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Abstract

While deep learning models have achieved the state-of-the-
art performance on single-image rain removal, most meth-
ods only consider learning fixed mapping rules on the single
synthetic dataset for lifetime. This limits the real-life applica-
tion as iterative optimization may change mapping rules and
training samples. However, when models learn a sequence
of datasets in multiple incremental steps, they are suscepti-
ble to catastrophic forgetting that adapts to new incremental
episodes while failing to preserve previously acquired map-
ping rules. In this paper, we argue the importance of sam-
ple diversity in the episodes on the iterative optimization, and
propose a novel memory management method, Associative
Memory, to achieve incremental image de-raining. It bridges
connections between current and past episodes for feature re-
construction by sampling domain mappings of past learning
steps, and guides the learning to trace the current pathway
back to the historical environment without storing extra data.
Experiments demonstrate that our method can achieve bet-
ter performance than existing approaches on both inhomoge-
neous and incremental datasets within the spectrum of highly
compact systems.

Introduction

Single image de-raining is a fundamental computer vision
problem which aims at removing undesirable rain-polluted
artifacts for better image quality. It serves as the basis for
other downstream applications such as tracking, detection
and segmentation (Kang, Lin, and Fu 2011; Kim et al. 2013;
Luo, Xu, and Ji 2015). Current state-of-the-art models (Li
et al. 2018a; Ren et al. 2019; Wang et al. 2019a; Yang
and Lu 2019; Zhang, Sindagi, and Patel 2019) are typically
based on the deep neural network due to its superior perfor-
mance. However, this success is conditioned on the auspi-
cious setup, where all types of mapping rules are learned at
once and known for lifetime. This setting is quite limited for
real world applications.

In a more common scenario, the de-raining model is
trained on a single dataset with multiple mapping rules.
Whenever a new batch of datasets are collected and fed into
the model for iteration, the model has to be retrained on the
new dataset together with the old ones, which is undoubtedly
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time-consuming and computationally expensive. Therefore,
the model should effectively and efficiently learn a sequence
of datasets for iteration. Unfortunately, when datasets are se-
quentially and separately fed into the model for training, the
model inevitably encounters the catastrophic forgetting (Mc-
Closkey and Cohen 1989). The network constantly forgets
the knowledge obtained from previous tasks whilst learning
new training samples. It results in an arbitrary degradation in
the model performance on historical learned mapping rules.

Catastrophic forgetting has been extensively studied on
the image classification task (Li and Hoiem 2017; Xiang
et al. 2019; Lee et al. 2020; Wu et al. 2021), while has been
tackled very recently in the image de-raining field (Zhou
et al. 2021). Due to the limitation of edge devices such as
mobile phones, current approach for incremental de-raining
focuses on exerting penalties on the weight modification
motivated by previous efforts on classification tasks. How-
ever, only constraining parameters is not strong enough to
maintain acquired knowledge, leading to too much plastic-
ity (Douillard et al. 2021). Different from existing strategies
in image classification and de-raining, we do not solely or
mainly rely on the parameter importance. While it remains
unexplored in image de-raining, providing additional data to
augment the episodic memory may be considered. However,
because of constrained space overhead and training time,
this data-based approach is not practical and suitable for the
deployment of de-raining algorithms on compact systems.

In this paper, we investigate the incremental rain removal
for multiple datasets that is suitable for compact devices.
We argue the role of sample diversity in an episodic mem-
ory which implicitly affects feature representation in the
learning process, and propose a new memory management
scheme named Associative Memory (AM) to achieve in-
cremental rain removal. We note that human associative
memory does not rely on mechanically memorizing data,
but tends to incorporate the acquired experience and sum-
marize the correlation between two successively happening
events. This inspires us to build connections between distinct
data distributions. We propose to strengthen samples con-
necting tasks that fire synchronously. AM maintains a map-
ping memory capturing mappings between domains. When
adapting to new tasks, model learns to perform the task by
reusing inverse mappings which traces the current pathway
back to the historical data distribution to augment the sam-



ple diversity of the memory. Considering that only observ-
ing the single side of reconstruction to past domains may
exist connected neurons with unrelated firing flow, we use a
parameter isolation strategy to impose past memory consol-
idation on new domains. Our associative memory manage-
ment imitates human cognition process, which associates the
representation to updated feature space without memorizing
specific data.

