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Abstract

Deep neural networks (DNNs) for supervised learning can be
viewed as a pipeline of the feature extractor (i.e., last hidden
layer) and a linear classifier (i.e., output layer) that are trained
jointly with stochastic gradient descent (SGD) on the loss
function (e.g., cross-entropy). In each epoch, the true gradient
of the loss function is estimated using a mini-batch sampled
from the training set and model parameters are then updated
with the mini-batch gradients. Although the latter provides an
unbiased estimation of the former, they are subject to substan-
tial variances derived from the size and number of sampled
mini-batches, leading to noisy and jumpy updates. To stabilize
such undesirable variance in estimating the true gradients, we
propose In-Training Representation Alignment (ITRA) that
explicitly aligns feature distributions of two different mini-
batches with a matching loss in the SGD training process. We
also provide a rigorous analysis of the desirable effects of the
matching loss on feature representation learning: (1) extracting
compact feature representation; (2) reducing over-adaption on
mini-batches via an adaptive weighting mechanism; and (3)
accommodating to multi-modalities. Finally, we conduct large-
scale experiments on both image and text classifications to
demonstrate its superior performance to the strong baselines.

Introduction

Recently, deep neural networks (DNNs) have achieved re-
markable performance improvements in a wide range of chal-
lenging tasks in computer vision (He et al. 2016; Huang
et al. 2019; Pan, Li, and Zhu 2021; Qiang et al. 2022a), nat-
ural language processing (Sutskever, Vinyals, and Le 2014;
Chorowski et al. 2015; Qiang et al. 2022b) and healthcare
informatics (Miotto et al. 2018; Li, Zhu, and Levy 2020). For
supervised learning, DNNs can be viewed as a feature extrac-
tor followed by a linear classifier on the latent feature space,
which are jointly trained using stochastic gradient descent
(SGD). Specifically, in each iteration of SGD, a mini-batch
of m samples {(x;,y;) }; is sampled from the training data
{(xs,y:)}1—1(n > m). The gradient of loss function L(x, )
is calculated on the mini-batch, and network parameter 6 is
updated via one step of gradient descent (learning rate «):
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This update in Eq.(1) can be interpreted from two perspec-
tives. First, from the conventional approximation perspective,
the true gradient of the loss function (i.e., gradient on the en-
tire training data) is approximated by the mini-batch gradient.
As each mini-batch gradients are unbiased estimators of the
true gradient of the loss function and the computation is inex-
pensive, large DNNs can be efficiently and effectively trained
with modern computing infrastructures. Second, Eq. (1) can
also be interpreted as an exact gradient descent update on the
mini-batch. In other words, SGD updates network parameters
0 to achieve maximum improvement in fitting the mini-batch.
As each mini-batch is often uniformly sampled from each
class of the training data, such exact update inevitably in-
troduces the undesirable variance in gradients calculation
via backpropagation, resulting in the over-adaption of model
parameters to that mini-batch.

A natural question then to ask is, “can we reduce the
over-adaption to mini-batches?”, to reduce the mini-batch
dependence on SGD update in Eq. (1). In this paper, we pro-
pose In-Training Representation Alignment (ITRA) that aims
at reducing the mini-batch over-adaption by aligning feature
representation of different mini-batches that is learned by the
feature extractor in SGD. Our motivation for feature align-
ment is: if the SGD update using one mini-batch A is helpful
for DNNs learning good feature representations with respect
to the entire data, then for another mini-batch B, their feature
representation should align well with each other. In this way,
we can reduce mini-batch over-adaption by forcing accom-
modation of SGD update to B and reducing dependence of
the parameter update on A. Ideally, if the distribution P(h)
of latent feature h is known as a prior, we could explicitly
match the mini-batch feature Ay, with P(h) via maximum
likelihood. However, in practice, P(h) is not known or does
not even have an analytic form. To achieve this, we utilize the
maximum mean discrepancy (MMD) (Gretton et al. 2012)
from statistical hypothesis testing for the two-sample prob-
lem. MMD is differentiable that can be trained via back prop-
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Figure 1: A comparison of ITRA and vanilla SGD training on the CIFARI10 testing data. Left: normalized distance between
samples of the same class from different mini-batches used in training; middle: testing accuracy; right: testing cross-entropy loss.

