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Abstract

We propose the Hierarchical Flow (HF) model constrained by
isometric regularizations for manifold learning that combines
manifold learning goals such as dimensionality reduction, in-
ference, sampling, projection and density estimation into one
unified framework. Our proposed HF model is regularized to
not only produce embeddings preserving the geometric struc-
ture of the manifold, but also project samples onto the mani-
fold in a manner conforming to the rigorous definition of pro-
jection. Theoretical guarantees are provided for our HF model
to satisfy the two desired properties. In order to detect the real
dimensionality of the manifold, we also propose a two-stage
dimensionality reduction algorithm, which is a time-efficient
algorithm thanks to the hierarchical architecture design of our
HF model. Experimental results justify our theoretical analy-
sis, demonstrate the superiority of our dimensionality reduc-
tion algorithm in cost of training time, and verify the effect of
the aforementioned properties in improving performances on
downstream tasks such as anomaly detection.

1 Introduction
Manifold learning (Pless and Souvenir 2009) is the task aim-
ing to recover low-dimensional embeddings from nonlinear
high-dimensional data that preserve the geometric structure
of data manifolds (Fefferman, Mitter, and Narayanan 2016),
which is a fundamental research topic in the field of machine
learning. Applications of manifold learning include nonlin-
ear dimensionality reduction (Gisbrecht and Hammer 2015),
denoising (Buades, Coll, and Morel 2005), anomaly detec-
tion (Chandola, Banerjee, and Kumar 2009), etc.

The research on manifold learning has a long history, and
the manifold learning methods range from classical algo-
rithms such as LLE (Rowes 2000), Local Preserving Projec-
tions (He and Niyogi 2003), Semidefinite Embedding (Wein-
berger and Saul 2006), and Isomap (Tenenbaum, Silva, and
Langford 2000), to modern deep learning methods based on
neural network frameworks such as Generative Adversarial
Nets (Goodfellow et al. 2014) (GANs), Variational Autoen-
coders (Kingma and Welling 2013) (VAEs), and Normal-
izing Flow (Dinh, Krueger, and Bengio 2014) (NF) based
generative models. Classical spectral methods (e.g., Isomap
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and LLE) are commonly non-parametric methods by utiliz-
ing the Multidimensional Scaling (Carroll and Arabie 1998)
(MDS) algorithm and eigendecomposition. However, classi-
cal manifold learning algorithms are hard to apply to mod-
ern datasets, since these datasets are typically complex and
high-dimensional (Verleysen and François 2005). Since non-
parametric methods do not produce an embedding function,
the inference of the embedding can not be generalized to
unseen samples. To tackle this problem, some parametric
methods are proposed such as SNE (Van Der Maaten 2009),
t-SNE (Van der Maaten and Hinton 2008), DrLIM (Hadsell,
Chopra, and LeCun 2006) and so on (Gong et al. 2006; Chui
and Mhaskar 2018; Mishne et al. 2019), which can perform
out-of-sample-extension. There are also methods combining
classical algorithms and neural networks for manifold learn-
ing (Pai et al. 2019; Geng et al. 2020). In terms of the neural
network methods (Basri and Jacobs 2017), GANs and VAEs
as generative models can also be regarded as manifold learn-
ing framework, which is able to efficiently sample from the
manifold by using ancestral sampling. However, GANs and
VAEs lack the ability to estimate densities on the manifold.
Compared to GANs and VAEs, since NFs induce an explicit
density on the manifold based on the change-of-variable for-
mula and are intrinsic nonlinear bijective mappings between
the embeddings and the manifold, many NF-based manifold
learning models are proposed, including NFs on a prescribed
manifold (Gemici, Rezende, and Mohamed 2016; Bose et al.
2020) such as tori and spheres (Rezende et al. 2020), and the
M-flow (Brehmer and Cranmer 2020) for learning a mani-
fold topologically equivalent to Euclidean space. In this pa-
per, we propose a Hierarchical Flow (HF) model by extend-
ing theM-flow into a hierarchical architecture constrained
by isometric regularizations for manifold learning.

Given a set of training samples from a manifoldM⊂ RD

whose ground-truth dimensionality K∗ is unknown, our pro-
posed HF model combines the following manifold learning
goals in one unified framework:

• Dimensionality reduction. The model is able to detect the
ground-truth dimensionality K∗ ofM efficiently.

• Sampling. The model can efficiently sample fromM.

• Inference: Given a manifold sample x ∈ M, the model
can infer the embedding u (x) ∈ RK∗

of x that is faithful
to the geometric structure ofM. Specifically, ∀x1, x2 ∈
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M, the Euclidean distance between u (x1) and u (x2) is
equal to the manifold distance (i.e., the geodesic length)
between x1 and x2 (Petersen 2006), which we refer to as
the distance preserving property.

