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Abstract

Multi-task learning has been widely used in many applica-
tions to enable more efficient learning by sharing part of the
architecture across multiple tasks. However, a major chal-
lenge is the gradient conflict when optimizing the shared pa-
rameters, where the gradients of different tasks could have
opposite directions. Directly averaging those gradients will
impair the performance of some tasks and cause negative
transfer. Different from most existing works that manipu-
late gradients to mitigate the gradient conflict, in this paper,
we address this problem from the perspective of architecture
learning and propose a Conflict-Noticed Architecture Learn-
ing (CoNAL) method to alleviate the gradient conflict by
learning architectures. By introducing purely-specific mod-
ules specific to each task in the search space, the CoNAL
method can automatically learn when to switch to purely-
specific modules in the tree-structured network architectures
when the gradient conflict occurs. To handle multi-task prob-
lems with a large number of tasks, we propose a progressive
extension of the CoNAL method. Extensive experiments on
computer vision, natural language processing, and reinforce-
ment learning benchmarks demonstrate the effectiveness of
the proposed methods. The code of CoNAL is publicly avail-
able.1.

Introduction
Multi-Task Learning (MTL) (Caruana 1997; Zhang and
Yang 2021) aims to improve the generalization performance
of multiple learning tasks. Compared with single-task learn-
ing, MTL can learn multiple tasks simultaneously to re-
duce the overall training cost and gain knowledge sharing
from different tasks. Moreover, in some cases, MTL models
could make multiple predictions in one forward propaga-
tion, which reduces the inference latency. Therefore, MTL
has drawn much attention in recent years.

However, learning multiple tasks simultaneously can be
challenging because parameter sharing may lead to negative
transfer (Ruder 2017) with some empirical evidence in (Lee,
Yang, and Hwang 2016; Standley et al. 2020; Tang et al.
2020). As empirically analyzed in (Yu et al. 2020a; Chen
et al. 2020; Dery, Dauphin, and Grangier 2021), one main
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Module f1
S f2

S f3
S f4

S f5
S

HPS 59.26 51.68 42.22 39.36 49.49

LTB 41.08 38.86 39.65 47.05 24.44
CoNAL 0.34 0.19 0.14 0.13 0.00

Table 1: The ratio of negative cosine similarities (%) be-
tween the gradient of different tasks with respect to shared
parameters. {f (1)

S , . . . , f
(5)
S } denotes the modules in the

sharing architecture while learning architecture. Ratio is cal-
culated by going through all samples in the training set.

reason for this issue is the conflicting gradients of different
tasks with respect to shared model parameters, which will
be updated in opposite directions, leading to unsatisfactory
performance. To mitigate the gradient conflict, several gradi-
ent manipulation methods (Yu et al. 2020a; Liu et al. 2021a;
Chen et al. 2018; Wang et al. 2020; Liu et al. 2021b) are
proposed to manipulate task gradients by adjusting gradient
magnitudes or gradient directions or both of them for all the
tasks.

The occurrence of gradient conflict reflects that all the
tasks are not strongly related to each other, given the adopted
architecture. All the aforementioned works to alleviate the
gradient conflict adopt the hard parameter sharing (HPS) ar-
chitecture that uses a shared encoder for all the tasks with
task-specific decoders for each task. Though the HPS ar-
chitecture has been proven to be effective for many MTL
problems and is widely used in MTL, it implicitly requires
that all the tasks should be highly related to each other. For
some complicated datasets such as the NYUv2 dataset (Sil-
berman et al. 2012), such requirement cannot be satisfied
and the HPS architecture does not work well on this dataset
(Brüggemann et al. 2021; Sun et al. 2021). Hence, the gradi-
ent conflict issue could be the consequence of the use of an
improper architecture for a given MTL problem.

To verify that, we compare the HPS architecture with the
Learning to Branch (LTB) method (Guo, Lee, and Ulbricht
2020), which is to learn an architecture for a given MTL
problem, on the NYUv2 dataset. We follow (Du et al. 2018;
Yu et al. 2020a) to calculate the cosine similarity between
gradients of different tasks with respect to shared parame-
ters and put detailed settings of this experiment in Appendix
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A.8. According to Table 1, the gradient conflict in each mod-
ule of the learned architecture in LTB is alleviated compared
with the fixed HPS architecture. This suggests that architec-
ture learning could be another way to mitigate the gradient
conflict.