Contributions in this work include: 1) We investigate the
sample diversity in episodes for incremental de-raining, and
introduce a common scheme for different experimental pro-
tocols. 2) We propose a memory management strategy that
heuristically associates the current pathway with the histor-
ical representation. 3) We explore the latent synaptic trans-
mission and provide a parameter isolation mechanism for
a complementary feature representation. 4) Extensive ex-
periments on standard benchmarks demonstrate the superior
performance of our proposed method under incremental de-
raining setting.

Related Work
Single Image De-raining

Image de-raining aims to recover a rain-free background
layer from an image degraded by rain streaks and rain ac-
cumulation. It is a challenging work because of its ill-posed
nature. Besides, the unavailability of temporal information,
which could be seen as additional constraints, also brings
challenges to solve image de-raining tasks. Therefore, differ-
ent kinds of prior knowledge are applied into the optimiza-
tion framework to generate optimal solutions to this prob-
lem. Typical methods of image de-raining are model-based
approach, which are driven by image decomposition (Kang,
Lin, and Fu 2012), sparse coding (Luo, Xu, and Ji 2015;
Zhu et al. 2017), and priors based Gaussian mixture models
(Li et al. 2016). These methods can only remove small and
medium scales rain streaks effectively. Recently, image de-
raining methods have entered an era of deep learning. (Fu
et al. 2017b,a) first proposes to remove rain streaks with a
deep detail network (DetailNet). The network is able to take
high frequency details as input and predict the residue of rain
and clean images. Following this theory, many CNN based
methods (Li et al. 2018b,c; Zhang and Patel 2018; Pan et al.
2018) are proposed. These methods apply more advanced
network architectures and associate new related priors. They
achieve better results both quantitatively and qualitatively.
However, due to the limitation of the fully supervised learn-
ing paradigm, they tend to fail when dealing with some con-
ditions of increment rain streaks that are sequentially added
to the training process.

Incremental Learning for De-raining

Recently, increasing attention has been paid to the incre-
mental image de-raining. (Zhou et al. 2021) first introduces
this problem and tackle it with parameter importance that
guides weights modification (PIGWM). It forces the weight
of model to be similar to the optimal one of past tasks dur-
ing gradient descent training and sets up a state-of-the-art
for this task. Though this technique shows promising results
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Figure 1: Associative Memory captures domain mappings
from training pairs of each task and formulate them into a
memory structure. Then it selects mappings from the mem-
ory to reconstruct features and remaps them to past domains.
Associated features will participate in the basic model train-
ing along with original ones.

on some conditions and can be successfully applied to the
edge device, it still suffers from plasticity. Different from
current work which relies on the regularization on optimiza-
tion space to improve incremental de-raining, we argue the
importance of sample diversity in episodes from another di-
rection, and introduce a memory management method that
utilizes sample diversity to achieve incremental de-raining
without much memory overhead.

Associative Memory
Heuristics Mechanism

We suppose a sequence of N tasks to be learned in order,
T = {Ti,...,Tn}. Each task T; is given a dataset of V;
paired instances, T; = {Xi7j,y¢,j}§-\21, where X; and )
denote the original domain and ground truth domain respec-
tively. In training session, the i th model H; learns the cur-
rent task 7; and aims to optimize the neural network to repli-
cate T;’s real data distribution PP;. Besides, H; is required to
generate rain removal results for historical rain streak tasks
Ty, ...,T;—1. However, the model has no access to the previ-
ous training data and can only use current data {X;, ); }.
Fig 1 illustrates the heuristics mechanism. The target
model can be formulated as the interaction of guiding the
association to past environments and allowing the learning
of new episodes. We propose to preserve the initial mapping
between target and source domains which captures concepts
when encountering new domains. When the basic model is
trained for the i-7 th task T;_1, a mapping agent M learns
to memorize the cumulative input space and record the re-
construction mapping from source domain to target domain
¥;—1(-). The agent M is usually a simple module, such as



two convolution and deconvolution layers. We assume the
memory buffer M contains mappings, targets and predic-
tions. For the i th task, the model obtains new training paired
samples {X;, V; }.