• Projection. Given an off-manifold sample x ̸∈ M from
the ambient space RD close toM, the model can project
x ontoM in a manner that conforms to the rigorous def-
inition of projection, namely the projection x̃ ∈ M of x
satisfies that x̃ = argminx′∈M d (x′, x), and the distance
from x toM is d (x̃, x), where d : RD ×RD → R is the
Euclidean distance in RD. We refer to such a property of
the model as the rigorous projection property.

• Density estimation. Given x ∈ M, the model is capable
of estimating the explicit density at x.

Existing manifold learning methods differ in their ability to
achieve the above goals, see Tbl. 1 for comparison. In terms
of projection, although existing methods such asM-flow are
able to project given samples onto the manifold, the projec-
tions are not guaranteed to conform to the rigorous definition
as we mentioned above, which could affect the performance
on downstream tasks such as anomaly detection, as we show
in Sec. 4 and supplementary. For our HF model, we provide
theoretical guarantees on the rigorous projection property of
the generator constrained by our proposed isometric regular-
izations, and show through experimental results that our HF
model performs better on downstream tasks such as anomaly
detection due to the rigorous projection property. Moreover,
thanks to the hierarchical architecture of our HF model, we
can develop a two-stage dimensionality reduction algorithm
to detect the ground-truth dimensionality of the manifold in
a time-efficient manner. Compared with a brute-force search
algorithm, our proposed algorithm is greatly superior in cost
of training time. Our contributions are threefold:

• We propose the Hierarchical Flow (HF) model for man-
ifold learning, which is constrained by isometric regular-
izations for satisfying the properties of distance preserv-
ing and rigorous projection with theoretical guarantees.
Our proposed HF model combines the manifold learning
goals mentioned above in one unified framework.

• We propose a two-stage dimensionality reduction algo-
rithm based on the hierarchical architecture design of our
HF model, which allows us to detect the ground-truth di-
mensionality of the manifold in a time-efficient manner.

• Experimental results justify our theoretical analysis, and
show the time-efficiency of our dimensionality reduction
algorithm and the superiority of our proposed HF model
in performance on downstream tasks such as anomaly de-
tection, thanks to the aforementioned desired properties.

The remainder of this paper is organized as follows. Sec. 2
provides details of our manifold learning method, including
our HF model, the properties of distance preserving and rig-
orous projection with theoretical guarantees, and the training
objectives and algorithms for manifold learning and dimen-
sionality reduction. Sec. 3 relates our method to prior work.
We provide experimental results in Sec. 4 to justify our the-
oretical analysis, and conclude our paper in Sec. 5.

2 Methodology
In this section, we introduce the details of our proposed HF
model and its training objectives and algorithms.

2.1 Hierarchical Generator
Given K ⩽ D, we propose to employ a generator g : RK →
RD with a hierarchical architecture to characterize the data
manifoldM using K-dimensional embedding. Specifically,
g : RK → RD comprised of L layers can be represented as

g = fL ◦ pL︸ ︷︷ ︸
mL

◦ fL−1 ◦ pL−1︸ ︷︷ ︸
mL−1

◦ · · · ◦ f1 ◦ p1︸ ︷︷ ︸
m1

, (1)

where mi = fi ◦ pi : RKi−1 → RKi is the i-th layer of g,
which is comprised of a flow module fi : RKi → RKi and
a padding module pi : RKi−1 → RKi , where K = K0 ⩽
K1 ⩽ · · · ⩽ KL = D. The flow module fi : RKi → RKi is
a nonlinear bijective mapping with an explicit inversion f−1

i
and a tractable Jacobian determinant, which is comprised of
several coupling layers (Dinh, Krueger, and Bengio 2014)
and 1×1 convolution layers. In terms of the padding module
pi : RKi−1 → RKi , given an input feature x ∈ RKi−1 , pi
pads Ki −Ki−1 zeros at the end of x

pi (x) = [x; 0] ∈ RKi , (2)

and the pseudo inverse p†i : RKi → RKi−1 is also referred
to as a projection module that drops the last Ki −Ki−1 ele-
ments of an input feature x (Brehmer and Cranmer 2020)

p†i (x) =
[
x1, x2, · · · , xKi−1

]
∈ RKi−1 , (3)

where xj is the j-th element of x. Hence the pseudo inverse
of g, i.e., g† : RD → RK , is given as

g† = p†1 ◦ f
−1
1︸ ︷︷ ︸

m†
1

◦ · · · ◦ p†L−1 ◦ f
−1
L−1︸ ︷︷ ︸

m†
L−1

◦ p†L ◦ f
−1
L︸ ︷︷ ︸

m†
L

, (4)

which is essentially an encoder that can be used to infer the
embedding u (x) ∈ RK of a sample x ∈ RD. For the details
of the implementation of g, see supplementary.

