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Abstract

Neural controlled differential equations (NCDEs), which are
continuous analogues to recurrent neural networks (RNNs),
are a specialized model in (irregular) time-series process-
ing. In comparison with similar models, e.g., neural ordi-
nary differential equations (NODEs), the key distinctive char-
acteristics of NCDEs are i) the adoption of the continu-
ous path created by an interpolation algorithm from each
raw discrete time-series sample and ii) the adoption of the
Riemann–Stieltjes integral. It is the continuous path which
makes NCDEs be analogues to continuous RNNs. However,
NCDEs use existing interpolation algorithms to create the
path, which is unclear whether they can create an optimal
path. To this end, we present a method to generate another
latent path (rather than relying on existing interpolation algo-
rithms), which is identical to learning an appropriate interpo-
lation method. We design an encoder-decoder module based
on NCDEs and NODEs, and a special training method for it.
Our method shows the best performance in both time-series
classification and forecasting.

Introduction
Deep learning for time-series data is one of the most active
research fields in machine learning since many real-world
applications deal with time-series data. For instance, time-
series forecasting is a long-standing research problem, rang-
ing from stock price forecasting to climate and traffic fore-
casting (Reinsel 2003; Fu 2011; Yu, Yin, and Zhu 2018;
Wu et al. 2019; Guo et al. 2019; Song et al. 2020; Huang
et al. 2020; Bai et al. 2020; Chen, Segovia-Dominguez, and
Gel 2021; Fang et al. 2021; Choi et al. 2022; Hwang et al.
2021). Time-series classification (Fawaz et al. 2019) and
time-series anomaly detection (Zhang et al. 2019) are also
popular. Recurrent neural networks (RNNs), such as LSTM
(Hochreiter and Schmidhuber 1997), GRU (Chung et al.
2014) and so on, have been typically used for these pur-
poses. Recently, however, researchers extended the basis of
the time-series processing model design to differential equa-
tions (far beyond classical RNNs), e.g., neural ordinary dif-
ferential equations (NODEs) and neural controlled differen-
tial equations (NCDEs). It is already well known that much
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scientific time-series data can be clearly described by differ-
ential equations (Chen et al. 2018; Rubanova, Chen, and
Duvenaud 2019; Kidger et al. 2020). For instance, there
exist various differential equation-based models for physi-
cal, social scientific, and financial phenomena and some of
them received Nobel prizes, e.g., the Black–Scholes–Merton
model (Black and Scholes 1973). In this regard, we consider
that differential equation-based approaches are one of the
most suitable strategies in designing time-series models, es-
pecially for real-world data. Neural controlled differential
equations (NCDEs) (Kidger et al. 2020) are breakthrough
concepts to interpret recurrent neural networks (RNNs) in
a continuous manner. While the initial value determines
the solution of differential equation in neural ordinary dif-
ferential equations (NODEs) (Chen et al. 2018), NCDEs
keep reading time-evolving values (as in RNNs) and their
solutions are determined by the entire input. In this re-
gard, NCDEs are a continuous analogue to RNNs and they
show the state-of-the-art performance for many time-series
datasets. We compare the solution z(T ) of NODEs and
NCDEs as follows:
1. For NODEs,

z(T ) = z(0) +

∫ T

0

f(z(t), t; θf )dt; (1)

2. For NCDEs,

z(T ) = z(0) +

∫ T

0

f(z(t); θf )dX(t) (2)

= z(0) +

∫ T

0

f(z(t); θf )
dX(t)

dt
dt, (3)

where X(t) is a continuous path created from a raw dis-
crete time-series sample {(xi, ti)}Ni=0 by an interpolation
algorithm, where ti means the time-point of the observa-
tion xi, t0 = 0, tN = T and ti < ti+1 (cf. Fig. 1(a)).
Note that NCDEs keep reading the derivative of X(t)

over time, denoted Ẋ(t)
def
= dX(t)

dt , whereas NODEs do
not. Given fixed θf (after training), z(0) solely deter-
mines the evolutionary trajectory from z(0) to z(T ) in
NODEs.