To the best of our knowledge, none of existing architec-
ture learning methods for MTL considers to mitigate the gra-
dient conflict during the architecture learning process, which
is what we aim to do in this work. According to Table 1,
we can see that the gradient conflict still severely affects
the learned architecture in the LTB model. One possible rea-
son is that LTB and other branch-based architecture learning
methods include only partially-specific modules, which are
first shared by all the tasks and then become specific for one
or more tasks, in the search space. Based on its definition,
during the architecture learning process, partially-specific
modules will be affected by gradients of all the tasks and so
weakly-related or even unrelated tasks will affect the learn-
ing of both parameters and architectures, leading to a subop-
timal architecture which may suffer from gradient conflict.

To kill two birds with one stone, we propose a Conflict-
Noticed Architecture Learning (CoNAL) method, which is
to handle the gradient conflict during the architecture learn-
ing process. Different from existing architecture learning
methods (Lu et al. 2017; Guo, Lee, and Ulbricht 2020;
Bruggemann et al. 2020; Vandenhende et al. 2020; Zhao
et al. 2021) for MTL, we are the first to introduce purely-
specific modules into the search space of learnable archi-
tectures which also have all-shared modules shared by all
the tasks. During the architecture learning process, the pro-
posed CoNAL method could perform the conflict notic-
ing operation to adaptively choose to use purely-specific
modules when the gradient conflict is detected in the all-
shared modules. As demonstrated in Table 1, the proposed
CoNAL method achieves a very low ratio of the gradient
conflict. Moreover, to efficiently handle MTL problems with
a large number of tasks, we propose a progressive version of
CoNAL called CoNAL-Pro, which can reduce the storage
cost and find task subgroups during the architecture learn-
ing process. Experiments on Computer Vision (CV), Natu-
ral Language Processing (NLP), and Reinforcement Learn-
ing (RL) benchmark datasets demonstrate the effectiveness
of the proposed methods. The main contributions of this pa-
per are three-fold.
1. We propose the CoNAL method to mitigate the gradient
conflict from the perspective of architecture learning.
2. In the CoNAL method, we firstly introduce both the
purely-specific modules in the search space of multi-task ar-
chitectures and the conflict noticing operation to guide the
architecture learning process.
3. Extensive experiments on three challenging domains
demonstrate the effectiveness of the proposed methods.

The CoNAL Method
In this section, we introduce the proposed CoNAL method.

Search Space
As an architecture learning method, the CoNAL method de-
fines a search space consisting of modules, each of which

could be a fully connected layer or a sophisticated ResNet
block/layer depending on the MTL problem under investi-
gation. Different from existing architecture learning meth-
ods (Lu et al. 2017; Guo, Lee, and Ulbricht 2020; Brugge-
mann et al. 2020; Vandenhende et al. 2020; Zhao et al.
2021), which learn a tree-structured network architecture
with partially-specific modules, all the modules in CoNAL
are classified into two types: all-shared module and purely-
specific module, which are defined as follows.

Definition 0.1 (Partially-specific module). When a mod-
ule in the search space is updated by the gradient back-
propagated from the loss of all tasks first and later from a
fixed set of tasks during the search process, this module is
said to be a partially-specific module.

Definition 0.2 (All-shared module). When a module in
the search space is always updated by the gradient back-
propagated from losses of all the tasks during the search
process, this module is said to be an all-shared module.

Definition 0.3 (Purely-specific module). When a module
in the search space is only updated by the gradient back-
propagated from the loss of a fixed task during the search
process, this module is said to be a purely-specific module
for that task.

According to Definition 0.3, we can see that parameters in
a purely-specific module are only updated by the loss of one
task, which is different from the partially-specific module
defined in Definition 0.1. Purely-specific modules are a key
ingredient for CoNAL to mitigate gradient conflict. Specifi-
cally, when the gradient of a task is detected to be conflicting
in the all-shared module, this task could use purely-specific
modules to form the encoder without affecting the learning
of other tasks.

Formally, for m learning tasks {Ti}mi=1, the CoNAL
method has a shared encoder network fS consisting of
(P − 1) all-shared modules for all the tasks, m task-specific
architecture parameters {αt}mt=1 to decide branch points for
m tasks, and m task-specific encoder networks {ht}mt=1 con-
sisting of purely-specific modules for the m tasks. Hence,
for task t, its model consists of all-shared modules from fS ,
purely-specific modules in ht, αt = (α

(1)
t , . . . , α

(P )
t ), and

a decoder network gt. Here P is equal to the total number
of all possible branch points before or after each module in
fS . As a binary parameter, α(p)

t ∈ {0, 1} indicates whether
task t branches at the branch point p from fS to ht. When
α
(p)
t equals 1, there will be a branch to feed the output of the

(p − 1)-th module in fS to the p-th module in ht to form a
network for task t, which is illustrated in Figure 1(b). More-
over, the sum of entries in αt should be 1 for any t, indicat-
ing that there is only one branch point for each task.