We firstly introduce mathematical notations used through-
out the paper, and then provide the theoretical guarantees for
satisfying the properties of distance preserving and rigorous
projection for the generator g. Given x ∈ RD, we denote[

ui (x) ; vi (x)
]
≜ f−1

i

(
ui+1 (x)

)
, i ∈ [L] , (5)

where ui (x) ∈ RKi−1 and vi (x) ∈ RKi−Ki−1 , and there-
fore p†i

([
ui (x) ; vi (x)

])
= ui (x). We use uL+1 (x) ≜ x,

and denote the embedding u (x) of x as u (x) ≜ u1 (x). We
also use [N ] ≜ {1, 2, · · · , N} for a positive integer N . From
the above, running inference for x ∈ RD using g† produces{
ui (x)

}L

i=1
and

{
vi (x)

}L

i=1
. Given a manifoldM ⊂ RD,

for i ∈ [L] and some r > 0, we denote

U i (M) ≜
{
ui (x) |x ∈M

}
, (6)

Vi (r) ≜
{
v ∈ RKi−Ki−1 | ∥v∥2 ⩽ r

}
, (7)
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and denote

Ai (M; r) ≜
{
fi ([u; v]) |u ∈ Ai−1 (M; r) , v ∈ Vi (r)

}
,

(8)

Ãi (M; r) ≜
{
fi ([u; 0]) |u ∈ Ai−1 (M; r)

}
, (9)

where we useA0 (M; r) ≜ U1 (M). For brevity of descrip-
tion, we also stipulate that fi (u) ≜ fi ([u; 0]) = fi◦pi (u) if
the given u is a Ki−1 dimensional vector. We also present an
intuitive understanding for U i (M), Vi (r), Ai (M; r) and
Ãi (M; r) by using Fig. 2.

The Distance Preserving Property We formally state the
conditions for the generator g to satisfy the distance preserv-
ing property in the following Prop. 1 (see supplementary for
proof) with theoretical guarantees, where an orthonormal Ja-
cobian is encouraged for the generator g. Recent works also
show that an isometric antoencoder preserves the geometric
structure of the data manifold (Gropp, Atzmon, and Lipman
2020; Yonghyeon et al. 2021). We present an intuitive illus-
tration for the distance preserving property in Fig. 1.
Proposition 1 (Distance preserving property). Assume that
U1 (M) is a convex set, and vi (x) = 0 for ∀i ∈ [L] , x ∈
M. The length of the geodesic between g (u1) and g (u2) on
M for ∀u1, u2 ∈ U1 (M) equals to ∥u1 − u2∥2, if Jg (u) is
orthonormal for ∀u ∈ U1 (M), where Jg (u) is the Jacobian
matrix of the generator g at u.

The Rigorous Projection Property We also formally state
the conditions for each flow module fi to satisfy the rigorous
projection property in the following Prop. 2 (see supplemen-
tary for proof) with theoretical guarantees. To intuitively see
how satisfying the conditions in Prop. 2 leads to a flow mod-
ule fi that satisfies the rigorous projection property, refer to
supplementary. In terms of the rigorous projection property
of the whole generator g, we directly learn from Prop. 2 that
a generator g comprised of only one layer (i.e., g = f1 ◦ p1)
satisfies the rigorous projection property, which is formally
stated in Cor. 1. For g comprised of more than one layer, the
rigorous projection property of g is approximately satisfied
over an ambient space close toM, see Rem. 1 and Fig. 2.
Proposition 2 (Rigorous projection property). Assume that
vi (x) = 0 for ∀x ∈ M. Given x ∈ Ai (M; r), by denoting
[α;β] ≜ f−1

i (x) where α ∈ RKi−1 and β ∈ RKi−Ki−1 ,
the projection of x onto Ãi (M; r) is x̃ ≜ fi (α), and the
distance from x to Ãi (M; r), dE (x, x̃), equals to ∥β∥2, if
∀u ∈ Ai−1 (M; r) , v ∈ Vi (r),

I ([u; v]) ≜ J ([u; v])
⊤
J ([u; v]) ∈ RKi×Ki (10)

is a diagonal matrix, and Ijj ([u; v]) equals to 1 for Ki−1 +
1 ⩽ j ⩽ Ki, where J ([u; v]) ∈ RKi×Ki is the Jacobian of
fi at [u; v], Ijj is the (j, j)-th element of I , and dE (·, ·) is
the Euclidean distance in RKi .
Corollary 1. Given g = f1 ◦ p1, assume that v1 (x) = 0 for
∀x ∈M. Given x ∈ A1 (M; r), the projection of x ontoM
is x̃ ≜ g

(
u1 (x)

)
= g ◦ g† (x), and the distance from x to

M, dE (x, x̃), is
∥∥v1 (x)∥∥

2
, if f1 satisfies the conditions for

the rigorous projection property in Prop. 2.

