in a human-intelligible fashion. In contrast to
previous work in the field, we suggest communicating the
acceptance guarantee in terms of a probability.!® Further-
more, for subpopulation-based recourse, the set of subgroup
characteristics should be transparent. In the hospital admis-
sion example, the subpopulation-based acceptance guarantee
could be communicated as follows: Within a group of in-
dividuals that share your zip code, a vaccination leads to
acceptance with at least probability 7.

8 Experiments

In the experiments we evaluate the following questions,
assuming correct causal knowledge and accurate models of
the conditional distributions in the data:

%For CR, the acceptance confidence is encoded in a hyperparam-
eter, as explained in E.2.



Q1: Do CE, CR, and ICR lead to improvement?

Q2: Do CE, CR, and ICR lead to acceptance (by pre- and
post-recourse predictor)?

03: Do CE, CR, and ICR lead to acceptance by other
predictors with comparable test error?!!

Q4: How costly are CE, CR and ICR recommendations?

Setup We evaluate CE, individualized and subpopulation-
based CR, and ICR with various confidence levels, over
multiple runs, and on multiple synthetic and semi-synthetic
datasets with known ground truth (listed below).'? Random
forests were used for prediction, except in the 3var settings
where logistic regression models were used. Following
Dandl et al. (2020), we use NSGA-II (Deb et al. 2002) for
optimization. For a full specification of the SCMs including
the linear cost functions, we refer to C.2. Details on the
implementation and access to the code are provided in C.1.

3var-causal: A linear gaussian SCM with binary tar-
get Y, where all features are causes of Y.

3var-noncausal: The same setup as 3var-causal, except that
one of the features is an effect of Y.

Svar-skill: A categorical semi-synthetic SCM where pro-
gramming skill level is predicted from causes (e.g. university
degree) and non-causal indicators extracted from GitHub
(e.g. commit count).

7var-covid: A semi-synthetic dataset inspired by a real-world
covid screening model (Jehi et al. 2020; Wynants et al.
2020).'* The model includes typical causes like covid
vaccination or population density and symptoms like
fever and fatigue. The variables are mixed categorical
and continuous with various noise distributions. Their
relationships include nonlinear structural equations.

Results The results are visualized in Figures 3-5 and pro-
vided in tabular form in C.3. For each setting CE, CR,
and ICR explanations were computed over 10 runs on
200 individuals each. For CR and ICR the confidences
0.75,0.85,0.9,0.95 were targeted (for CR: 7, for ICR: 7).
For CE no slack is allowed, such that the results correspond
to a confidence level of 1.0. Values are plotted on quadratic
scales.

Q1 (Figure 3): In scenarios where gaming is possible and
lucrative (3var-noncausal, Svar-skill and 7var-covid) ICR
reliably guides towards improvement, but CE and CR game
the predictor and yield improvement rates close to zero. For
instance, on Svar-skill CE and CR exclusively suggest tun-
ing the GitHub profile (e.g. by adding more commits). Since
the employer offered recourse it should be honored although
the applicants remain unqualified. In contrast, ICR suggests
getting a degree or gaining experience, such that recourse

"'The problem that refits on the same data with similar perfor-
mance have different mechanism is known as the Rashomon prob-
lem or model multiplicity (Breiman 2001; Pawelczyk, Broelemann,
and Kasneci 2020; Marx, Calmon, and Ustun 2020).

"2For ground-truth counterfactuals, simulations are necessary
(Holland 1986).

BThe real-world screening model is used to decide whether indi-
viduals need a test certificate to enter a hospital. It can be accessed
via https://riskcalc.org/COVID19/.
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Figure 2: Left: Causal graphs. Right: Legend for color (SCM)
and linestyle (recourse type) in Figures 3, 4 and 5.
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Figure 3: Observed improvement rates v°** (Q1).

implementing individuals are suited for the job.

On 3var-causal, where gaming is not possible, CR also
achieves improvement. However, since acceptance w.r.t to
a decision threshold ¢t = 0.5 is targeted, only improvement
rates close to 50% are achieved (the expected predicted score
translates into v°“® (Proposition 3)).

For subp. ICR, v°** is below 7, because the subpopula-
tion may include individuals that were already accepted pre-
recourse, such that v5“® and 4°** may not coincide.

Q2 (Figure 4): All methods yield the desired acceptance
rates W.r.t. to the pre-recourse predictor.'* For CE and CR
n°%% is higher than for ICR, and for ind. recourse higher
than for subp. recourse. Curiously, although no acceptance
guarantees could be derived for the pre-recourse predictor
and ind. ICR, we find that both pre- and ind. post-recourse
predictor reliably lead to acceptance.'”