Figure 1 illustrates the difference between search spaces
of some existing architecture learning works (i.e., LTB
(Guo, Lee, and Ulbricht 2020) and BMTAS (Bruggemann
et al. 2020)), and the CoNAL method. The search space of
existing methods only has partially-specific modules. If task
i is totally unrelated to other tasks, all the partially-specific
modules will be updated by the gradient of the loss of task
i, which can be detrimental to the performance of some
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Figure 1: Illustration of the search space in various methods. Figures (a), (b), and (c) represent for the search space of the
LTB, CoNAL, and CoNAL-Pro methods, respectively. Blocks represent computational modules and edges between blocks
denote data flows. Blocks with the grey color stand for all-shared modules and blocks with other colors are for task-specific
modules. {f (1)

S , . . . , f
(P−1)
S } denotes the all-shared modules for all the tasks. In figure (a), all-shared modules can transform

into partially-specific modules at the later stage of learning. In figure (b) and (c), {1, . . . , P} denotes possible branch points
in the search space. {h(1)

i , . . . , h
(P−1)
i }, {α(1)

i , . . . , α
(P )
i }, and gi (1 ≤ i ≤ m) denote the task-specific encoder, task-specific

architecture parameters, and task-specific decoder, respectively, for task i. x and ŷi denote the input data and the prediction for
task i. A softmax operation is represented as “∼” and “?” means to search within candidate architectures.

other tasks. Differently, the CoNAL method could choose
hi for task i, making the learning of other tasks unaffected
by task i. The proposed search space in the CoNAL method
includes both single-task learning and HPS architectures as
two extremes. When all the tasks are unrelated to each other,
the network architecture in the CoNAL method could be-
come separate networks by choosing {ht} for each task. For
highly related or even identical tasks, the network architec-
ture of the CoNAL method could become the HPS network
by choosing fS only. In most cases, the learned architec-
ture by the CoNAL method is between the two extremes and
more complex than them.

Architecture Learning
The CoNAL method is to find an architecture that circum-
vents gradient conflict for m tasks {Ti}mi=1 by learning ar-
chitecture parameters {αt}mt=1.
Branch searching. If task t branches at the branch point p
in fS to ht, α

(p)
t is set to 1 and αi

t is set to 0 for 1 ≤ i ≤
P, i ̸= p. Then in this case, the entire encoder network for
task t consisting of the first (p−1) all-shared modules in fS
and the last (P −p) purely-specific modules in ht is denoted
by ht(fS(x, p), p), where fS(·, p) denotes the output of the
(p−1)-th module in fS and ht(·, p) denotes the output of ht
starting from the p-th module. To learn {αt} via stochastic
gradient descent methods, we relax {αt} to be continuous
and use them to define the probability of branching at each
branch point via the softmax function. Hence, the output of
the entire encoder network for task t is formulated as

ot(x,αt) =

P∑
p=1

exp(α
(p)
t )∑P

p′ exp(α
(p′)
t )

ht(fS(x, p), p).

Then ot(x,αt) is fed into the decoder gt to generate the

prediction and hence the loss for task t is formulated as

Lt(θt,αt) =
1

|D|
∑
x∈D

lt(yt, gt(ot(x,αt))),

where θt includes all the parameters in fS , ht, and gt, with-
out loss of generality all the tasks are assumed to share the
training set D, |D| denotes the size of D, yt denotes the la-
bel of x in task t, and lt denotes the loss function for task t.
Then the loss over m tasks is formulated as