Figure 1: An intuitive illustration for the distance preserving
property by using the exemplar manifold “Swiss roll” (also
see Fig.3 of (Tenenbaum, Silva, and Langford 2000)). U is
obtained by a generator g whose Jacobian Jg is orthonormal.
The correspondence betweenM and U is indicated by color,
and the orthonormality of Jg can be shown by the coordinate
lines ofM. The geodesic between x and y is plotted by us-
ing the red line onM, and the geodesic length dM (x, y) is
equal to the Euclidean distance dE

(
g† (x) , g† (y)

)
between

the corresponding embeddings g† (x) and g† (y).

Remark 1. Given g comprised of L ⩾ 2 layers, assume that
vi (x) = 0 for ∀x ∈ M, i ∈ [L]. Given x ∈ AL (M; r), let
x̃i ≜ fi

(
ui (x)

)
, i ∈ [L], and x̃ ≜ g

(
u1 (x)

)
= g ◦ g† (x).

Assume that r is small such that AL (M; r) is an ambient
space close to M. Given fi that satisfies the rigorous pro-
jection property for i ∈ [L], we have

• The projection of ui+1 (x) onto Ãi (M; r) is x̃i, and the
distance from ui+1 (x) to Ãi (M; r), dE

(
ui+1 (x) , x̃i

)
,

equals to
∥∥vi (x)∥∥

2
, where i ∈ [L].

• The projection of x ontoM is x̃, and the distance from x

toM, dE (x, x̃), is approximately
√∑L

i=1 ∥vi (x)∥
2
2.

See Fig. 2 and supplementary for detailed analysis.

2.2 Isometric Regularizations
Based on the aforementioned Prop. 1-2, we propose two iso-
metric regularizations for the generator g to satisfy the dis-
tance preserving property and the rigorous projection prop-
erty, respectively. Both isometric regularizations are realized
to pursue an orthonormal Jacobian.

Orthonormal Regularization on Ai−1 (M; r) To satisfy
the distance preserving property for g, according to Prop. 1
and the following Prop. 3 (see supplementary for proof), we
can constrain the Jacobian Jfi of fi to be orthonormal over
Ai−1 (M; r) for i ∈ [L], namely

Jfi (u) is orthonormal, ∀u ∈ Ai−1 (M; r) . (11)

In practice, to ensure the generator expressiveness, we pro-
pose to constrain Jfi to be orthonormal up to a global scalar
ζ > 0. To achieve this, we propose to utilize a sample ef-
ficient regularization on Jfi based on the recently proposed
Linearized Transpose (Pan, Niu, and Zhang 2022) (LT) tech-
nique that is used to efficiently estimate the spectral norm of
the Jacobian. Specifically, we exploit the property of fi that
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Figure 2: An intuitive illustration of the math notations and the rigorous projection for a hierarchical generator g = f2 ◦p2 ◦f1 ◦
p1 : R1 → R3. The projection of x ∈ A2 (M; r) onto Ã2 (M; r) andM are x̃2 ≜ f2 ◦ p2 ◦ p†2 ◦ f

−1
2 (x) = f2

([
u2 (x) ; 0

])
and x̃ ≜ g ◦ g† (x), respectively. Assume that x̃ is in a local region around x̃2, i.e., it can be regarded that x̃ ∈ Tx̃2Ã2 (M; r)

and dÃ2(M;r)

(
x̃, x̃2

)
≈ dE

(
x̃, x̃2

)
, where Tx̃2Ã2 (M; r) represents the tangent space of Ã2 (M; r) at x̃2. Because f2 satisfies

the rigorous projection property, from Prop. 2 and the rigorous definition of projection, we have dE
(
x, x̃2

)
=

∥∥v2 (x)∥∥
2

and
vec

(
x, x̃2

)
⊥ Tx̃2Ã2 (M; r), where vec

(
x, x̃2

)
denotes the vector from x to x̃2. Hence according to the Pythagorean theorem,

we have d2E (x, x̃) = d2E
(
x, x̃2

)
+ d2E

(
x̃2, x̃

)
≈

∥∥v2 (x)∥∥2
2
+ d2

Ã2(M;r)

(
x̃, x̃2

)
. Because Jf2 is constrained to be orthonormal

over A1 (M; r), we have dÃ2(M;r)

(
x̃, x̃2

)
= dE

(
u2 (x̃) , u2 (x)

)
. Given that f1 satisfies the rigorous projection property, we

know that u2 (x̃) is the projection of u2 (x) ∈ A1 (M; r) onto Ã1 (M; r) according to Prop. 2, since we know u1 (x) = u1 (x̃)

from x̃ = g ◦ g† (x). Hence dE
(
u2 (x̃) , u2 (x)

)
=

∥∥v1 (x)∥∥
2
, and dE (x, x̃) ≈

√
∥v1 (x)∥22 + ∥v2 (x)∥

2
2.

det Jfi is tractable. Because det Jfi equals to the product of
all singular values of Jfi , we know that all singular values of
Jfi are equal and hence Jfi is orthonormal up to a scalar, if
we constrain the maximum singular value (i.e., the spectral
norm) of Jfi to equal Ki

√
det Jfi . Therefore, in practice, we

estimate the spectral norm of Jfi by employing LT, and then
constrain LTfi (u) = Ki

√
det Jfi (u) = ζ, where LTfi (u)

is the estimated spectral norm of Jfi at ∀u ∈ Ai−1 (M; r).