In NCDEs, the time-derivative of X(t), dX(t)
dt , is consid-

ered to define the time-derivative of z(t), dz(t)
dt , which means
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(a) The architecture of NCDE (b) The architecture of LEAP

Figure 1: (a) is the architecture of NCDE where the path X is created by interpolating {(xi, ti)}Ni=0. (b) is the proposed
architecture of LEAP. Our proposed concept corresponds to learning an interpolation method to generate the path Y .

they keep reading values from dX(t)
dt . Thus, selecting the ap-

propriate interpolation method for creating the continuous
path X is crucial. The first work proposing the NCDE con-
cept prefers the natural cubic spline algorithm for its suit-
able characteristic to be used in NCDEs, i.e., the path cre-
ated by the natural cubic spline is twice differentiable and
continuous. As reported in (Morrill et al. 2021), however,
other interpolation algorithms can also be used. According
to their experimental results, however, there does not ex-
ist a clear winning interpolation method that works always
well although the natural cubic spline is, in general, a good
choice.

To this end, we propose to learn an interpolation method
optimized for a downstream task, i.e., LEArnable Path
(LEAP). We insert an encoder-decoder module to generate a
path Y , rather than relying on the path X created by an in-
terpolation algorithm (cf. Fig. 1(b)). The additional module
reads X to generate another fine-tuned path Y that will be
used to define the hidden vector z over time t. One can con-
sider that our method learns how to interpolate and generate
the path Y .

We conducted time-series classification and forecasting
experiments with four datasets and twelve baselines, which
are all well-recognized standard benchmark environments.
Our method shows the best performance in terms of various
accuracy and error metrics. Our contributions can be sum-
marized as follows:

1. We learn a path to be used to evolve z(t), which corre-
sponds to learning an interpolation algorithm.

2. Our method outperforms existing baselines in all the
cases in both time-series classification and forecasting.

Related Work and Preliminaries
We introduce our literature survey for recent deep learning
work related to time-series processing. We also deliver base
knowledge to understand our paper.

Neural Ordinary Differential Equations NODEs can
process time-series data in a continuous manner, which
means they can read and write values at any arbitrary time-
point t by using the differential equation in Eq. (1).

z(t) ∈ RD, where t ∈ [0, T ], means a D-dimensional
vector — we use boldface to denote vectors and matri-
ces. ż(t) def

= dz(t)
dt is approximated by the neural network

f(z(t), t; θf ), and we need to solve the initial value prob-
lem to derive the final value z(T ) from the initial value
z(0), which is basically an integral problem. To solve the
problem, we typically rely on existing ODE solvers, such
as the explicit Euler Method, the 4th order Runge–Kutta
(RK4) method, the Dormand–Prince (DOPRI) method, and
so forth. In particular, the explicit Euler method, denoted
z(t+h) = z(t)+hf(z(t), t; θf ) where h ∈ R is a step-size
parameter, is identical to the residual connection. Therefore,
NODEs are considered as continuous analogues to residual
networks.

There exist several popular time-series processing mod-
els based on NODEs, such as Latent-ODE, GRU-ODE,
ACE-NODE, and so forth. Latent-ODE is an encoder-
decoder architecture for processing time-series data. GRU-
ODE showed that the GRU cell can be modeled by a differ-
ential equation. ACE-NODE is the first NODE-based model
with an attention mechanism.

Neural Controlled Differential Equations NCDEs in
Eq. (2) are technically more complicated than NODEs.
NCDEs use the Riemann–Stieltjes integral, as shown in
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Eq. (3), whereas NODEs use the Riemann integral. To solve
Eq. (3), existing ODE solvers can also be used since ż(t)

def
=

dz(t)
dt = f(z(t); θf )

dX(t)
dt in NCDEs. Regardless of the in-

tegral problem type, existing ODE solvers can be used once
ż(t) can be properly modeled and calculated. Additionally,
NCDEs are considered as a continuous analogue to RNNs
since they continuously read values Ẋ(t) over time.

In order to use NCDEs, however, we need to create a
continuous path X from each raw discrete time-series sam-
ple, for which we typically use an interpolation algorithm.
Among various methods, the natural cubic spline method
is frequently used. As reported in (Morrill et al. 2021), the
model accuracy of NCDEs is greatly influenced by how to
interpolate discrete time-series data. To this end, we propose
to let a neural network interpolate rather than relying on ex-
isting interpolation algorithms.

In (Jhin et al. 2021b), they proposed ANCDEs to insert an
attention mechanism into NCDEs. Unlike our method, how-
ever, their goal is to pick useful information from the path
X . Therefore, their method does not learn a new interpola-
tion method whereas our proposed concept is equivalent to
learning an interpolation method for a downstream task.