The model is Resnet18.

agation. Moreover, we show in an analysis that the gradient
of MMD enjoys several good theoretical merits. Based on
the analysis, ITRA reduces SGD update adaption to the mini-
batch by implicitly strengthening the supervision signal of
high-density samples via an adaptive weighting mechanism
(see details in Section 4), where high-density samples are
closely clustered to form modalities for each class.

To check effect of gradient update on feature representation
learning, an illustrative example is presented in Figure 1. The
model is Resnet18 with BN layers trained with cross-entropy
(CE) loss. We calculate the distance between a pair of same-
class samples from two mini-batches respectively and plot the
normalized distance in the left panel of Figure 1, after model
training stabilizes and achieves relatively good performance.
We see that when model is trained only with CE loss in
vanilla SGD, the distance stabilizes while the training makes
progresses. This is due to that after the model capturing
the classification pattern for each class, vanilla SGD adapts
to mini-batch samples to achieve gain for the loss function
yet does not further encourage feature alignment to learn
compact feature representations. Hence, vanilla SGD has
little effect on the compactness of feature representations.
However, in ITRA, the distance between a pair of samples
keeps decreasing. This implies ITRA indeed helps DNN
to learn more compact feature representations by aligning
different mini-batches and thus achieves higher accuracy and
lower loss (Figure 1 middle and right panels).

We summarize our original contributions as follows. (1)
We propose a novel and general strategy ITRA for training
DNNs. ITRA augments conventional SGD with regulariza-
tion by forcing feature alignment of different mini-batches
to reduce variance in estimating the true gradients using
mini-batches. ITRA can enhance the existing regularization
approaches and is compatible with a broad range of neural
network architectures and loss functions. (2) We provide
theoretical analysis on the desirable effects of ITRA and ex-
plains why ITRA helps reducing the over-adaption of vanilla
SGD to the mini-batch. With MMD, ITRA has an adaptive
weighting mechanism that can help neural networks learn
more discriminative feature representations and avoid the
assumption of uni-modality on data distribution. Results on
benchmark datasets demonstrate that training with ITRA
can significantly improve DNN performance, compared with
other state-of-the-art methods.
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Related Work

Modern architectures of DNNs usually have an extremely
large number of model parameters, which often outnumbers
the available training data. To reduce overfitting in training
DNNGs, regularizations are needed. Those regularization meth-
ods include classic ones such as L; / Lo-norm penalties and
early stopping (Li, Zhu, and Dong 2018; Li and Zhu 2018).
For deep learning, additional useful approaches are proposed
motivated by the SGD training dynamics (Li et al. 2022).
For example, dropout (Srivastava et al. 2014) and its variants
(Gao, Pei, and Huang 2019; Ghiasi, Lin, and Le 2018) achieve
regularization by reducing the co-adaption of hidden neurons
of DNNss. (Ioffe and Szegedy 2015) proposes batch normal-
ization (BN) to reduce the internal covariate shift caused by
SGD. For image classification, data-augmentation types of
regularization are also developed (DeVries and Taylor 2017;
Gastaldi 2017; Li et al. 2020, 2021). Different from those ap-
proaches, our proposed ITRA is motivated by the perspective
of exact gradient update for each mini-batch in SDG training,
and achieves regularization by encouraging the alignment
of feature representations of different mini-batches. Those
methods are compatible with ITRA for training DNNs and
hence can be applied in conjunction with ITRA.

Another line of regularization are loss function based that
the supervision loss is augmented with other penalties un-
der different considerations. One example is label smoothing
(Szegedy et al. 2016), which corrupts the true label with
a uniformly-distributed noise to discourage DNNs’ over-
confident predictions for training data. The work that is clos-
est to ours is Center loss (Wen et al. 2016), which reduces the
intra-class variation by aligning feature of each class to its
“center”’. With the assumption of distribution uni-modality for
each class, it explicitly encourages the feature representations
clustering around its center. However, this assumption may
be too strict since true data distribution is generally unknown
and can be multi-model. On the contrary, ITRA reduces vari-
ances and encourages intra-class compactness by aligning a
pair of features from two minibatches to each other, which
avoids the distribution assumption and is accommodating to
multi-modalities.