Proposition 3. Jg (z) is orthonormal for ∀z ∈ U1 (M), if
Jfi (u) is orthonormal for ∀u ∈ Ai−1 (M; r) , ∀i ∈ [L].

Proxy Regularization onAi−1 (M; r)×Vi (r) Based on
Prop. 2 and Rem. 1, to satisfy the rigorous projection prop-
erty for g, an approach is to trivially constrain Jfi to be or-
thonormal overAi−1 (M; r)×Vi (r) by using LT. Although
we can verify that this is a special case satisfying the condi-
tions in Prop. 2, the flexibility of fi is greatly reduced (see
supplementary for detailed discussion). To tackle this prob-
lem, we observe that for a given z ∈ Ai−1 (M; r)× Vi (r),
by using an auxiliary module si : RKi → RKi , the Jacobian
of the following composed mapping

ϕz
i (ξ) ≜ fi (z − si (z) + si (z)⊗ ξ) , ξ ∈ RKi (12)

at ξ = 1, i.e., Jϕz
i
(1) =

∂ϕz
i

∂ξ

∣∣∣
ξ=1

, equals to

Jfi (z) diag (ω1, ω2, · · · , ωKi
) , (13)

where ⊗ denotes the elementwise multiplication, 1 ∈ RKi

is a vector with all elements being 1, and ωj denotes the j-th
element of si (z). From Prop. 4, we know that the follow-
ing objective leads to an fi satisfying the conditions for the
rigorous projection in Prop. 2 (see supplementary for proof):

constrain all singular values of Jϕz
i
(1) to be equal,

s.t. ωj =
Ki−1

√√√√√
Ki−1∏

l=1

ωl

 det Jfi , Ki−1 + 1 ⩽ j ⩽ Ki

(14)

In practice, we constrain LTϕz
i
(1) = Ki

√
det Jϕz

i
(1) by us-

ing LT for ∀z ∈ Ai−1 (M; r)×Vi (r), which is a sample ef-
ficient regularization while giving flexibility to fi. We refer
to such a method as the proxy regularization for fi to satisfy
the rigorous projection property. We refer to the module si
as the singular values predictor for fi.
Proposition 4. All singular values of Jϕz

i
(1) equal a > 0

⇔ Jfi (z)
⊤
Jfi (z) = diag

(
a2

ω2
1
, · · · , a2

ω2
Ki

)
, and

{
a
ωj

}Ki

j=1

are the singular values of Jfi (z).

2.3 Training Objectives and Algorithms
We present the training objectives and algorithms for mani-
fold learning given a training dataset X ≜

{
x(i) ∈M

}N

i=1
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from a manifoldM⊂ RD. We adopt the training strategy of
M-flow (Brehmer and Cranmer 2020) which separates the
manifold and density training. We first introduce the training
objectives for the manifold and density training respectively,
then introduce the training algorithms, where a two-stage di-
mensionality reduction algorithm for detecting the ground-
truth dimensionality K∗ ofM is included.

Manifold Training Objectives During the manifold train-
ing phase, the following loss function Lm is minimized

Lm = λdistLdist + λprojLproj + λvLv, (15)

where λ are balancing hyper-parameters. We then introduce
each loss function in detail as follows.
Ldist is the isometric loss function used to satisfy the dis-

tance preserving property for the generator g, which is real-
ized by constraining all the Jacobians of fi to be orthonor-
mal up to ζ as we introduced in Sec. 2.2. Specifically,

Ldist =
1

L

L∑
i=1

Eui∼Ai−1(M;r)

{(
LTfi

(
ui
)
− ζ

)2
+

(
det Jfi

(
ui
)
− ζ

)2 }
.

(16)

Note that Ldist involves sampling ui fromAi−1 (M; r). For
i = 1, since A0 (M; r) = U1 (M), we sample u1 from the
K-dimensional normal distribution N

(
µ, σ2

)
, where u and

σ2 are the running mean and running variance of u1 (x) for
x ∈ X . For 2 ⩽ i ⩽ L, according to Eq. (8), we sample ui−1

fromAi−2 (M; r) and vi−1 from Vi−1 (r), respectively, and
then obtain ui = fi−1

([
ui−1; vi−1

])
.