L(θ,α) =
1

m

m∑
t=1

Lt(θt,αt), (1)

where θ denotes all the model parameters and α =
(α1, . . . ,αm).
Architecture determining. Here architecture parameters α
are viewed as hyperparameters and we adopt a bi-level for-
mulation to learn both model and architecture parameters as

min
α

Lval(θ
∗(α),α) s.t. θ∗(α) = argminθ Ltr(θ,α), (2)

where Ltr(·, ·) denotes the total loss defined in Eq. (1) on
the training dataset and Lval(·, ·) denotes the total loss on
the validation dataset. We adopt the gradient-based hyper-
parameter optimization algorithm with the efficient first-
order approximation as in (Franceschi et al. 2018; Liu, Si-
monyan, and Yang 2019; Ye et al. 2021) to solve prob-
lem (2). After solving it, we can learn the branching ar-
chitecture for task t by determining the branch point as
α∗

t = argmaxp({α
(p)
t }Pp=1), where α∗

t is a P -dimensional
one-hot vector with the maximum position being 1. After
learning the branch points, the unused purely-specific mod-
ules are removed from the final architecture to reduce the
number of parameters. For example, if a task selects a branch
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point p = P , it uses only all-shared modules, and hence all
purely-specific modules for this task are removed.
Retraining. After determining the architecture, the entire
model is trained from scratch to obtain the final model. In-
spired by (Lin et al. 2022), the objective function in the i-th
retraining iteration is formulated as

min
θ

L(i)(θ,α∗) =

m∑
t=1

wi
tLt(θt,α

∗
t ), (3)

where wi
t is a sampled loss weight from the uniform distri-

bution over [0, 1] for task t in the i-th iteration after normal-
izing to satisfy wi

t ≥ 0 and
∑m

t=1 w
i
t = 1. Such setting of

{wi
t} could avoid the cost of manually tuning loss weights.

The retraining process can be naturally combined with gra-
dient manipulation strategies, which is studied in Section .

Conflict Noticing
During the architecture learning process, we propose the
conflict noticing operation to handle the gradient conflict.
When there is a gradient conflict detected in a all-shared
module between two tasks where the cosine similarity of
the two task gradients on this module is negative, we will
zero out the gradients on this and successive all-shared mod-
ules and force all the tasks to update the subsequent purely-
specific modules. Specifically, the conflict noticing opera-
tion on all-shared module p at each training iteration is for-
mulated as

gradt = ∇θSLt(θt,αt) (4)

∇θ
p
S
L(θ,α) =


∑m

t=1 grad(p)
t if cos(grad(p′)

i , grad(p′)
j ) ≥ 0,

∀i, j ∀p′ ≤ p,

0 otherwise,
(5)

where cos(·, ·) computes the cosine similarity between two
vectors, θS denotes parameters in all-shared modules, θpS de-
notes parameters in the p-th all-shared module, gradt de-
notes the gradient of the loss in task t with respect to θS ,
and grad(p)t denotes the gradient of the loss in task t with re-
spect to θpS . According to Eq. (5), when there exist a pair of
tasks (e.g., tasks i and j) such that cos(grad(p)i , grad(p)j ) < 0,
then ∇

θ
(p)
S

L(θ,α), . . . ,∇
θ
(P−1)
S

L(θ,α) will be set to zero.
This operation will force tasks to switch to purely-specific
modules and reduce the possibility of the occurrence of the
gradient conflict. Moreover, according to (Yosinski et al.
2014), feature representations transit from general to spe-
cific in deep neural networks when layer goes deeper. The
conflict noticing operation updates modules before the mod-
ule with the detected gradient conflict to allow those all-
shared modules to learn the general feature representations
for all tasks and to prevent the early layers trained to be bi-
ased towards any one particular task. On the other hand, the
conflict noticing operation enforces the corresponding task
to learn purely-specific modules in later layers to capture
task-specific representations, which could help alleviate the
gradient conflict.

Algorithm 1: Conflict-Noticed Architecture Learning

Input: Dataset Dtr and Dval

Output: Learned architecture parameters α
1: Uniformly initialized α0, Pre-trained initialized θ0;
2: while not converged do
3: Sample a mini-batch from Dval;
4: Update α by minimizing the upper-level subproblem

of problem (2);
5: Sample a mini-batch from Dtr;
6: Compute all task loss functions and the correspond-

ing gradients according to Eq. (4); ;
7: Compute conflict-noticed gradient for all-shared

modules according to Eq. (5);
8: Update θ according to by minimizing the lower-level

subproblem of problem (2);
9: end while

Difference with Related Works. While PCGrad and its
variants successfully mitigate the gradient conflict, most of
them perform gradient manipulation (e.g., gradient projec-
tion) on shared parameters in manually designed architec-
tures (e.g., hard-parameter sharing). Those methods aggre-
gate the gradient of different tasks to prevent the shared
parameters bias to any one particular task. However, such
gradient manipulation operations may lead to underfitting
on some less related tasks. Differently, when there is gra-
dient conflict detected, the proposed conflict noticing op-
eration will guide the less related tasks to learn its purely-
specific modules instead of all-shared modules so that the
task-specific representation for that task can be learned in
purely-specific modules, which ensures that each task is
fully learned. Moreover, the conflict-noticing operation is
built on the proposed search space consisting of purely-
specific modules and all-shared modules, as the architec-
ture learning process can switch from all-shared modules
to purely-specific modules for each task when the gradient
conflicting is detected. Furthermore, instead of manipulating
gradients of all the shared parameters as a whole in PCGrad
and its variants, the proposed conflict noticing operation op-
erates on fine-grained modules.