Proposed Method
We describe our proposed method that is to learn a path,
which corresponds to learning an interpolation algorithm
(rather than relying on existing algorithms). In other words,
our proposed model generates another latent path Y from
the path X for a downstream task.

Overall Design Fig. 1(b) shows the detailed design of our
method, LEAP. The overall workflow is as follows:

1. The path X is created from a discrete time-series sample
by an existing interpolation algorithm.

2. The encoder NCDE, the yellow box in Fig. 1(b), pro-
duces a hidden vector at time t, denoted e(t).

3. We use the hidden vector at tN , i.e, e(tN ), to generate
the hidden representation of the input time-series.

4. From the hidden representation, the NODE-based de-
coder, the blue box in Fig. 1(b), produces another latent
path Y .

5. There is a loss to maintain the key characteristics of the
path X while generating the path Y (cf. Eq. (11)). There-
fore, the path Y is not simply a latent path but a latent
path fine-tuned from X .

6. After that, there is one more NCDE based on Y for a
downstream task, the orange box in Fig. 1(b).

We describe each part in detail, followed by a theoretical
result that training the proposed model is well-posed.

Encoder-Decoder Module We first introduce our formu-
lation to define the proposed LEAP. The entire module can
be written, when we adopt the proposed encoder-decoder

strategy to learn another path Y , as follows:

z(T ) = z(0) +

∫ T

0

g(z(t); θg)
dY (t)

dt
dt, (4)

Y (t) = m(h(t); θm), (5)

h(T ) = h(0) +

∫ T

0

f(h(t), t; θf )dt, (6)

e(T ) = e(0) +

∫ T

0

k(e(t); θk)
dX(t)

dt
dt, (7)

where h(0) = ϕh(e(tN ); θϕh
) for a raw discrete time-series

sample {(xi, ti)}Ni=0, Y is a path created from X , z is con-
trolled by Y , and ϕh is a fully-connected layer-based trans-
formation. As mentioned earlier, X is created by the natu-
ral cubic spline algorithm from raw discrete time-series ob-
servations. Even though the natural cubic spline algorithm
is able to produce a path suitable for NCDEs, it is hard
to say that the algorithm is always the best option (Mor-
rill et al. 2021). Thus, we propose to learn another path
Y which is optimized for a downstream machine learning
task. Then, Y can be considered as a fine-tuned path from
X for a downstream machine learning task. We also note
that dim(Y (t)) = dim(X(t)). Since Ẏ (t)

def
= dY (t)

dt =
dY (t)
dh(t)

dh(t)
dt by the chain rule, Eq. (4) can be rewritten as fol-

lows:

z(T ) = z(0) +

∫ T

0

g(z(t); θg)
dY (t)

dh(t)
f(h(t), t; θf )dt,

(8)

where dY (t)
dh(t) is defined by the mapping function m and can

be easily calculated by the automatic differentiation method.
For instance, dY (t)

dh(t) will be simply W if m(h(t); θm) =

Wh(t), i.e., m is a zero-biased fully connected layer where
θm = W.

Therefore, our proposed concept can be rather succinctly
described by Eq. (8). However, the key part in our method
lies in training θf and θm to generate h(t) and Y (t), i.e,
the decoder part. We want that Y i) shares important charac-
teristics with X to ensure the theoretical correctness of the
proposed method and ii) at the same time produces a better
path for a downstream machine learning task than X . To this
end, we define the following augmented NCDE:

d

dt

[
z(t)
h(t)

]
=

[
g(z(t); θg)

dY(t)
dh(t) f(h(t), t; θf )

f(h(t), t; θf )

]
, (9)

where the initial values are defined as follows:[
z(0)
h(0)

]
=

[
ϕz(X(0)); θϕz)
ϕh(e(tN )); θϕh

)

]
, (10)

where ϕz and ϕh are fully-connected layer-based trainable
transformation functions to generate the initial values.