Lproj is the isometric loss function used to satisfy the rig-
orous projection property for the generator g, which is real-
ized by the proxy regularization over Ai−1 (M; r)× Vi (r)
as we introduced in Sec. 2.2. Specifically,

Lproj =
1

L

L∑
i=1

Ez∼Ai−1(M;r)×Vi(r)LTϕz
i
(1)− det Jfi (z)

Ki∏
j=1

ωj

2

,

(17)

where we sample z fromAi−1 (M; r)×Vi (r) by using the
ancestral sampling method involved in Ldist. Note that from
Eq. (13) we learn that det Jϕz

i
(1) = det Jfi (z)

∏Ki

j=1 ωj .
Lv is the reconstruction loss function, which constrains g

to satisfy g ◦ g† (x) = x for x ∈ X . Instead of adopting the
commonly used loss function as follows

1

N

N∑
i=1

∥∥∥g ◦ g† (x(i)
)
− x(i)

∥∥∥2
2
, (18)

we can use the following loss function

Lv =
1

N

N∑
k=1

L∑
i=1

∥∥∥vi (x(k)
)∥∥∥2

2
. (19)

Since Lv depends on
{
vi (x)

}L

i=1
to compute the loss for a

given x ∈ X , compared with Eq. (18), Lv requires only the

encoding process (i.e., g† (x)) and no decoding process (i.e.,
g (u (x)) where u (x) is the embedding of x), which reduces
the computational cost and hence speed up training. In order
to see how Lv is related to a reconstruction loss function for
X , according to Rem. 1 we learn that the distance from x to

the generated manifold M̃ of g is about
√∑L

i=1 ∥vi (x)∥
2
2.

Therefore, minimizing Lv brings X and M̃ closer, which is
equivalent to encouraging reconstruction on X .

The overall loss function Lm can be regarded as a Regu-
larized Autoencoder (Ghosh et al. 2020) (RAE), where Lv

corresponds to the reconstruction loss of RAE, and the other
losses (i.e., Ldist and Lproj) are regularizers for the decoder.

Density Training Objectives In order to perform density
estimation onM, similar toM-flow (Brehmer and Cranmer
2020), we employ a density estimator h : RK → RK which
is trained to estimate the probability density onM after the
manifold training phase is done. Given a sample x ∈M, its
density pM (x) onM is explicitly derived according to the
following change-of-variable formula (Dinh, Krueger, and
Bengio 2014; Kobyzev, Prince, and Brubaker 2020)

pM (x) = pU (u (x))
∣∣det J⊤

g (u (x)) Jg (u (x))
∣∣− 1

2 (20)

= pU (u (x)) , (21)

where u (x) = g† (x) is the embedding of x, and Eq. (21) is
derived because Jg is orthonormal (see Prop. 1). The density
estimator h is further involved in the following formula

pU (u) = pŨ
(
h−1 (u)

) ∣∣det Jh (h−1 (u)
)∣∣−1

, (22)

where h is a flow module (Brehmer and Cranmer 2020) that
is a bijection with explicit inversion h−1 and tractable Jaco-
bian determinant det Jh, and the prior distribution pŨ is the
standard normal distribution. Hence given u (x), the density
pU (u (x)) is tractable, and hence pM (x) = pU (u (x)) can
be explicitly estimated. In terms of the training objective, we
use maximum likelihood training, and the loss function is

Ld = −
N∑
i=1

log pU

(
u
(
x(i)

))
. (23)

Algorithms We present the algorithms for manifold learn-
ing using our proposed HF model. As mentioned above, the
training process consists of two phases, namely the manifold
phase and the density phase. During the manifold phase, we
detect the ground-truth dimensionality K∗ ofM by utilizing
our proposed two-stage dimensionality reduction algorithm,
see Alg. 1. Specifically, for the first stage, we set an embed-
ding dimensionality K that is much lower than D but higher
than K∗, then train the first stage generator g1 : RK → RD

using Lm in Eq. (15). For the second stage, given a recon-
struction error threshold t, we use the Binary Search Algo-
rithm (BSA) to search the minimum dimensionality K̃ for
the second stage generator g2 : RK̃ → RK such that the
reconstruction error on X of g̃ = g1 ◦ g2 is not larger than t,
where g1 is not involved in the second stage training, and g2

is trained on the embedding set
{
g†1 (x) |x ∈ X

}
. After the
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Algorithm 1: Two-stage Dimensionality Reduction

Require: Training dataset X =
{
x(i)

}N

i=1
⊂ RD, dimen-

sionality K of the first stage, threshold t
/* Stage 1 */

1: Initialize a generator g1 : RK → RD

2: Train g1 using Lm, then obtain U =
{
u
(
x(i)

)}N

i=1
⊂

RK , where u (x) = g†1 (x) is the embedding of x
/* Stage 2 */

3: Initialize K1 ← 0,K2 ← K, K̃ ← ⌊K1+K2

2 ⌋, g̃ ← g1
4: while K1 < K̃ do
5: Initialize another generator g2 : RK̃ → RK2

6: Train g2 on U using Lm, then obtain ĝ ← g1 ◦ g2
7: Estimate the mean reconstruction error E as

E =
1

N

N∑
i=1

∥∥∥ĝ ◦ ĝ† (x(i)
)
− x(i)

∥∥∥ (24)

8: If E > t, update K2 ← K̃, g1 ← ĝ, g̃ ← ĝ,U ←{
g†2 (u) |u ∈ U

}
, otherwise update K1 ← K̃

9: Update K̃ ← ⌊K1+K2

2 ⌋
10: end while
11: Obtain the detected manifold dimensionality K̃ as well

as the final generator g̃ : RK̃ → RD

manifold phase training is completed, the density estimator
h is trained on the embedding set

{
g̃† (x) |x ∈ X

}
usingLd.