In summary, the entire algorithm for the CoNAL method
is shown in Algorithm 1.

A Progressive Extension
In the original search space of the proposed CoNAL method,
m + 1 separate networks in the full size need to be trained,
where m is the number of tasks. The entire model size dur-
ing the architecture learning process grows linearly with the
number of tasks, which is computationally demanding when
m is large. Another limitation of the CoNAL method is that
the largest subgroup among multiple tasks could likely dom-
inate the learning of the shared encoder in the training pro-
cess. If multiple subgroups exist in the MTL problem, tasks
in a smaller subgroup would not be effectively learned and
utilized.

To effectively handle the aforementioned issues, we pro-
pose a progressive version of the CoNAL method called
CoNAL-Pro, which can progressively learn the architecture
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Method Segmentation Depth
∆I ↑ Parms. (M)↓

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err↓
STL 68.13 91.28 0.0133 45.039 0 79.27

HPS −0.73 −0.36 +0.0009 +0.3872 −2.3334 55.76
GradNorm −0.75 −0.45 +0.0008 −0.5110 −1.6784 55.76
MGDA −1.09 −0.69 −0.0002 −1.0496 +0.3140 55.76
GradVac +0.44 +0.08 +0.0001 +1.0179 −0.6265 55.76
Nash-MTL +0.75 +0.22 +0.0005 +1.1392 −1.2953 55.76
Pareto-MTL +0.48 +0.04 +0.0004 +0.7552 −0.9817 55.76

Cross-stitch −0.12 +0.01 +0.0002 −0.6144 −0.1335 79.26
MTAN +0.84 +0.31 +0.0003 −1.2882 +0.4866 72.04
NDDR-CNN −0.11 −0.03 +0.0004 −0.1728 −0.7627 101.58
AFA +0.79 +0.24 +0.0025 +2.1253 −5.5905 87.09
RotoGrad +0.04 +0.09 +0.0002 −0.0612 −0.3034 57.86

MaxRoam −1.41 +0.05 +0.0009 −2.7490 −0.7298 55.76
TSN +1.62 +0.57 −0.0005 +0.8070 +1.2442 50.58
MTL-NAS −2.78 −1.08 +0.0011 +2.8903 −5.0490 87.26
BMTAS +1.44 +0.54 −0.0011 −0.7830 +3.1907 79.04
LTB +1.58 +0.54 −0.0008 +1.6607 +1.2708 70.73
CoNAL +1.54 +0.51 −0.0010 −2.3906 +3.8870 77.82

Table 2: Performance on the CityScapes validation dataset, where the performance difference between each method and STL
is reported. ↑ (↓) indicates the higher (lower) the result, the better the performance. The number of parameters (abbreviated as
Parms.) is calculated in MB.

for a large number of tasks with multiple subgroups. Specifi-
cally, the CoNAL-Pro method starts the architecture learning
process from the last all-share module p−1. In the first stage,
the search space only contains two branch points: p and p−1,
for each task. For task t where 1 ≤ t ≤ m, it either chooses
to use the all-shared module f

(p−1)
S or use purely-specific

module h
(p−1)
t . If task t chooses f

(p−1)
S , it will branch at

branch point p and be removed from the search space in
the following stages. In this case, only the gradient conflict
of the last all-share module needs to be calculated, which
highly reduces the memory cost and enables the flexibil-
ity to handle a large number of tasks. Tasks branching out
at this stage are considered as one subgroup and the num-
ber of tasks in the search space reduces after each stage. In
the second stage, only tasks that use purely-specific modules
are included in the search space, which contains two branch
points: p − 1 and p − 2. Another shared module h

(p−1)
S is

added after the branch point p − 1 for the second subgroup
and it is shared by all the tasks in current search space.
Figure 1(c) illustrates the second stage of the CoNAL-Pro
method. This process repeats until all the tasks have been al-
located to a certain branch. In the last stage, the search space
will include purely-specific modules after branch point 1
for the remaining tasks, which indicates that similar to the
CoNAL method, the CoNAL-Pro method could learn sepa-
rate networks for those tasks.