A signal selector C' chooses which set of inverse map-
pin%s from the mapping memory will proceed. This mapping
1, ~ reconstructs the current input space into the historical
feature representation. We formalize this selection problem
for sample diversity from the perspective of information the-
ory. Let B be the observed batch of one iteration, and the
memory update from the selector can be expressed as:

(GMM) — (Mvaoi—la¢7l)- (1)

The memory carries useful information about both new
tasks and past ones. We consider the information theory
by its principled quantification for the data informativeness
which can be employed in the memory selection. We pro-
pose to measure the informativeness of one batch of new
training samples given memory M, it can be defined as neg-
ative log conditional probability, formulated as:

L1((XP, VB M) = —logp(VP | VM &M xF), (2

Intuitively, the data distribution P; itself will experience
gradual generalization of concepts to new domains without
forgetting the past distribution P, s, at any moment. In other
words, the model is continuously capturing and updating
knowledge about past domains. Therefore, the informative-
ness of associated samples can be formulated as follows:

£2((Xi87yi8)§M) = 1ng(Hi(¢_l(yz‘B)) | ytiyi/V[;Xin‘XiB)?

3

We denote 7 as the percentage of new task data back-

tracked to past episodes, which weighs the distribution be-

tween samples of new tasks and past ones. The informative-

ness of memory selection is described as the combination of
new task samples and historical task ones to the B:

HM((X;,Y5); M) = L1 (X3, Vi); M)+La (X5, Vi); M),
4
This term is relative to the information gain (Q., Cover,

and Thomas 2006) and based on Jensen’s inequality. There-
fore, equation 4 can be rewritten as:

HM((X;,Yi); M) =Ey, 9,18 yr. x5 xrm0 [log p(Vi | 035 X))

—log p(H' (1 (VP)) | W;Xng_-
3)

Here 6; denotes parameters of model H;. It associates part of
current ground truth with samples of previous tasks, which
avoid saving original images or extracted features. We cal-
culate the mean and standard deviation of H M for all ob-
servations and select samples whose value passes the sum of
mean and deviation. Note that this proposed mechanism can
be employed to any deep network architecture.

Parameter Isolation

Since the heuristics mechanism is only updated along the
single side trajectory from P; to P, during the i th task
training session, we introduce a parameter isolation mecha-
nism which is similar to reducing the plasticity of synapses
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to alter the efficacy of synaptic transmission. The object
function for incremental de-raining aims to reduce the em-
pirical risk between current samples and past ones, while the
historical knowledge is more effectively retained by heuris-
tics memory system as discussed in Section . To deter-
mine the implementation of association and to find the vital
synapse, we consider the neural network optimization from
the probabilistic perspective.

For regular training process, parameter optimization is
tantamount to finding the most probable data distribution for
the model given all task data D. We can use Bayes’rule to
calculate the conditional probability p(8|D):

log p(0]X,Y) = log p(X, Y|6) + log p(0) — log p(X, V),
(6)
where p(X,)) is the probability of data and log p(0) is the
prior probability of parameters that can match all tasks.
For incremental de-raining setting, all task data is broken
up into n batches D = {Dy, ..., D, }. We can derive the full
objective for incremental de-raining from equation (6):

log p(0;|X,Y) =log p(Xi, Vi|0;) — log p(X;, Vi)
+ IOg p(ez |Xpasta ypast)a (7)

where {X;,);} represents the data distribution of the ith
task, and {Xp4s¢, Vpast } represents the data distribution of
previous ¢ — 1 tasks. Note that the probability of the ith
task data p(X;,);) is a constant value, and the log prob-
ability of the ith task data given the ith task parameters
log p(X;, V;|6;) is simply tantamount to the preliminary loss
function £ at hand.
log p(0;|Xpast, Vpast) i a posterior probability distribu-
tion term and it contains information about all previous
task data, which is difficult to calculate. This term has to
be approximated by diagonalized Laplace approximation
(MacKay 1992) as a Gaussian distribution. The mean value
is the parameters of 6;,,, and the variance is the diagonal
reciprocal of the Fisher information matrix F correspond-
ing to the parameters. Given this approximation, the opti-
mization problem of reducing the plasticity can be defined
as altering the efficacy of synaptic transmission from past
distribution Py, to refined distribution P; for approxima-
tion, formulated as:
) )
0=07

where f()|X;0) is the probability density function of p(6 |
Xpash ypast) as known as p (9 | Dpa,st)-