See supplementary for the overall training algorithm.

3 Relation to Prior Work
Generative Manifold Learning Our proposed HF model
is related to generative models for manifold learning (Gropp,
Atzmon, and Lipman 2020; Beitler, Sosnovik, and Smeul-
ders 2021; Teng and Choromanska 2019; Lou et al. 2020;
Caterini et al. 2021; Silvestri, Roos, and Ambrogioni 2022),
see supplementary for discussion. Our proposed HF model
can be regarded as a multi-layer extension of M-flow,
which is similar regarding the hierarchical architecture to the
Pseudo Invertible Encoders (Beitler, Sosnovik, and Smeul-
ders 2021) (PIEs). The hierarchical architecture allows us to
detect the ground-truth dimensionality of the data manifold
in a time-efficient manner by utilizing Alg. 1. The Isometric
Autoencoders (Gropp, Atzmon, and Lipman 2020) (IAEs)
propose an isometric loss for manifold learning, and we also
propose isometric regularizations to constrain our HF model
to satisfy the properties of distance preserving and rigorous
projection with theoretical guarantees. Moreover, thanks to
the rigorous projection property, we can replace the classical
reconstruction loss based on the encoding-decoding process
with Lv that only involves the encoding process, which can
reduce computational cost and hence speed up training. We
compare a variety of models in their ability to achieve mani-
fold learning goals as in Tbl. 1. As we can see, most methods
lack the ability to satisfy the aforementioned two properties,
which may affect the performance on downstream tasks such

Methods Sampling Infer. Proj. Density Est.

GAN ✓ × × ×
VAE ✓ ⃝ ⃝ ×
IAE ✓ ✓ ⃝ ×
PIE ✓ ⃝ ⃝ ✓
M-flow ✓ ⃝ ⃝ ✓

HF ✓ ✓ ✓ ✓

Table 1: Comparison between different models in their abil-
ity to achieve a variety of manifold goals. Regarding infer-
ence, ✓(resp.,⃝) means that the model is able to infer em-
beddings that satisfy (resp., are not guaranteed to satisfy) the
distance preserving property. Regarding projection, ✓(resp.,
⃝) means that the model is able to project samples onto the
manifold in a manner that satisfies (resp., is not guaranteed
to satisfy) the rigorous projection property.

as anomaly detection, as we show in experimental results.

Dimensionality Reduction The dimensionality of embed-
dings for most manifold learning methods is prescribed, and
is not guaranteed to be equal to the ground-truth dimension-
ality of the manifold. For real-world datasets such as human
faces (Liu et al. 2015; Karras, Laine, and Aila 2019), the real
dimensionality K∗ of the manifold may never be known. In
existing literatures (Brehmer and Cranmer 2020), K∗ is typ-
ically obtained by a searching process based on the criterion
that a drop in performance (e.g., the reconstruction error) is
expected when the model manifold dimensionality becomes
smaller than K∗. Therefore, a naive approach to detect K∗

is to train model for each possible value of K∗. For our pro-
posed Alg. 1, the searching is performed in the second stage
for K̃. Compared to a brute-force search of K̃, the time com-
plexity of the binary search algorithm isO (logK), which is
much superior to O (K) of brute-force search given that K
is large. On the other hand, our theoretical analysis guaran-
tees that the composed generator ĝ = g1 ◦ g2 of the first and
the second stage generators g1, g2 still satisfies the desired
properties for manifold learning. Given that D is very large,
although g1 is a nonlinear mapping over high-dimensional
spaces with high training time cost, g1 is trained only once
in the first stage. Though the searching process in the second
stage involves multiple training of g2, each training can be
quickly done since g2 operates in low-dimensional spaces
when K is small. Hence combining the training of the first
and second stage results in a time-efficient algorithm for di-
mensionality reduction. See supplementary for experiments.

4 Experiments
We provide experimental results on a synthetic manifold for
intuitive illustration in this section, and leave more results on
natural image datasets in supplementary due to space limita-
tion. All the implementation details for our experiments can
also be found in supplementary.