To match the distribution of features learned from differ-
ent mini-batches, ITRA uses MMD as its learning objective.
MMD (Gretton et al. 2007, 2012) is a probability metric for
testing whether two finite sets of samples are generated from
the same distribution. Using a universal kernel (i.e., Gaussian
kernel), minimizing MMD encourages to match all moments



of the empirical data distribution. MMD has been widely ap-
plied in many machine learning tasks. For example, (Li, Swer-
sky, and Zemel 2015) and (Li et al. 2017) use MMD to train
unsupervised generative models by matching the generated
distribution with the data distribution. Another application of
MMD is for the domain adaption. To learn domain-invariant
feature representations, (Long et al. 2015) uses MMD to ex-
plicitly match feature representations from different domains.
There are also other probability-based distance metrics ap-
plied in domain adaption such as .A-divergence (Ben-David
et al. 2007) and Wasserstein distance (Shen et al. 2018). How-
ever, these metrics are non-differentiable while the differen-
tiability of MMD enables the adaptive weighting mechanism
in ITRA. Moreover, our goal is different from those applica-
tions. In ITRA, we do not seek exact distribution matching.
Instead, we use class-conditional MMD as a regularization
to improve SGD training.

Preliminary: Maximum Mean Discrepancy

Given two finite sets of samples S; = {z;}", and Sy =
{y:}™,, MMD (Gretton et al. 2007, 2012) is constructed to
test whether S; and S are generated from the same distribu-
tion. MMD compares the sample statistics between S and
So, and if the discrepancy is small, S7 and S5 are then likely
to follow the same distribution.

Using the kernel trick, the empirical estimate of MMD
(Gretton et al. 2007) w.r.t. S; and S5 can be rewritten as:

1 n m
MMD(S, S2) = n2 Z K(zs, ;) Z K(yi,yj)
17.7 1 l,j:].
9 n o m 12
- =) K]
i=1 j=1
where /C(, -) is a kernel function. (Gretton et al. 2007) shows

that if /C is a characteristic kernel, then asymptotically MMD
=0 if and only S; and S, are generated from the same dis-
tribution. A typical choice of K is the Gaussian kernel with

bandwidth parameter o: K(x,y) = exp(fw). With
Gaussian kernel, minimizing MMD is equivalent to matching
all orders of moments of the two datasets (Li, Swersky, and
Zemel 2015).

In-Training Representation Alignment

The Proposed ITRA The idea of ITRA is to reduce the DNN
over-adaption to a mini-batch if we view the SGD iteration
as an exact update for that mini-batch. In terms of feature
learning, we attempt to train the feature extractor to encode
less mini-batch dependence into the feature representation.
From the distribution point of view, the latent feature distri-
bution of the mini-batch should approximately match with,
or more loosely, should not deviate much from that of the
entire data. However, aligning a mini-batch with the global
statistics from entire data may not be available, we sample a
pair of mini-batch to match each other to reduce the variance.
It is possible to sample more mini-batches to further reduce
variances but is computationally expensive.
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More formally, let fy(x) be a convolutional neural network
model for classification that is parameterized by 6. It consists
of a feature extractor h = Fjp, (z) and a linear classifier
Cy.(h) parameterized by 6, and 6. respectively. Namely,
fo(x) = Cy.(Ep,()) and 0 = {6,, .. }. Without ambiguity,
we drop 0 in f, E and C for notational simplicity. In each
iteration, let S(;) = {(q:f ,yZ )}m1 be the mini-batch of
m; samples. Then the loss function using cross-entropy (CE)
on S(1) can be written as

e 1)
Luno(0) = == ; log f,m (#;"), @)
where f @ (x; ( )) is the predicted probability for x( )°s true

label yf ). SGD performs one gradient descent step on L,

w.r.t. § using Eq. (1). To reduce €’s dependence on \S; in this
exact gradient descent update, we sample from the training

data another mini-batch S5y = {(xz(?), Y; )}m2 to match
and S(7) using

the latent feature distribution between S
MMD:

Hoy = () = B(e{) ri=1,-
Hipy = {h? = B?)1i=1,---
Match(0.; H(1y, H(z))

7m1}7

3)

7m2}7
= MMD(H(l), H(Q))

Our proposed ITRA modifies the conventional gradient
descent step in SGD by augmenting the CE loss (Eq. (2))
with the matching loss, which justifies the name of ITRA:

0 < 6 — aVg[Lmy(0) + \Match(0e; Hry, Hiz))], (4

where A is the tuning parameter controlling the contribution
of the matching loss. Note that mini-batch S() is not used in
the calculation of cross-entropy loss L,,;(6).
Class-conditional ITRA For classification tasks, we could
also utilize the label information and further refine the match
loss as a sum of class-conditional matching loss, termed as
ITRA-c (k=1,--- | K):

:E(J}El))yz :kaZ: 1a 7m1}
:E(xz@):yi:k,i: 1, ,ma}

1
H(kl) = {hE )

Hly = {n{?
(2) { i 5)

K
ZMMD HEy HE),

Match, (057 H(l), H(Q)

where K is the total number of classes and y; = k the true
label of sample x;. The ITRA-c update is

0 < 0 — aVg[Lms(8) + AMatch (6c; H 1y, Hi2))]. (6)

Analysis on ITRA

On learning compact feature representations To further
gain insight on the desirable effects of ITRA on the SGD
training procedure, we analyze the matching loss at the sam-
ple level. With the same notation in Eq. (5), the matching
loss for class k is

M := Maich, = MMD(H}, ), Hly).



Since MMD is symmetric with respect to H}, and H,),

without loss of generality, we consider sample xEl) with its

feature representation hgl) =F (mgl)) from H (kl) (but the CE
loss is not symmetric and only calculated on the first mini-

batch Hy)). Then the gradient of matching loss with respect

to h'Y is (superscript (1) in 2" and h{"

Z/c (hi, h$Y)
ZIC hi, BSP)].

For Gaussian kernel K(x, y) its gradient with respect to

x is Vo K(z,y) = —2exp(— M)T;y Note that o is
data-dependent and treated as hyperparameter. Hence, it is
not back propagated in the training process and in practice
set as the median of sample pairwise distances (Gretton et al.
2012; Long et al. 2015; Li, Swersky, and Zemel 2015). By
the linearity of gradient operator, we have

(M- h§”||2)hz S

g

are dropped.)

Vi M ==V

mimsa

ma

Z exp

Jj=1

N

2 1

VM= —[—
" m[m%

g

[Jhi = A ||2)h —h{

g

].
@)

We notice that for function g, (z) = exp(—z2/a)z/a (a is
some constant), g,(x) — 0 exponentially as 2 — co. Hence,
for fixed o, using the triangle inequality of Ly norm,

Zga (D)

2 (2)
b2 SR e — 2]
o j=1g (Il i ]

Within the mini-batch, v/ M remain as constant for all sam-
ples. From Eq. (8), we observe that when x; deviates signifi-
cantly away from the majority of samples of the same class,

i.e., noisy samples or outliers, ||h; — H and ||h; — h(2 I
are large, the magnitude of its gradlent in matching loss di-
minishes. In other words, x; will only provide signal from the
supervision loss (e.g., CE loss) and its impact on matching
loss is negligible. On the other hand, training ITRA with
matching loss promotes the alignment of feature represen-
tations of samples that stay close in the latent feature space.
From the data distribution perspective, samples deviating
from the majority are likely of low-density or even outliers.
Then such behavior of ITRA implies that it can help DNNs
to better capture information from high density areas and
reduce the distraction of “low density” samples in learning
feature representations on the data manifold.

On reducing over-adaption to mini-batches The analysis
above shows that low-density samples only provide supervi-
sion signal in ITRA, we now analyze how ITRA reduces the

mimsa

IV, Mll_
®)
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over-adaption to mini-batches. It turns out that this effect is
achieved by an adaptively weighted feature alignment mech-
anism, which implicitly boosts the supervision signal from
high-density samples and resultantly downweights relatively
the contribution of low-density samples.