Experiments
In this section, we empirically evaluate the proposed
CoNAL method. Due to page limit, details on the experi-
mental setup are put in Appendix A.8.

Experiments on Multi-Task CV Benchmarks
To demonstrate the effectiveness of the proposed CoNAL
method, we conduct experiments on four CV benchmark
datasets: CityScapes (Cordts et al. 2016), NYUv2 (Silber-
man et al. 2012), PASCAL-Context (Mottaghi et al. 2014),
and Taskonomy (Zamir et al. 2018). The baseline meth-
ods in comparison include the Single-Task Learning (STL)
that trains each task separately, the HPS architecture and
HPS with GradNorm (Chen et al. 2018), MGDA (Sener
and Koltun 2018), GradVac (Wang et al. 2020), Nash-MTL
(Navon et al. 2022) and Pareto-MTL (Lin et al. 2019), man-
ual architecture designed methods including Cross-stitch
(Misra et al. 2016), MTAN (Liu, Johns, and Davison 2019),
NDDR-CNN (Gao et al. 2019), AFA (Cui et al. 2021),
and RotoGrad (Javaloy and Valera 2022), and architecture
learning methods such as MaxRoam (Pascal et al. 2021),
TSN (Sun et al. 2021), MTL-NAS (Gao et al. 2020), BM-
TAS (Bruggemann et al. 2020), and LTB. For fair compar-
ison, we use the same backbone (with details in Appendix
A.8) for all the models in comparison.

In the four datasets, each task has multiple metrics for a
thorough evaluation, where definitions of those metrics are
put in Appendix A.8. To better show the comparison among
all the methods in comparison, we report the overall relative
performance of each method over the STL baseline as

∆I = 100%× 1

m

m∑
t=1

1

mt

mt∑
j=1

(−1)pt,j (Mt,j − STLt,j)

STLt,j
,

where for a method M, Mt,j denotes its performance in
terms of the jth evaluation metric for task t, STLt,j is de-
fined similarly, pt,j equals 1 if a lower value represents a
better performance in terms of the jth metric in task t and 0
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Method
Segmentation Depth Surface Normal

∆I ↑ Parms. (M)↓
mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err↓ Angle Distance Within t◦↑

Mean ↓ Median ↓ 11.25 22.5 30

STL 53.98 75.38 0.3945 0.1631 22.25 15.63 38.12 64.38 74.81 0 118.91

HPS +0.50 +0.44 −0.0106 −0.0083 +1.25 +1.43 −2.81 −3.28 −2.67 −0.5088 71.89
GradNorm +0.40 +0.23 −0.0083 −0.0094 +1.22 +1.45 −2.77 −3.35 −2.72 −0.5735 71.89
MGDA +0.25 +0.25 −0.0082 −0.0040 +1.09 +1.18 −2.31 −2.76 −2.32 −0.8407 71.89
GradVac +0.11 +0.31 −0.0106 −0.0091 +0.90 +1.05 −2.08 −2.40 −2.02 −0.0320 71.89
Nash-MTL +0.37 +0.43 −0.0299 −0.0122 +0.25 +0.87 −1.74 −1.73 −1.00 +1.6967 71.89
Pareto-MTL +0.19 +0.22 −0.0081 −0.0046 +0.96 +1.10 −2.20 −2.59 −2.09 −0.6773 71.89

Cross-stitch −0.52 +0.11 −0.0141 −0.0076 +0.76 +0.70 −1.11 −1.96 −1.79 +0.1493 118.89
MTAN +0.76 +0.40 −0.0149 −0.0082 +0.72 +0.67 −1.21 −1.75 −1.49 +0.7658 92.35
NDDR-CNN −0.14 −0.15 −0.0074 −0.0071 +0.35 +0.44 −0.45 −0.95 −0.89 +0.4106 169.10
AFA −2.44 −1.47 +0.0085 +0.0061 +1.98 +1.77 −3.05 −4.16 −3.85 -4.7187 136.88
RotoGrad +0.11 −0.13 −0.0145 −0.0061 +0.80 +0.87 −2.14 −2.51 −1.89 -0.1745 75.03