In addition, let z(T ) be the last hidden vector. We have an
output layer with a typical construction based on z(T ). The
output layer is same as that in the original NCDE model.
For forecasting (regression), we use a fully-connected layer
whose output size is the same as the size of prediction.
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Algorithm 1: How to train LEAP
Input: Training data Dtrain, Validating data Dval,

Maximum iteration numbers max iter
1 Initialize θf , θg , θk, θm, and other parameters, denoted

θothers, if any, e.g., the parameters of the output layer;
2 i← 0;
3 while i < max iter do
4 Train θf , θg , θk, θm, and θothers using the loss L;
5 Validate and update the best parameters, θ∗f , θ∗g , θ∗k,

θ∗m, and θ∗others, with Dval;
6 i← i+ 1;
7 return θ∗f , θ∗g , θ∗k, θ∗m, and θ∗others;

How To Train We use the following MSE and log-density
loss definitions given training data Dtrain to define LY :

LY
def
=

∑M
j=1

∑N
i=1 α∥Y (t

(j)
i )− x

(j)
i ∥22 − β log p(ĥ(t

(j)
i ))

MN
,

(11)

where M = |Dtrain| is the size of training data. The fi-
nal loss L is the sum of LY and a task specific loss Ltask,
e.g., the cross-entropy loss for time-series classification or
the mean squared error (MSE) loss for time-series forecast-
ing. α and β are the coefficients of the two terms in Eq. (11).
Algorithm 1 shows our training algorithm.

Given the j-th time-series sample in our training data,
denoted {(x(j)

i , t
(j)
i )}Ni=0, Y (t

(j)
i ) = x

(j)
i is preferred as

in the natural cubic spline. We inject this by using the
MSE loss term of LY in Eq. (11). In addition, we adopt
the Hutchinson’s unbiased estimator1 to measure the log-
density log p(ĥ(t

(j)
i )), where Y (t

(j)
i ) = m(ĥ(t

(j)
i ); θm) and

ĥ(t
(j)
i ) = x

(j)
i−1 +

∫ t
(j)
i

t
(j)
i−1

f(h(t); θf )dt as in Eqs. (5) and (6).

We use ĥ, which is created directly from the real observa-
tion x

(j)
i−1, to distinguish it from h. The Hutchinson’s es-

timator can be defined as follows in our case — refer to
Appendix for the detailed explanation on the Hutchinson’s
estimator (?):

log p(ĥ(t
(j)
i )) = log p(x

(j)
i−1)− Ep(ϵ)

[ ∫ t
(j)
i

t
(j)
i−1

ϵ⊺
∂f

∂h(t)
ϵdt

]
,

(12)

where p(ϵ) is a standard Gaussian or Rademacher distribu-
tion (Hutchinson 1990). The time complexity to calculate
the Hutchinson’s estimator is slightly larger than that of eval-
uating f since the vector-Jacobian product ϵ⊺ ∂f

∂h(t) has the

1Since NODEs are continuous and bijective, i.e., invertible, the
change of variable theorem teaches us how to calculate the log-
density — as a matter of fact, many other invertible neural net-
works, such as Glow, RealNVP, ans so on, rely on the same theory
for their explicit likelihood training. However, this requires non-
trivial computation. The Hutchinson’s statistical method can re-
duce the complexity of measuring the log-density. On the top of
that, better way to measure the log-density for NODEs than the
Hutchinson’s estimator is not known for now (Grathwohl et al.
2019).

same cost as that of evaluating f using the reverse-mode au-
tomatic differentiation. Since log p(x(j)

i−1) is a constant, min-
imizing the negative log-density is the same as minimizing

Ep(ϵ)

[ ∫ t
(j)
i

t
(j)
i−1

ϵ⊺ ∂f
∂h(t)ϵdt

]
only.

In order to perform the density estimation via the change
of variable theorem, we need invertible layers. Unfortu-
nately, it is not theoretically guaranteed that NCDEs are
invertible. However, NODEs are always invertible (more
specifically, homeomorphic). Therefore, we do not perform
the density estimation with NCDEs.

Rationale Behind Our Loss Definition For linear regres-
sion, it is known that the MSE training can achieve the max-
imum likelihood estimator (MLE) of model parameters. In
general, however, the MSE training does not exactly return
the MLE of parameters. Therefore, we mix the MLE train-
ing and the explicit likelihood training to yield the best out-
come. The role of the MSE loss is to make Y (t

(j)
i ) and x

(j)
i

as close as possible and then, the negative log-density train-
ing enhances its likelihood since Y (t

(j)
i ) is generated from

ĥ(t
(j)
i ).