After task T;_; is trained, the parameters 6; 1 of model
H=! will be saved as the existing acquired knowledge
for the next task 7;. This approximation term serves as
the synaptic transmission between feature space of different
tasks, alleviating over drifting in feature domains. The loss
guides parameters of current circumstance 6; to be updated
to the associated feature representation. It only depends on
the previous task parameters 6;_; without additional data
throughout the whole training process.

0% f (Vi Xi; 0
]:Dpast (9) = E{Xi,yi}NPi (‘10(82'9)




Rain100H Rain100L Promotion on Rain100H
Model ~ Methods pSNR SSIM PSNR SSIM PSNR SSIM
Baseline  15.84 0.532  34.53  0.958
PIGWM 2096 0.736 34.93 0.961
NLEDN  AMm 26.05 0.809 3505 0966 10.21 0.277
Reference 27.11 0.835 3526 0.963
Baseline 18.97 0.639 38.29 0.981
PIGWM  28.08 0.89 3695 0.975
PreNet  AM 28.84 0900 37.13 0978 987 0.261
Reference 29.46 0.899 3748 0.979
Baseline 1829 0.619 3734 0.978
PIGWM  27.88 0.88 35.64 0.967
PRN  AM 2797 0.893 3642 0973 9.68 0.274
Reference 28.07 0.884 36.99 0.977
Baseline 1942 0.673 374 0.98
PIGWM 2976 0.879 36.73 0.968
SASI  AM 30.05 0911 3751 0.979 10.63 0.238
Reference 30.33 0.909 38.8 0.984
Baseline  14.31 0423 3734 0974
PIGWM 2676 0.856 35.68 0.961
REHEN  AM 2725 086 3781 0969 12.94 0.437
Reference 2797 0.864 37.41 0.98

Table 1: Comparison of quantitative results in terms of PSNR and SSIM. Models are trained sequentially on the task sequence
Rain100H-Rain100L using schemes of baseline, PIGWM an AM, respectively.

The parameter isolation enforces the model to update pa-
rameters to reconstruct the old experience as well as the new
one. It preserves relevant past experience and generalize the
concept to new domains. Therefore, the model can still con-
tinually retain the distribution of past domains P,,s; while
integrating new tasks.

Note that datasets of different tasks are not completely in-
dependent in our setup of association system. To handle the
conflict of mixed data distribution, we approximate the the
distribution p(X) by Monte-Carlo (MC) method as p(X;),
when given the prior of the mixed sample ;. Therefore, we
can have the following equation:

P (&) dX;

b
> ().

Vi o g
where X, )Ei and 372 denote samples in the current task, cur-
rent samples mixed with selected samples from past tasks,
and target samples, respectively. The distribution D denotes
the data distribution defined by mixed samples &;. We have
used heuristics mechanism to select mappings from past
tasks as random variables, and according to the Monte-Carlo
method, the model will get real probability distributions of
datasets — tasks. Finally, we optimize the model by com-
bining the parameter isolation F with £. We use the new

trade-off weight A’ for balance.

p(X;)
(&)
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Experiments
Experiment Setup

In order to make a fair comparison with state-of-the-art ap-
proaches, we follow the standard experiment setup of previ-
ous work (Zhou et al. 2021) for benchmark datasets, evalua-
tion metrics and baseline implementations.

Benchmark Datasets. We evaluate all incremental de-
raining methods on four benchmark datasets: Rain100L
(Yang et al. 2017), Rain100H (Yang et al. 2017), Rain800
(Zhang, Sindagi, and Patel 2019) and Rain1400 (Fu et al.
2017¢). Both Rain100L and Rain100H contain 1900 pairs of
rainy and clean images, Rain800 has 800 pairs and Rain1400
has 1400 pairs. Following the previous work, we partition
training and testing samples of each dataset according to the
existing split. Besides, in order to explore the model per-
formance on real world images after learning the task se-
quence, we also evaluate all methods on recent public avail-
able dataset SPA-Data (Wang et al. 2019b). In this work, we
use the test set of SPA-Data for evaluation, which contains
1000 pairs of rainy images and their corresponding labeled
clean images. Note that we only train de-raining models on
the task sequence of synthetic datasets with no access to the
SPA-Data. We also collect some real-life rainy images with-
out ground truth on the Internet for qualitative comparison
among all models.