For intuitive illustration, we use a 1-dimensional manifold
M ≜

{
(cos θ, sin θ) |θ ∈

[
π
6 ,

5π
6

]}
(i.e., a curve) residing

in the 2-dimensional Euclidean space. We draw N = 1, 000
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(a) M-flow (b) IAE (c) HF

Figure 3: Qualitative results of different models trained on X . For each model, the recovered manifold is depicted by using the
thick black solid line, and we can intuitive observe that all the models perfectly recover the manifold curveM. In the ambient
space ofM, the contour lines with respect to distances toM are plotted by using the thin grey dotted lines, namely samples on
the same contour line have equal distances toM. We use d = α to denote a contour line with distance toM being α. We also
plot the coordinate charts of the flow module f1 : R2 → R2 of the generator g = f1 ◦ p1 forM-flow (in Fig. 3(a)) and HF (in
Fig. 3(c)), where bothM-flow and HF use a one-layer generator g. Specifically, the two embedding dimensions u and v of f1
are represented in green and blue, respectively, namely samples on the same green (resp., blue) line corresponds to the same u
(resp., v). Hence forM-flow and HF, given an off-manifold sample x, the projection x2 of x ontoM inferred by the model is
given by the coordinate line of f1 connecting x and the inferred projection x2, which is denoted by the dashed arrow line. The
ground-truth projection x̃ of x ontoM is given by the solid arrow line, which is the straight line connecting x and the origin
(0, 0), considering radial is the direction perpendicular to the tangent space of the arcM. In terms of IAE, because the decoder
g : R1 → R2 does not induce a coordinate chart likeM-flow and HF, the projection x̃′ of a given sample x ontoM inferred
by the model is obtained by an encoding-decoding process, i.e., x̃′ = g ◦ e (x), where e is the encoder. In Fig. 3(b), we show
the projections of {xi}4i=1, where the ground-truth and the inferred projection of xi ontoM are x̃i and x̃′

i, respectively.

samples from a Gaussian density N
(
π
2 , 1

)
that is restricted

toM, obtaining a training dataset

X ≜
{
x(i) ∼ N

(π
2
, 1
)
∧ x(i) ∈M

}N

i=1
(25)

which we use to train different models. We only show quali-
tative results as in Fig. 3 due to space limitation, and present
all quantitative results in supplementary.

Distance Preserving In order to evaluateM-flow and HF
intuitively, in Fig. 3(a) and Fig. 3(c), we refer to ∀x, y ∈M
that are intersections of two adjacent green coordinate lines
withM as a pair. Note that we depict coordinate charts for
M-flow and HF such that |u (x)− u (y)| is constant for any
pair x, y. Therefore, the distance preserving property ofM-
flow and HF can be intuitively evaluated by observing if the
manifold distance onM (i.e., the arc length) between x and
y is constant for any pair x, y. From Fig. 3(a), we learn that
M-flow is not guaranteed to satisfy the distance preserving
property due to dM (x1, y1) ̸= dM (x2, y2). However, from
Fig. 3(c) we learn that our HF satisfies this property because
we can intuitively observe that dM (x1, y1) = dM (x2, y2)
for any pairs x1, y1 and x2, y2. In terms of IAE, the distance
preserving property is not reflected in Fig. 3(b), see supple-
mentary for quantitative evaluations.

Rigorous Projection Given an off-manifold x, we visual-
ize the difference betweenM-flow and HF in terms of pro-
jecting x ontoM. By comparing Fig. 3(a) with Fig. 3(c), we
can see that the projection x2 inferred byM-flow deviates
from the ground-truth projection x̃, meanwhile our HF gives

the correct projection x2 = x̃. Moreover, because x is on the
blue coordinate line v = 0.5 as we visualize in Fig. 3(a) and
Fig. 3(c), we know that the distance from x to the projection
x2 given by the model is 0.5. On the other hand, x is on the
contour line d = 1.5 (resp., d = 0.5) forM-flow (resp., our
HF), which means thatM-flow (resp., our HF) gives biased
(resp., correct) distance from x to its inferred projection x2.
From Fig. 3(b), we also learn that projections given by IAE
are biased. Hence bothM-flow and IAE are not guaranteed
to satisfy the rigorous projection property. As visualized in
Fig. 3(c), the green coordinate lines are radial while the blue
coordinate lines coincides with the contour lines, which sug-
gests that HF satisfies the rigorous projection property. The
dissatisfaction of the rigorous projection property affects the
performance of the model on anomaly detection based on the
inferred projection distance, see supplementary.

5 Conclusion

In this paper, we propose the Hierarchical Flow (HF) model
constrained by isometric regularizations to combine several
manifold learning goals in one unified framework. The HF
model is theoretically guaranteed to satisfy the properties of
distance preserving and rigorous projection, which helps in
manifold learning and downstream tasks. We also propose a
time-efficient two-stage algorithm for dimensionality reduc-
tion based on the hierarchical architecture of our HF model.
Experimental results justify our theoretical analysis and ver-
ify the effectiveness of our proposed method.
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