MaxRoam +0.55 +0.23 −0.0066 +0.0069 −0.35 −0.65 −1.54 −1.50 −2.58 -0.4803 71.89
TSN +0.35 +0.61 −0.0172 −0.0068 +1.51 +1.87 −3.68 −4.33 −3.40 -0.9746 50.58
MTL-NAS −0.06 −0.17 −0.0098 −0.0101 +0.16 +0.38 +0.03 −0.17 −2.23 +0.9666 183.40
BMTAS −0.14 +0.04 −0.0055 −0.0016 +0.00 −0.11 +0.49 −0.03 −0.12 +0.4793 116.04
LTB −0.56 +0.05 −0.0040 −0.0095 −0.01 +0.08 −0.37 −0.29 −0.07 +0.8511 86.85
CoNAL +0.08 +0.27 −0.0095 −0.0069 −0.26 −0.43 +1.20 +0.69 +0.34 +1.7586 93.96

Table 3: Performance on the NYUv2 dataset, where the performance difference between each method and STL is reported.

Method ∆I ↑ Speedup↑ Parms. (M)↓
CoNAL +1.76 1.0x 93.96
-w/o conflict-notice +1.16 1.44x 86.85
-w/o conflict-notice and pure -0.68 1.46x 71.89
-w/o module splitting +0.97 1.07x 95.40
-w/o random loss weighting +1.65 1.00x 93.96

Table 4: Ablation study of the CoNAL method on the
NYUv2 dataset. Speedup is computed over the CoNAL dur-
ing architecture learning.

otherwise, and mt denotes the number of evaluation metrics
in task t.

Tables 2 and 3 as well as Tables 9 and 10 in Appendix
A.3 show the performance of all methods in comparison on
the four CV benchmark datasets. Compared with the STL
counterpart, the proposed CoNAL method improves the per-
formance of all tasks in terms of all the evaluation metrics,
while having smaller numbers of parameters in the learned
architectures. This indicates that the CoNAL method cir-
cumvent negative transfer on those four CV datasets.

Although some manually designed architecture methods
(e.g., MTAN) can also circumvent negative transfer on the
CityScapes dataset, those methods perform worse than STL
in some tasks of the other three larger datasets. For example,
on the NYUv2 dataset, existing architecture learning meth-
ods (e.g., MTL-NAS) mitigate the negative transfer when
compared with HPS but still exhibit inferior performance to
the STL method on the surface norm prediction task. More-
over, the proposed CoNAL method achieves the best ∆I

on the four datasets when compared with baseline meth-

Method Train Speedup ↑ Mean Success Rate ↑
Single-task policy 1.0x 0.78±0.042

Multi-task SAC 7.50x 0.44±0.060
Multi-head SAC 6.98x 0.58±0.069
Soft Modularization 5.36x 0.68±0.088
PCGrad 3.09x 0.65±0.092
CAGrad 3.28x 0.73±0.068
CoNAL 6.25x 0.76±0.049

Table 5: Comparison on mean success rates for MT10 tasks.
Results are calculated for three independent runs.

ods, which demonstrates the effectiveness of the proposed
CoNAL method. The proposed CoNAL method learns an
architecture with a medium model size and the best perfor-
mance (in terms of ∆I ) comparing with various MTL meth-
ods.

Ablation Study
We provide the ablation study for CoNAL in Table 4. For
“w/o conflict-notice”, we simply add purely-specific mod-
ules into the search space without the gradient noticing
operation. For “w/o conflict-notice and pure”, we replace
purely-specific modules with partially-specific modules in
the search space and do not conduct the gradient noticing
operation. Compared with the original CoNAL method, the
performance of those two variants degrades, which verifies
the usefulness of the purely-specific modules and the gradi-
ent noticing operation.

For “w/o module splitting”, we replace all-shared and
purely-specific modules with the entire all-shared and
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Method Parms. (M) ↓ Speedup ↑ Total Test Error ↓
STL 100.56 1.0x 49.59±0.12

HPS 11.21 8.84x 49.78±0.26
UW 11.21 8.34x 49.47±0.86
PCGrad 11.21 2.59x 48.66±0.48
CAGrad 11.21 2.44x 48.75±0.71
TAG-2 22.37 1.29x 49.23±0.05
LTB 77.39 2.10x 49.47±0.45
CoNAL 57.86 2.51x 49.02±0.45
CoNAL-Pro 30.58 3.18x 48.63±0.40

Table 6: Results on the CelebA 9-task dataset. Speedup is
computed over the STL model during training. The mean
and standard deviation of the total test error are calculated
over three independent runs.

purely-specific encoders in the search space of CoNAL. This
variant has a larger model size and worse performance than
the CoNAL method, which verifies the usefulness of fine-
grained modules. For “w/o random loss weighting”, we re-
place randomly sampled task loss weights with the same
fixed weights as in LTB. This variant has slightly worse per-
formance than the CoNAL method, which verifies that the
random loss weighting can improve the performance a bit,
and reduce the tedious cost to tune loss weights.