Well-posedness The well-posedness2 of NODEs and
NCDEs was already proved in (Lyons, Caruana, and Lévy
2004, Theorem 1.3) under the mild condition of the Lip-
schitz continuity. We show that our NODE/NCDE layers
are also well-posed problems. Almost all activations, such
as ReLU, Tanh, and Sigmoid, have a Lipschitz constant of
1. Other common neural network layers, such as dropout,
batch normalization and other pooling methods, have ex-
plicit Lipschitz constant values. (Chen et al. 2018) There-
fore, the Lipschitz continuity of f , g, k can be fulfilled in
our case. This makes our training problem well-posed. As
a result, our training algorithm solves a well-posed problem
so its training process is stable in practice.

Experiments
In this section, we describe our experimental environments
and results. We conduct experiments with time-series clas-
sification and forecasting. Our software and hardware en-
vironments are as follows: UBUNTU 18.04 LTS, PYTHON
3.7.6, NUMPY 1.20.3, SCIPY 1.7, MATPLOTLIB 3.3.1,
CUDA 11.0, and NVIDIA Driver 417.22, i9 CPU, and
NVIDIA RTX TITAN. We repeat the training and testing
procedures with five different random seeds and report their
mean and standard deviation of evaluation metrics.

Experimental Environments
Hyperparameters We list all the hyperparameter settings
in Appendix.

Baselines For time series forecasting and classification ex-
periments, we compare our method with the following meth-
ods.

2A well-posed problem means i) its solution uniquely exists,
and ii) its solution continuously changes as input data changes.
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1. RNN, LSTM (Hochreiter and Schmidhuber 1997), and
GRU (Chung et al. 2014) are all recurrent neural
network-based models that can process sequential data.
LSTM is designed to learn long-term dependencies and
GRU uses gating mechanisms to control the flow of in-
formation.

2. GRU-∆t is a GRU that additionally takes as input the
time difference between observations. GRU-D (Che et al.
2016) is a modified version of GRU-∆t with learnable
exponential decay between observations.

3. GRU-ODE (Brouwer et al. 2019; Jordan, Sokol, and Park
2019) is a NODE similar to GRU. This model is a con-
tinuous counterpart of GRU.

4. ODE-RNN (Rubanova, Chen, and Duvenaud 2019) is an
extension of GRU-∆t to NODE.

5. Latent-ODE (Rubanova, Chen, and Duvenaud 2019) is
a suitable model for time-series in which the latent state
follows NODE. In this work, we use the recognition net-
work of the existing Latent-ODE model as ODE-RNN.

6. Augmented-ODE is to augment the ODE state of Latent-
ODE with the method proposed in (Dupont, Doucet, and
Teh 2019).

7. ACE-NODE (Jhin et al. 2021a) is the state-of-the-
art attention-based NODE model which has dual co-
evolving NODEs.

8. NCDE (Kidger et al. 2020) is solved using controlled
differential equations, which are well-understood math-
ematics.

9. ANCDE (Jhin et al. 2021b) is to insert an attention mech-
anism into NCDEs.

Time Series Classification Experimental Results
We introduce our experimental results for time-series clas-
sification with the following three datasets. Character tra-
jectories, Speech Commands, and PhysioNet Sepsis are the
datasets collected from real-world applications. Evaluating
the performance of our model with these datasets proves the
competence of our model in various fields. We use the ac-
curacy for balanced datasets and AUROC for imbalanced
datasets. (Rubanova, Chen, and Duvenaud 2019; Kidger
et al. 2020).

Character Trajectories The Character Trajecto-
ries dataset from the UEA time-series classification
archive (Bagnall et al. 2018) consists of values on the
x-axis, y-axis and pen tip force of Latin alphabets as
features. This dataset was collected while using a tablet
with a sampling frequency of 200Hz, and there are 2,858
time-series character samples in total. The length of each
data sample was truncated to 182 and each data has 3
dimensional vectors, i.e., x, y and pen tip force, and the
length of each vector is 182. We used these features to
classify alphabets into 20 classes (‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘g’,
‘h’, ‘l’, ‘m’, ‘n’, ‘o’, ‘p’, ‘q’, ‘r’, ‘s’, ‘u’, ‘v’, ‘w’, ‘y’, ‘z’),
while other 6 letters were excluded from this task.