To understand this, we examine the full gradient of super-
vision loss L and matching loss MMD. Note that in ITRA,
the gradient of supervision loss is only calculated on one
mini-batch. Without loss of generality, we consider sample
x; from the first mini-batch. The full gradient of L(x;) and
M=MMD(z;, H(’“2)) with respect to h; is (using the same
notation as above)

Vi, (M + L

( ) \/7m2

2

m [h; — B2 hi — B o,
: - oL oL,
N R >

where o; is the output for z;. Let A = Z 2 exp(—||h; —
2) 2)

h?\? /o) and w, exp(—[lhi — h|[2/)/A

(Z 21 wj = 1), then equivalently:

(2 0o;

Vi, (M+L E w;ih;”) + Vo, L =~
hi( ) ﬁmga e J oh;
©

When ITRA converges and DNNS is well trained with good
(M + L)|| =0 and ||V L 00, /Oh||

is close to zero, we have ||h; — 25"21 || <e(eisa

small scalar). In other words, ITRA promotes the feature
representation h; of x; to align with the weighted average
PO wjh(Q)(Z ?, w; = 1), where each w; is adaptively
adJusted in the training process based on similarity between

h; and ' in the latent feature space. As mini-batch samples
are uniformly sampled from the training data, it is expected

that on average, the majority of {h§2)}77’:21 are from high-
density area of the data distribution. For DNNs with good
generalizability, DNNs must perform well for samples from
those areas (as testing samples are more likely to be generated
from high-density areas in the data manifold). Hence, pro-
vided that sample x; is of high-density that already provides
useful supervision signal, ITRA further boosts its contribu-

tion by aligning h; with Z L wj h( ) of other high-density
samples in the 2nd mini- batch The adaptive weight w; is

critical: if sample h? is of low-density and deviates far from
x;, its weight w; is automatically adjusted small, having van-
ishing contribution in the gradient. This in turn downweights
relatively the contribution of low-density samples in SGD,
resulting in the reduction of over-adaption to mini-batches.

Accommodating multi-modalities The adaptively weight-
ing mechanism brings another benefit: if the data distribution
(for each class) is multi-modality in the latent feature space,
ITRA automatically aligns z; with its corresponding modal-
ity. Specifically, without loss of generality, assume two modal-

ities md; and mds, {hgz)} consists of samples from md;
and mds and z; is generated from md;. We can rewrite h; —



Z?g wjhg‘z) =h; — (Zjemdl wjhf) + Ejemdz wjhg'z))-
As x; is generated from md; and deviates from mds, imply-
ing that z; is closer to samples from the same modality than
those from the other modality. Hence, with the adaptively
weighting mechanism in Eq. (9), w; ~ 0 (j € mds) and
h; — Z;nil wjhf) = hi =Y emd, Wi hj(?). That is, align z;
only with samples from the same modality. Therefore, ITRA
avoids the uni-modality assumption on data distribution as in

(Wen et al. 2016; Wan et al. 2018) and justifies the advantage
of nonparametric MMD for feature alignment.

Experiments

In this Section, we extensively evaluate the ITRA perfor-
mance using benchmark datasets on both image classification
(i.e., KMNIST (Clanuwat et al. 2018), FMNIST (Xiao, Ra-
sul, and Vollgraf 2017), CIFAR10, CIFAR100 (Krizhevsky
and Hinton 2009), STL10 (Coates, Ng, and Lee 2011) and
ImageNet (Deng et al. 2009)) and text classification (i.e.,
AG’s News, Amazon Reviews, Yahoo Answers and Yelp Re-
views) tasks. In our experiments, class-conditional ITRA-c
is tested as it exploits implicit label information with bet-
ter supervision in the training process. In addition to using
vanilla SGD training as the baseline (i.e., w/o ITRA), we also
compare ITRA with more widely used loss-function based
regularization methods as the strong baselines for compari-
son: label smoothing (LSR) (Szegedy et al. 2016) and center
loss (Center) (Wen et al. 2016). For evaluation metrics, we
report the Top-1 accuracy and CE loss value for all methods.
The optimal hyperparameter value A for each method is also
reported. Results on other tuning parameter values as well as
experimental details are provided in supplementary materials.
Image classification Table 1 shows the performance for KM-
NIST and FMNIST testing data. From the Table, we see that
training with ITRA achieves better results in terms of higher
accuracy and lower CE. In terms of the testing loss, ITRA
has a smaller loss value compared with other methods. The
testing loss with respect to different A values are shown in
Supplementary Materials. As CE is equivalent to negative
log-likelihood, smaller CE value implies that the network
makes predictions on testing data with higher confidence on
average. In each iteration of ITRA, there is a trade-off be-
tween the CE and matching loss. This leads to that ITRA has
a regularization effect by alleviating the over-confident pre-
dictions on training data. As a result, the smaller gap between
training and testing losses implies that ITRA has better gen-
eralization performance. When trained with vanilla SGD, we
observe that the increasing testing loss exhibits an indication
of overfitting, which is due to that FMNIST has a significant
number of hard samples (e.g., those from pullover, coat and
shirt classes). However, ITRA is capable of regularizing the
training process hence prevents overfitting and stabilizes the
testing loss as shown in the Figure 2.