Experiments on Multi-Task RL
To further examine the proposed CoNAL method for RL
tasks, we evaluate it on the MT10 challenge from the Meta-
World environment (Yu et al. 2020b). By following (Yang
et al. 2020; Sodhani, Zhang, and Pineau 2021), we train the
policy with Soft Actor-Critic (SAC) (Haarnoja et al. 2018)
and compare with multi-task SAC (i.e., SAC with a shared
model), multi-head SAC (i.e., SAC with a shared policy
network and task-specific head), Soft Modularization (Yang
et al. 2020), PCGrad (Yu et al. 2020a) and CAGrad (Liu et al.
2021a).

According to the results shown in Table 5, the proposed
CoNAL method outperforms most baseline methods and
the significant t-test with 95% confidence shows that the
CoNAL method performs better than PCGrad, CAGrad and
Soft Modularization. Though the single-task policy per-
forms slightly better on one task (i.e., the pick-place task),
the CoNAL method achieves comparable performance with
the single-task policy in terms of the mean success rate and
has a much faster training speed.

Experiments for the CoNAL-Pro Method
To evaluate the proposed CoNAL-Pro method, we conduct
experiments on the CelebA dataset (Liu et al. 2015). We fol-
low (Fifty et al. 2021) to filter the 40 tasks down to 9 tasks,
leading to CelebA 9-task dataset, which has a larger number
of tasks with multiple task subgroups.

On the CelebA 9-task dataset, we compare the proposed
CoNAL and CoNAL-Pro methods with the HPS method, the
TAG-2 method (Fifty et al. 2021) that performs the two-split
task grouping, LTB, PCGrad, and CAGrad. According to ex-
perimental results shown in Table 6, the CoNAL-Pro meth-

Method Speedup ↑ ∆I ↑
STL 1.0x 0

HPS 1.69x -0.5088
HPS-PCGrad 0.78x -0.1205
HPS-CAGrad 0.61x -0.1817

CoNAL 1.18x +1.7586
CoNAL-PCGrad 0.42x +2.5271
CoNAL-CAGrad 0.38x +1.8932

Table 7: Combination with gradient manipulation methods
on the NYUv2 dataset.

ods has the lowest total test error, which demonstrates the ef-
fectiveness of the proposed method. The model architecture
learned by the CoNAL-Pro method has fewer parameters but
better performance than the LTB method as it learns more
subgroups. This demonstrates that the CoNAL-Pro method
can obtain an architecture that can learn task grouping for
better knowledge sharing among tasks.

Combination and Comparison with Gradient
Manipulation Methods
The retraining process of the CoNAL method can straight-
forwardly incorporate various gradient manipulation meth-
ods based on Eq. (3). To demonstrate that the performance
of the CoNAL method can be improved even further, we
combine the proposed CoNAL model with the PCGrad and
CAGrad methods, which manipulate task gradients to allevi-
ate the gradient conflict. According to experimental results
shown in Table 7, combining with PCGrad and CAGrad can
further improve the performance of the proposed CoNAL
model. Compared with the HPS-PCGrad method that im-
proves about 0.4 over HPS in terms of ∆I , CoNAL-PCGrad
improves about 0.8 over CoNAL, which indicates that the ar-
chitecture learned by the CoNAL method is more preferred
than HPS while combining with the PCGrad method. More-
over, as the PCGrad and CAGrad methods are built on the
HPS architecture, we can see that the CoNAL method per-
forms better than the PCGrad and CAGrad methods, which
are just HPS-PCGrad and HPS-CAGrad in Table 7, and this
result indicates that learning a suitable architecture could be
more important to the performance improvement.

Conclusion
In this paper, we propose the CoNAL method to learn multi-
task network architectures to alleviate the gradient conflict
issue. We first introduce purely-specific modules to the de-
sign of the search space and propose a conflict-noticed al-
gorithm to mitigate gradient conflict. We further propose an
extension of the CoNAL method to enable the learning on
many tasks and the identification of multiple subgroups. We
validate the CoNAL method on multiple MTL benchmarks
across three challenging domains. For future work, we are
interested in extending the CoNAL method to other multi-
task learning problems.
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