Model Test Accuracy
30% dropped 50% dropped 70% dropped

GRU-∆t 0.941 ± 0.018 0.928 ± 0.021 0.918 ± 0.017
GRU-D 0.938 ± 0.020 0.910 ± 0.048 0.916 ± 0.021

GRU-ODE 0.894 ± 0.012 0.886 ± 0.039 0.891 ± 0.029
ODE-RNN 0.946 ± 0.007 0.954 ± 0.003 0.949 ± 0.004
Latent-ODE 0.881 ± 0.021 0.878 ± 0.021 0.879 ± 0.048

Augmented-ODE 0.972 ± 0.012 0.948 ± 0.022 0.929 ± 0.023
ACE-NODE 0.881 ± 0.036 0.879 ± 0.025 0.913 ± 0.028

NCDE 0.988 ± 0.004 0.988 ± 0.002 0.985 ± 0.005
ANCDE 0.988 ± 0.001 0.986 ± 0.002 0.986 ± 0.004
LEAP 0.992 ± 0.001 0.993 ± 0.002 0.991 ± 0.003

Table 1: Accuracy (mean ± std, computed across five runs)
on Irregular Character Trajectories

Model Test Accuracy Memory Usage (MB)
RNN 0.197 ± 0.006 1,905

LSTM 0.684 ± 0.034 4,080
GRU 0.747 ± 0.050 4,609

GRU-∆t 0.453 ± 0.313 1,612
GRU-D 0.346 ± 0.286 1,717

GRU-ODE 0.487 ± 0.018 171.3
ODE-RNN 0.678 ± 0.276 1,472
Latent-ODE 0.912 ± 0.006 2,668

Augmented-ODE 0.911 ± 0.008 2,626
ACE-NODE 0.911 ± 0.003 3,046

NCDE 0.898 ± 0.025 174.9
ANCDE 0.807 ± 0.075 179.8
LEAP 0.922 ± 0.002 391.1

Table 2: Accuracy on Speech Commands

Speech Commands The Speech Commands dataset is a
one-second long audio data recorded with voice words such
as ‘left’, ‘right’, ‘cat’, and ‘dog’ and noise heard in the back-
ground (Warden 2018). We use ‘yes’, ‘no’, ‘up’, ‘down’,
‘left’, ‘right’, ‘on’, ‘off’, ‘stop’ to solve a balanced classi-
fication problem among all 35 labels, using a total of 34975
time-series samples. The length (resp. the dimensionality) of
each time-series is 161 (resp. 20).

PhysioNet Sepsis Since Sepsis (Reyna et al. 2019; Reiter
2005) is a life-threatening illness leading many patients to
death, early and correct diagnosis is important, which makes
experiments on this dataset more meaningful. The Phys-
ioNet 2019 challenge on sepsis prediction is originally a
partially-observed dataset so that it fits to our irregular time-
series classification experiments. Status of patients in ICU
— both static and time-dependent features — is recorded in
the dataset, and we only used 34 time-dependent features for
our time-series classification. The goal for this classification
is to predict the development of sepsis, which makes exper-
iment binary classification. The dataset consists of 40,355
cases with variable time-series length, and about 90% of data
is missing. Due to the data imbalance with only a sepsis pos-
itive rate of 5%, we evaluate our experiment using AUROC.

Experimental Results Table 1 summarizes the accuracy
of Character Trajectories. In order to create challenging sit-
uations, we randomly selected 30%, 50%, and 70% of the
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Model Test AUROC Memory Usage (MB)
GRU-∆t 0.861 ± 0.002 837
GRU-D 0.878 ± 0.019 889

GRU-ODE 0.852 ± 0.009 454
ODE-RNN 0.874 ± 0.012 696
Latent-ODE 0.782 ± 0.014 133

Augmented-ODE 0.842 ± 0.017 998
ACE-NODE 0.823 ± 0.012 194

NCDE 0.872 ± 0.003 244
ANCDE 0.886 ± 0.002 285
LEAP 0.908 ± 0.004 306

Table 3: AUROC on PhysioNet Sepsis

values from each sequence. Therefore, this is basically an ir-
regular time-series classification, and many baselines show
reasonable scores. The three GRU-based models are special-
ized in processing irregular time-series and outperform some
other ODE-based models. However, CDE-based models, in-
cluding LEAP, show the highest scores. Among them, LEAP
is clearly the best. Our method maintains an accuracy larger
than 0.99 across all the dropping settings.