Q3 (Figure 5): We observe that CE and CR actions are
unlikely to be honored by other model fits with similar per-
formance on the same data. This result is highly relevant to
practitioners since models deployed in real-world scenarios
are regularly refitted. As such, individuals that implemented
acceptance-focused recourse may not be accepted after all,
since the decision model was refitted in the meantime. In
contrast, ICR acceptance rates are nearly unaffected by refits.
The result confirms our argument that improvement-focused
recourse may be more desirable for explainees (Section 4).

Q4 (Table 1): CR actions are cheaper than ICR actions,
since improvement may require more effort than gaming. As

4ICR holds the acceptance rates from Proposition 4, as analyzed
in more detail in C.3.

5Given that the ind. post-recourse predictor is much more dif-
ficult to estimate, the pre-recourse predictor in combination with
individualized acceptance guarantees (B.1) may cautiously be used
as fallback.
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Figure 4: Observed acceptance rates n°% w.r.t. h*; for ind.
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Figure 5: Observed acceptance rates for other fits with com-
parable test set performance 1°*™fit (Q3).

such, CR has benefits for the explainee: For instance, on Svar-
skill, CR suggests tuning the GitHub profile (e.g. by adding
more commits), which requires less effort than earning a
degree or gaining job experience. Detailed results on cost are
reported in C.3.

In conclusion, ICR actions require more effort than CR,
but lead to improvement and acceptance while being more
robust to refits of the model.

9 Limitations and Discussion

Causal knowledge and assumptions Individualized ICR
requires a fully specified SCM; Subpopulation-based ICR is
less demanding but still requires the causal graph and causal
sufficiency. SCMs and causal graphs are rarely readily avail-
able in practice (Peters, Janzing, and Scholkopf 2017) and
causal sufficiency is difficult to test (Janzing et al. 2012). Re-
search on causal inference gives reason for cautious optimism
that the difficulties in constructing SCMs and causal graphs
can eventually be overcome (Spirtes and Zhang 2016; Pe-
ters, Janzing, and Scholkopf 2017; Heinze-Deml, Maathuis,
and Meinshausen 2018; Malinsky and Danks 2018; Glymour,

CE ind. CR
1.8+11 13+£1.1

sub. CR ind. ICR
1.7+1.0 43433

sub. ICR
42433

Table 1: Recourse cost (Q4).

Zhang, and Spirtes 2019).

There are further foundational problems linked to causal-
ity that affect our approach: causal cycles, an ontologically
vague target Y (e.g. in hiring), disparities in our data, or
causal model misspecification (Barocas and Selbst 2016;
Barocas, Hardt, and Narayanan 2017; Bongers et al. 2021).
All of these factors are considered difficult open problems
and may have detrimental impact on our, as well as on any
other, recourse framework.

Guiding action without causal knowledge is impossible;
when causal knowledge is available, our work provides a
normative framework for improvement-focused recourse rec-
ommendations. Thus, we join a range of work in explain-
ability (Frye, Rowat, and Feige 2020; Heskes et al. 2020;
Wang, Wiens, and Lundberg 2021; Zhao and Hastie 2021)
and fairness (Kilbertus et al. 2017; Kusner et al. 2017; Zhang
and Bareinboim 2018; Makhlouf, Zhioua, and Palamidessi
2020) that highlights the importance of causal knowledge.

Contestability Improvement-focused recourse guides indi-
viduals towards actions that help them to improve, e.g., it rec-
ommends a vaccination to lower the risk of getting infected
with Covid. If, however, an explainee is more interested in
contesting the algorithmic decision, (improvement-focused)
recourse recommendations are not sufficient. Think of an
individual who is denied entrance to an event because of their
high Covid risk prediction, which is based on a non-causal,
spurious association with their country of origin'®. In such
situations, we suggest to additionally show explainees di-
verse explanations, which enable to contest the decision. For
example, such an explanation could be: if your country of
origin was different, your predicted Covid risk would have
been lower.

10 Conclusion

In the present paper, we took a causal perspective and in-
vestigated the effect of recourse recommendations on the
underlying target variable. We demonstrated that acceptance-
focused recourse recommendations like CE or CR might not
improve the underlying target but game the predictor instead.
The problem stems from predictive but non-causal relation-
ships, which are abundant in ML applications.'”

We introduced Improvement-Focused Causal Recourse (ICR),
an explanation technique that exploits causal knowledge to
guide toward improvement. To guarantee acceptance, we en-
sured that improvements are recognized by the post-recourse
predictor: For cases where we individualize the recommen-
dation using knowledge of the SCM, we proposed an indi-
vidualized post-recourse predictor; In the remaining cases,
post-recourse acceptance guarantees hold for any predictor
that is accurate pre-recourse. In experiments we support the
theoretical advantages of ICR.

With our proposal, we hope to inspire a shift from acceptance-
to improvement-focused recourse.

1SE.g., due to a spurious association with the type of vaccine.
'7E.g. in hiring, some keywords in the CV are predictive, but
adding them to the CV does not improve aptitude (Strong 2022).
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