Baseline. We benchmark our scheme against the latest
method PIGWM (Zhou et al. 2021) designed for incremen-
tal rain removal. Note that our technology is non-exemplar



Rain800 Rain100L Promotion on Rain800
Model ~ Methods pSNR SSIM  PSNR SSIM  PSNR SSIM
Baseline  20.57 0.645 2556 0.876
PIGWM 2336 0.822 24.13 0.856
ID-cgan  AM 24.02 0.835 2572 0.885 345 0.190
Reference 24.34 0.843 2588 0.891

Table 2: Comparison of quantitative results in terms of PSNR and SSIM. The model is trained sequentially on the task sequence
Rain800-Rain100L using schemes of baseline, PIGWM an AM, respectively.

Rain800 Rain100H Promotion on Rain800
Model ~ Methods  pSNR SSIM  PSNR SSIM  PSNR SSIM
Baseline 19.89 0.641 1325 0.598
PIGWM  23.08 0815 11.16 0.532
ID-cgan  AM 2393 0.830 12.87 0.551 4.04 0.189
Reference 24.34 0.843 14.16 0.607

Table 3: Comparison of quantitative results in terms of PSNR and SSIM. The model is trained sequentially on the task sequence
Rain800-Rain100H using schemes of baseline, PIGWM an AM, respectively.

based and all approaches, ours included, do not use the prac-
tice of storing extra data considering the space overhead of
revisiting historical samples. We also compare incremental
approaches with two reference schemes: joint learning and
transfer learning. Joint learning sets up the reference for in-
cremental learning, where all task data is learned together
at a time. Transfer learning sets up the baseline for incre-
mental learning, where the data of each task is fed into the
model sequentially for training. Here we use parameters ob-
tained from the previous task to initialize the current model,
so that preserved information can be fully leveraged. These
two methods provide a comparison for the performance of
incremental de-raining methods.

The purpose of our experiment setting is to verify the ef-
fectiveness of all incremental methods tackling the contin-
ual image rain removal problem. Since all methods are inde-
pendent of any specific de-raining models, we use following
representative models as the baseline de-raining architecture
to integrate the above methods: NLEDN (Li et al. 2018a),
PreNet (Ren et al. 2019), PRN (Ren et al. 2019), SASI
(Wang et al. 2019a), REHEN (Yang and Lu 2019), ID-cgan
(Zhang, Sindagi, and Patel 2019). All these models achieve
state-of-the-art performances on single-image rain removal.
We also abandon the non-local operation in NLEDN to en-
sure that the model architecture is consistent with that of
previous work.

Implement Details. In the experiment setup of incremen-
tal rain removal, the model is exposed to a sequence of
datasets. Each time step when the model learns a new task,
parameters well-trained on the recent dataset will be updated
by the new dataset without additional provisions of previ-
ous datasets. Following the closely related work, Rain100H
and Rainl00L (Rain100H-Rainl100L) are sequentially fed
into PreNet, PRN, NLEDN, REHEN and SASI. Besides, in-
cremental task sequences Rain800-Rain100L and Rain800-
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Rain100H are executed on ID-cgan which first proposes
Rain800. Furthermore, we experiment on a task sequence
Rain100H-Rain100L-Rain1400 to validate the performance
of multiple incremental datasets. Note that both PIGWM
and AM are independent of specific model structure, so we
keep all training techniques and parameters setting consis-
tent with implementations in original papers for a fair com-
parison. All experiments are conducted on NVIDIA Tesla
V100 GPUs. After training the sequence of all task datasets,
we will assess the ultimate model on all task datasets and
real world images. Our experiment aims to observe the im-
provement on the performance of historical task with limited
decrease on that of new task.