For the Speech Commands dataset, we summarize the
results in Table 2. As summarized, all RNN/LSTM/GRU-
based models are inferior to other differential equation-
based models. We consider that this is because of the dataset
characteristic. This dataset contains many audio signal sam-
ples and it is obvious that those physical phenomena can be
well modeled as differential equations. Among many differ-
ential equation-based models, the two NCDE-based models,
NCDE and LEAP, show the reasonable performance. How-
ever, LEAP significantly outperforms all others including
NCDE. One more point is that our method requires much
smaller GPU memory in comparison with many other base-
lines.

The time-series classification with PhysioNet Sepsis in
Table 3 is one of the most widely used benchmark experi-
ments. Our method, LEAP, shows the best AUROC and its
GPU memory requirement is smaller than many other base-
lines. For this dataset, all CDE-based models show the high-
est performances.

Time Series Forecasting Experimental Results
We introduce our experimental results for time-series fore-
casting with the following dataset. We pick 1 dataset, Mu-
JoCo, to evaluate the model’s forecasting performance.
Since MuJoCo is physics engine simulation data, using this
data to predict future trajectories is an important study for
mechanics and natural sciences. In addition, we use the
MSE for our main metric, which is a metric generally used
in time-series forecasting (Rubanova, Chen, and Duvenaud
2019; Brouwer et al. 2019; Kidger et al. 2020).

MuJoCo This dataset was generated from 10,000 simu-
lations of the “Hopper” model using the DeepMind Control
Suite. This physics engine supports research in robotics, ma-
chine learning, and other fields that require accurate simula-
tion, such as biomechanics. The dataset is 14-dimensional,
and 10,000 sequences of 100 regularly-sampled time points

Model Test MSE
30% dropped 50% dropped 70% dropped

GRU-∆t 0.186 ± 0.036 0.189 ± 0.015 0.187 ± 0.018
GRU-D 0.417 ± 0.032 0.421 ± 0.039 0.438 ± 0.042

GRU-ODE 0.826 ± 0.015 0.821 ± 0.015 0.681 ± 0.014
ODE-RNN 0.242 ± 0.213 0.240 ± 0.110 0.240 ± 0.116
Latent-ODE 0.048 ± 0.001 0.043 ± 0.004 0.056 ± 0.001

Augmented-ODE 0.042 ± 0.004 0.048 ± 0.005 0.052 ± 0.003
ACE-NODE 0.047 ± 0.007 0.047 ± 0.005 0.048 ± 0.005

NCDE 0.028 ± 0.000 0.029 ± 0.001 0.031 ± 0.004
ANCDE 0.035 ± 0.002 0.031 ± 0.003 0.033 ± 0.003
LEAP 0.022 ± 0.001 0.022 ± 0.002 0.022 ± 0.001

Table 4: MSE on Irregular MuJoCo
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Figure 2: Two sensitivity and ablation analyses. More figures
are in Appendix.

each (Tassa et al. 2018). The default training/testing horizon
in MuJoCo is reading the first 50 observations in a sequence
and forecasting the last 10 observations.

Experimental Results We drop random 30%, 50%, and
70% values, i.e., irregular time-series forecasting, to create
challenging environments. In Table 4, our method, LEAP,
clearly shows the best MSE for all dropping ratios. One out-
standing point in our model is that the MSE is not greatly
influenced by the dropping ratio but maintains its small er-
ror across all the dropping ratios.

Ablation and Sensitivity Studies
Sensitivity to α, β with Fixed Ratio 1. Fig. 2 (a) shows
the sensitivity curve on Character Trajectories w.r.t. α, β,
while setting α and β to same value, i.e. the ratio of α to β is
1, as in our original setting. With all the α, β settings, LEAP
always shows better accuracy than those of the baselines,
which shows the efficacy of our model. We also conduct ex-
periments for the sensitivity to α, β with various ratios, and
these results are in Appendix for space reasons.

Ablation on the Output Sequence Length We also com-
pare our model with NCDE and Latent-ODE by varying the
length of output (forecasting). After fixing the input length
to 50, we variate the output length in {1, 5, 10, 15, 20}. As
shown in Fig. 2(b), our proposed method consistently out-
performs others. Moreover, MSE of LEAP’s predicting 20-
length sequence is lower than that of other models’ predict-
ing 1-length sequence. These results show that new latent
paths made by LEAP skillfully represent the whole stream
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(a) (b)

Figure 3: Examples of the original path X and learnt path Y
in Speech Commands.