Additionally, in Table 2, we present the performance of
Resnetl8, VGG13 and MobilenetV2 on CIFAR10, STL10
and CIFAR100. From the Table, we see that ITRA achieves
the best performance compared among all the four methods.
Especially for the relatively more challenging (lower accu-
racy) STL10 data set, ITRA outperforms the baseline with
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| KMNIST | FMNIST
| A Acct CE|l | A AcctT CEJ
Baseline - 95.57 0.183 - 9243 0.294
LSR 0.1 9560 0.181 | 0.1 9247 0.292
Center 0.1 9490 0.214 | 0.1 92.10 0.263
ITRA 0.8 9579 0.170 | 0.6 92.57 0.224

Table 1: Accuracy (in %, larger is better) and CE (smaller
is better) on KMNIST and FMNIST data. The optimal per-
formances are obtained by tuning multiple As according to
existing literature (Szegedy et al. 2016; Wen et al. 2016).

a significant margin, i.e., Resnet 1.9%, VGG13 1.4% and
MobilenetV2 2.9%. In terms of CE loss, all methods have
similar training losses that are close to zero. However, ITRA
and Center have significantly better testing loss than other the
baseline and LSR. A closer gap between training and testing
losses indicates a better generalization of the DNN models
enabled by regularization capability of ITRA.

Larger-scale experiment on image classification Table 3
shows results on the large-scale ImageNet dataset and the
deeper Resnet-101 network architecture. Note that compared
with performance of Resnet-18 in Table 2, the deeper Resnet-
101 indeed demonstrates a better performance over the CI-
FAR100 dataset. For both larger dataset and deeper network,
ITRA consistently achieves better accuracy and lower CE
value than other methods. Markedly, for the ImageNet dataset,
ITRA improves the accuracy by 5.0%(3.12/62.92) and CE
value by 9.7%(0.15/1.55) over the standard baseline. When
compared with the strong baseline Center loss, ITRA also im-
proves the accuracy by 2.1%(1.36/64.68) and CE value by
4.8%(0.07/1.47). The training time of ResNet-101 (CIFAR-
100) and ResNet-50 (ImageNet) using ITRA are 7.5% and
3.9% more than baseline on an RTX 3090 GPU. Despite
the moderate increase in training time for large-scale exper-
iments due to the extra computation incurred by sampling
additional mini-batch, it demonstrates a reasonable trade-
off between the increase in computational cost and gaining
attractive analytic properties of ITRA.

Large-scale experiment on text classification ITRA per-
formance is also evaluated on large-scale text classification
experiments. We use different loss functions for fine-tuning
the pre-trained Bert-base, DistillBert and XLNet models from
Huggingface transformers library (Wolf et al. 2019). Table 4
shows that the models fine-tuned with ITRA achieve a bet-
ter performance in terms of accuracy and CE value on most
datasets. Specifically, for Bert-base, DistillBert, XLLNet mod-
els, ITRA achieves an average accuracy improvement of
1.3%, 0.3%, 0.5%, respectively, and an average CE value
improvement of 22.4%, 16.1%, and 15.6%, respectively. It
is worth noting that the Center loss also reduces CE value
occasionally in the experiments, its accuracy performance is
nevertheless compromised. The potential reason behind this
phenomenon could be the multi-modality of natural language.
The Center loss’s uni-modality assumption helps model to
minimize the distances within the class (hence CE), but can
therefore lead to sub-optimal feature learning for hard sam-



| | CIFAR10 | STL10 | CIFAR100
| | A Acct CEl| X Acct CEl| X Acct CE|
Baseline | - 9299 040 | - 7088 163 | - 7419 105
Resnet18 LSR 01 9273 042 | 0.1 7108 155 | 0.1 7421 1.04
esne Center | 0.1 9230 035 | 0.1 7097 1.10 | 0.05 7398 098
ITRA | 08 9370 027 | 06 7278 1.05 | 0.6 7488 0.97
Baseline | - 9249 047 | - 7440 155 | - 7172 146
VGG13 LSR 0.1 9253 046 | 0.1 7450 151 | 0.1 7175 143
Center | 005 92.11 038 | 0.05 7404 1.16 | 005 7165 131
ITRA | 08 9272 033 | 08 7580 093 | 0.6 7255 1.22
Baseline | - 8855 062 | - 5909 214 | - 6642 157
Mobileva | LSR 0.1 8877 061 | 0.1 5901 212 | 0.1 6660 155
Center | 0.1 8881 053 | 0.1 5824 146 | 005 6639 151
ITRA | 1.0 8937 043 | 06 6202 160 | 06 6723 149