Evaluation Metrics. We evaluate the quality of predic-
tion through qualitative and quantitative analysis. The qual-
itative evaluation mainly relies on visual perception, and
the observed pictures include synthetic images and real-
world ones. The quantitative evaluation utilizes peak signal
to noise ratio (PSNR) (Huynh-Thu and Ghanbari 2008) and
structural similarity (SSIM) (Wang et al. 2004) to quantify
the performance. PSNR measures the difference between
corresponding pixel values, and SSIM measures the holistic
similarity from three aspects close to the visual characteris-
tic of human eye: brightness, contrast, and structure.

Results on Benchmark Datasets

Quantitative Results. Table 1, 2 and 3 present the SSIM
and PSNR results of task sequence Rainl00H-Rain100L,
Rain800-Rain100L and Rain800-Rain100H for quantitative
evaluations, respectively. Baseline rows refer to the trans-
fer learning results while reference rows refer to the joint
learning results. Note that we train each dataset individu-
ally as the joint learning result of each task. We use re-
sults that reported by original authors except AM. We fol-
low the experiment setting of previous works to train modi-
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Figure 2: Visual comparison of rain-streaks removal results generated from the incremental de-raining process using model
PreNet. (a) Input: rainy image from Rain100H; (b) Task O: train and test on Rain100H; (c) Task 1: train model (b) on Rain100L
and test on Rain100H; (d) Ground Truth: clean image of (a); () Input: rainy image from Rain100L; (f) Task 1: train model (b)
on Rainl100L and test on Rain100L; (g) Ground Truth: clean image of (e).

Test set Rain100H Rain100L Rain1400
Baseline | 15.31/0.424 | 28.88/0.892 | 31.90/0.927
PIGWM | 28.18/0.891 | 36.85/0.975 | 28.06/0.864
AM 29.80/0.893 | 37.23/0.975 | 29.23/0.879
Reference | 29.46/0.899 | 37.48/0.979 | 32.60/0.946

Table 4: PSNR and SSIM results of PreNet trained on the
task sequence Rain100H-Rain100L-Rain1400.

fied de-raining models integrated with the AM structure and
evaluate the well-trained model on test sets of benchmark
datasets. As shown in these tables, Reference is not subject
to incremental de-raining conditions and it takes the achieve-
ment of the highest numerical performance for granted in
most cases, which sets up the baseline for incremental de-
raining setting. Baseline obviously completely forgets the
acquired knowledge. Both AM and PIGWM retain the con-
tent coherence and does not to be influenced by changing
circumstances. Between them, AM obviously works better
than PIGWM and achieves the greatest improvement over
the baseline method across all task sequences on all models.
We can conclude that AM illustrates good generalization and
effectiveness, showing the superior performance compared
to existing methods on image rain removal.

Qualitative Results. In order to visually illustrate the
catastrophic forgetting of incremental de-raining and the
performance of different approaches, we show the learning
process on task sequences. Specifically, we take the promis-
ing PreNet as one example, and rain removal results are
summarized in Figure 2. These results illustrate that our
inference model obtains predictions indistinguishable from
ground truth and works well on all task datasets. We also
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compare AM with other schemes. Reference performs bet-
ter than other methods and achieves the most visually sat-
isfactory results. The results of PIGWM are visually close
to those of AM, indicating that both can effectively deal
with the catastrophic forgetting. But historical outputs of
PIGWM seem increasingly blurry and some reinforced gen-
eration artifacts (Wang et al. 2018) exist. It indicates that
PIGWM is more sensitive to artifacts and will be reinforced
during the intermediate task training (Zhai et al. 2019), while
AM shows more robustness and less sensitiveness to them.
Baseline is unable to capture previous concepts and suf-
fers from catastrophic forgetting. Overall, hallucinated re-
sults produced by AM are perceptually convincing and AM
performs particularly well on all task sequences without for-
getting historical learned mapping rules.