(a) (b)

Figure 4: Examples of the original path X and learnt path Y
in MuJoCo using UMAP. More figures are in Appendix.

of data and capture parts which should be emphasized re-
gardless of output sequence length.

Statistical Significance We test the statistical significance
on MuJoCo using the paired t-test with a significance thresh-
old of 0.01. Its null hypothesis and alternative hypothesis are
set as follows:

H0 : Eours ≥ Ebase, H1 : Eours < Ebase, (13)

where E is error between predicted values and true values
measured in the L2 vector norm. We do paired t-tests with
every baseline on Table 4, and p-values are under 0.01 in
every case, confirming our alternative hypothesis with high
statistical significance, and rejecting the null hypothesis. The
results of the paired t-test against GRU-∆t and NCDE are in
Appendix, showing extremely low p-values. We report for
each forecasting horizon — recall that we predict next 10
values in MuJoCo.

Visualization
We compare the original path X and the learnt (or fine-
tuned) path Y in Fig. 3. According to Fig. 3, we select an
element of a time-series sample in Speech Commands and
visualize the original path and the learnt path on the selected
element (dimension). Our MLE training to match them suc-
cessfully ensures that they are well align when t < 50 for
Fig. 3 (a). However, the learnt path in blue can be consid-
ered a smoothed (fine-tuned) version of X in the visualiza-
tion. One remarkable point is that the learnt path becomes
flat when t ≥ 50. As shown in Eq. 4, the flat Y curve makes
dY (t)
dt ≈ 0 and z(t) is not much changed after t = 50. In

case of Fig. 3 (b), same pattern is shown at t < 60.

Model
Datasets

Character Trajectories MuJoCo
Test Accuracy Memory Test MSE Memory

RNN 0.311 ± 0.038 52.2 0.051 ± 0.001 409.1
LSTM 0.791 ± 0.083 48.6 0.064 ± 0.001 411.2
GRU 0.844 ± 0.089 54.8 0.053 ± 0.000 439.5

GRU-∆t 0.834 ± 0.078 16.5 0.142 ± 0.020 532.9
GRU-D 0.896 ± 0.030 17.8 0.471 ± 0.038 569.1

GRU-ODE 0.878 ± 0.051 1.51 0.821 ± 0.027 146.2
ODE-RNN 0.827 ± 0.048 15.5 0.234 ± 0.211 146.3
Latent-ODE 0.942 ± 0.008 181 0.049 ± 0.007 314.9

Augmented-ODE 0.970 ± 0.009 186 0.045 ± 0.004 286.1
ACE-NODE 0.891 ± 0.001 113 0.046 ± 0.003 4,226

NCDE 0.981 ± 0.002 1.38 0.028 ± 0.002 52.08
ANCDE 0.986 ± 0.007 2.02 0.029 ± 0.003 79.22
LEAP 0.992 ± 0.001 9.24 0.022 ± 0.002 144.1

Table 5: Regular time-series prediction

Fig. 4 shows other visualization in our datasets. For
this, we use a different visualization method, UMAP (Sain-
burg, McInnes, and Gentner 2020). This method is a lower-
dimensional projection algorithm and each time-series sam-
ple is projected onto a 2-dim space. As shown in Fig. 4, our
learnt paths are quite similar to the original paths but with
little variation. From those facts, we can see that LEAP has
different degrees of learning paths depending on datasets for
enhancing the task performance.

Regular Time-series As Character Trajectories and Mu-
JoCo provide complete data without missing values, i.e.,
regular time-series, we conduct the tasks with the full infor-
mation and their results are summarized in Table 5. In both
datasets, our method shows the best performance. One more
point is that our method’s regular and irregular forecasting
results are the same for MuJoCo, which proves the strength
of our method for irregular time-series. On top of that, ac-
curacy of Character Trajectories with 50% missing values is
even higher than that of full informed data, while many other
baselines — ANCDE, ACE-NODE, Augmented-ODE, and
so on — show lower performances compared to score with
50% missing data.

Conclusions
How to interpolate the input discrete time-series and cre-
ate a continuous path is an important topic in NCDEs. In
this work, we presented a method to learn how to interpo-
late from data (rather than relying on existing interpolation
algorithms). To this end, we designed an encoder-decoder
architecture and its special training method. We conducted
a diverse set of experiments based on four datasets and
twelve baselines, ranging from irregular/regular classifica-
tion to forecasting. Our method, LEAP, clearly outperforms
existing methods in almost all cases.
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