Table 2: Accuracy and CE loss on CIFAR10, STL10 and CIFAR100 datasets.

. CIFARI10 Testing Loss 4 STL10 Testing Loss 20 CIFAR100 Testing Loss /o ITRA
2.0 (@) 33 b)) g (©) —ITRA (A =0.2)
806 2.0 16 —ITRA (1 = 0.4)
o 0.5 1.8 ‘ ‘M
& 0‘4” i . |Le |14} —ITRA (A =0.6)
e ee— S 2| - ITRA(1=08)
C = ) 11} [ e——— RV s ITRA (1 = 1.0
20000 . 60000 20000 . 6000020000 . 60000 ( )
Iteration Iteration Iteration
Figure 2: Testing loss of Resnet18 w.r.t. different A values on CIFAR10, STL10 and CIFAR100.
| CIFAR-100 | ImageNet analysis in Section 4.1. In Figure 3, the model trained with
| BS Acc CE | BS Acc CE ITRA effectively captures the “typical pattern” of each class
. at feature level and misses some hard samples to improve
Baseline | 200 7585 1.04 [ 256 50.01 224 generalizability. The results on both image and text classifi-
Center (A = 0.05) | 200 75.23 1.05 | 256 51.83 221 cations concur with our analysis: as shown in the Tables 1, 2
and 4, although Center loss can occasionally reduce the CE
15(5)0 ;32; }8} 16248 g}gg %}2 value, it is still outperformed by our method due to its strong
ITRAA=06) 1 500 7685 0.94 | 256 5313 2.7 assumption.

Table 3: Accuracy and CE loss of Resnet-101 on CIFAR-100
and Resnet-18 on ImageNet w.r.t. different batch sizes (BS).

ples near the boundary between modals if the class condi-
tional distribution is indeed multi-modal.

Comparing with Center loss As discussed in Section 2,
center loss (Wen et al. 2016) is the closest work to ours. It
effectively characterizes the intra-class variations by aligning
features of each to its “center” which is designed to reduce
variance in feature learning and results in compact feature
representations. Different from ITRA which aligns a pair
of features from two minibatches to each other, Center loss
explicitly assumes uni-modality of data distribution at feature
level for each class, which may be valid in face recognition
task where the Center loss is initially proposed for, but can be
too stringent in classification task as class-conditional density
can be multi-modal. On the contrary, ITRA is capable of
accommodating the multi-modalities supported by a rigorous
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Hyperparameter )\ and batch size Here we also investigate
the influence of hyperparameter \ and batch size of ITRA.
As shown in the Tables 1&2, when A is set with a relatively
large value of 0.8 or 1, ITRA can outperform other methods
in terms of both accuracy and testing loss, which is due
to that larger As incorporate stronger implicit supervision
information as mini-batches from the same class are matched.
We also plot the CE loss for different As in Figure 2 w.r.t.
Resnet. Comparing with baseline, we see that training with
ITRA results in significant gain in CE, regardless of network
architecture. Looking at Figure 2 (b) in more detail, when
trained with the baseline, the testing loss shows an increasing
trend as a sign of overfitting while ITRA can alleviate this
trend as )\ increases. For batch size, Table 3 demonstrates
that the increase of batch size indeed helps the reduction
of variation in feature learning (lower CE loss), however, it
usually requires advanced large-scale GPU clusters. Table 3
illustrates that ITRA achieves a better performance even with
1/4 batch size compared to the baseline and thus avoid this
hardware restriction.