Extension to Multiple Datasets

We utilize PreNet as the baseline model and extend all meth-
ods to multiple datasets. For a set of n tasks, we follow the
step similar to the dynamic programming for incremental
learning. When learning the ith task, we can regard the past
i—1 tasks as a whole task, and its corresponding well-trained
model can already solve these ¢ — 1 tasks. Then, the ith
task is sequentially fed into this model for training, and the
model continues to learn new task while retaining parame-
ters of last tasks throughout sequential training on all cases.
Table 4 presents results on the task sequence RainlO0H-
Rain100L-Rain1400, which further demonstrate the best ef-
fectiveness of AM among all existing approaches. Further-
more, the overhead of mapping memory per task is much
smaller than saving subsets of training data of each task, and
the time overhead of AM is higher than that of Baseline and
PIGWM but lower than that of Reference.
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Figure 3: Some removal results on real rain images obtained from the Internet using model PRN.

Real World | Baseline | PIGWM | AM | Reference
PSNR 33.69 34.83 34.93 35.02
SSIM 0.949 0.952 0.955 0.957

Table 5: PSNR and SSIM results of REHEN on SPA-Data.
The model is only trained on the task sequence Rain1400-
Rain100H-Rain100L without real-world SPA-Data.

Results on Real World Data

Quantitative Results. We select REHEN as the baseline
model and assess the performance of all methods on the real
world dataset SPA-Data. These models are all trained on
the task sequence Rain1400-Rain100H-Rain100L, and we
use the ultimate model after training all datasets for evalua-
tion. Table 5 presents results on the SPA-Data comparing our
method with other approaches. Reference model provides
a ideal reference for the quantitative analysis. When coun-
tered with real world images, baseline model produces the
worst results which only learns mapping rules of recent tasks
and suffers from the catastrophic forgetting. AM achieves
more closely homogeneous performance across multiple
synthetic datasets compared with another incremental de-
raining method PIGWM. It reaches the best generalization
ability in real world scenarios.

Qualitative Results. We also collect some real-world im-
ages downloaded from the Internet and evaluate our final
model on these images. We take PRN as the baseline struc-
ture and some removal results of all methods are shown in
Figure 3. Reference results show the ideal rain removal ef-
fect if diverse samples with different types of rain streaks
can be obtained in the episodic memory. Due to the catas-
trophic forgetting, the baseline model has limited capabil-
ity on the image rain removal under incremental conditions,
and has not completely eliminated rain streaks. Both AM
and PIGWM can remove the real-world rain streaks and pre-
serve some details effectively, but slight rain streaks still ex-
ist in output predictions of PIGWM. It demonstrates that our
model still memorizes acquired rain streaks and maintains
great superiority.
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Module PSNR | SSIM
SASI 19.42 | 0.673
SASI+Heuristics 29.14 | 0.883
SASI+Heuristics+Parameter Isolation | 30.05 | 0.911

Table 6: PSNR and SSIM results of each module on SASI
trained on the task sequence Rain100H-Rain100L.

Ablation Study

We analyze each component of AM to illustrate the impact
on the performance of final models. We take SASI as the
baseline model for example. As shown in Table 6, SASI
achieves the worst performance in all cases since tasks are
reached sequentially and cannot be recurred in a long-time
interval. it is necessary to utilize the heuristics mechanism to
effectively reconstruct the current domain with large incre-
mental steps. It illustrates that using the heuristics mecha-
nism improves PSNR from 19.42 dB to 29.14 dB and SSIM
from 0.673 to 0.883, which contributes the most to the final
performance. By dampening the feature reconstruction, the
two metrics are slightly improved. It depresses the adapta-
tion of new episodes and guides the prediction coherent with
previous circumstances. We can conclude that exploiting
past memory consolidation for gradient descent reduces the
plasticity and proves beneficial. Ultimately, after all compo-
nents are added, our full model obtains the best results.

Conclusion

In this paper, we explore the sample diversity for incre-
mental image de-raining and propose an associative mem-
ory management scheme mediated by heuristics mechanism
and parameter isolation. Experiments demonstrate that AM
significantly generates satisfactory results without forget-
ting historical tasks and it performs better than existing ap-
proaches within the span of multiple rain streaks. It can also
be extended to any model in a plug-and-play mode. Since
we still need to provide the known task data for new task
learning, in subsequent research, we will focus on enhancing
the ability to identify the unknown input sample and decide
whether to incrementally learn from it.
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