Learning compact feature representations From the geo-



| | AG’s News | Amazon Full |  Yahoo Answers | Yelp Full
| | A Acct CEJl| X Acct CEl| A Acct CEl| A Acct CEJ
Baseline - 92.10 0.42 - 58.53  1.66 - 66.60 1.36 - 61.12 152
Bert-base Center | 0.1 91.70 045 | 0.1 5938 123 | 0.1 6695 125 | 0.1 6058 1.17
ITRA 05 9245 029 | 02 6008 129 |06 6747 125 | 04 61.68 1.09
Baseline - 92.13 0.38 - 58.10 1.38 - 66.50 1.28 - 60.02 1.32
DistillBert | Center | 0.1 91.33 047 | 0.1 57.60 121 | 0.1 6657 126 | 0.1 5958 1.14
ITRA 02 9227 026 | 04 5830 120 | 0.1 66.65 117 | 0.1 6030 1.17
Baseline - 91.43 040 - 60.65 134 - 66.90 1.29 - 62.78 1.21
XLNet Center 0.1 9095 045 | 0.1 5988 118 | 0.1 6693 1.28 | 0.1 62.82 1.10
ITRA 0.8 9185 027 | 05 6090 123 |05 67.05 115 | 1.0 63.32 1.08
Table 4: Accuracy and CE loss on text classification task.
z 0
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(a) Resnetl8 (b) VGGI3 (c) MobilenetV?2

Figure 3: T-SNE plot for CIFAR10 testing data. Networks are trained with A that achieves best accuracy in Table 2.

metric perspective, samples from the same class should stay
close (i.e., intra-class compactness) and those from different
classes are expected to stay far apart (i.e., inter-class sepa-
rability) in the feature space (so that fj output by softmax
is large). We visualize the distribution of CIFARIO0 testing
samples with T-SNE (Maaten and Hinton 2008) in Figure
3. From the figure, we have the following observations: (1)
ITRA learns feature representation that is much tighter with
clearer inter-class margin than that learned by vanilla SGD
training. (2) The data distribution in the latent space learned
by ITRA exhibits a consistent pattern that for each class, the
majority of testing samples are closely clustered to form a
data manifold, while a small subset of samples deviate from
the majority. This phenomenon concurs with our analysis
that the matching loss provides diminishing gradient signals
for “low-density” samples while encourages the closeness of
“high-density” samples. Hence, ITRA can effectively capture
the “typical pattern” of each class but can miss some hard
samples that overlap with other classes. This explains why
ITRA achieves impressive improvement in CE value but not
as much in accuracy. Overall, ITRA still outperforms vanilla
SGD training and can be used as a promising training proto-
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type that enjoys theoretical merits as shown in the analysis
for matching loss.

Conclusion

In this paper, we propose a new training strategy, ITRA, as
a loss function based regularization approach that can be
embedded in the standard SGD training procedure. ITRA
augments vanilla SGD with a matching loss that uses MMD
as the objective function. We show that ITRA enjoys three
theoretical merits that can help DNN learn compact feature
representations without assuming uni-modality on the feature
distribution. Experimental results demonstrate its excellent
performance on both image and text classification tasks, as
well as its impressive feature learning capacity. We outline
two possible directions for future studies. The first is to im-
prove ITRA that can learn hard sample more effectively. The
second is the ITRA application in learning from poisoned
datasets as ITRA is able to capture the high density areas (i.e.,
modalities) for each class where poisoned samples deviates
far from those areas (e.g., erroneously labeled samples from
other classes).



Ethical Impact

This paper proposes ITRA to improve the performance of fea-
ture representation learning for training DNNs. As a general
training strategy for supervised classification problems, ITRA
can be used as a drop-in replacement in wherever the vanilla
SGD is used. Most modern deep learning model training
utilizes SGD as the standard optimization algorithm where
researchers have already proposed various alternatives and/or
enhancements to overcome its intrinsic limitations; the over
adaption to mini-batch is more pronounced. The proposed
in-training regularization via aligning representations enables
learning more compact features thus to improve the general-
izability of the predictive models. With our and many other
effective feature representation learning approaches, manual
feature engineering requiring profound domain knowledge
and expertise will eventually phase out. As such, our research
has positive impacts to a broad range of machine learning
and artificial intelligence domains where domain adaption
and generalization become the primary concern. For example,
in medical imaging based diagnosis, leveraging ITRA on a
smaller labeled and heterogeneous training set is expected
to demonstrate a competitive and consistent performance to
other medical imaging data sets.
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